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The interaction oflong-wave magnetostatic waves with phonons is analyzed for the case of a 
transversely magnetized plate in the low temperature limit. Relaxation times showing a 
nonexponential temperature dependence are calculated. 

1. The objective of this paper is to calculate the lifetime 
of a magnetostatic wave (MSW) in a ferromagnetic plate 
magnetized normal to the surface. We restrict our discussion 
to the case of very low temperatures1' such that 

and we also assume that 

With these assumptions, it has been shown by us earlier1 
that the inhomogeneous exchange contribution to magnon 
energy may sometimes be neglected when treating the mag- 
non-phonon interaction. We shall have occasion, later on in 
our study, to cast light on the role of the exchange interac- 
tion in situations where it cannot be neglected; for the mo- 
ment, however, only MSW dispersion without allowance for 
exchange interaction will be considered. For an MSW of fre- 
quency w and wave vector k (two-dimensional in the plane 
of the plate) we have2 

--k=q ctg (qd) .  ( 5 )  

The plate is a layer of thickness 2d ( izl < d) ,  and thez-axis is 
parallel to HIIM. 

Typical w = w, (k)  curves are shown in Fig. 1. In the 
following, the superscripts s and a label solutions of equa- 
tions (4) and (5),  respectively. For kd < l ,  the zeroth-mode 
frequency wg' varies linearly with k, 

and for n # 0 we have 

0.n~. 
c ~ , ! ~ '  =coo + - (kd)'. n > o .  

2 inn)' 

For kd>.ii(n + 1/2), 

It should be noted that the larger the mode number n the 
more restrictive the condition of applicability of ( 7 ) .  The 
case of large n is of no interest here because, as will be made 
plain below, the inclusion of the exchange interaction is obli- 
gatory when the lifetime of an n, 1 mode is to be calculated. 

The mode number n is equal to the number of zeros of 
p ( z )  over the plate thickness, and the MSW frequency-and 
hence the energy %I, (k)  of the corresponding elementary 
excitation-decreases with n, so that the zeroth mode has 
the highest frequency. These features are of course easily 
interpreted as being due to the anomalous character (noted 
in particular in Ref. 1 ) of the propagation of MSWs along 
the H direction. 

From (5)  it follows that, for kd< 1, 

and depending on the symmetry of the (alternating) mag- 
netic field in the plate, one of two transcendental equations 
determines the quantity q, (n = 0,1, ... ) here. If the magnet- 
ic field potential p is symmetric with respect to the plane 
z = 0, thenq, is the (n + 1)st (n = 0,1, ...) root oftheequa- 
tion 

whereas for p( - z)  = - p(z) ,  q, is given by the (n + 1)st 
(n = 0,1, ... ) root of the equation 

FIG. 1. Plot of o = w ,  ( k ) .  The solid line represents the depend- 
ence w  = o g ' ( k ) ,  linear for kd( 1; the dashed line: o = w ; ' ( k )  
for n > 0; the dash-dot line: w = w p ' ( k )  for the same n as that 
taken for w  = w$' ( k ) .  
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and for kd$-?r(n + 1) 

(8') 

The quantization of MSWs can be performed in a stan- 
dard way by using the approximate Holstein-Primakov rep- 
resentation3 

and expanding in terms of the orthonormal eigenfunctions 
so as to express the operators a + and a through the Bose 
operators aL and a,, .2' For a symmetric (s) MSW, for ex- 
ample, we have 

cos (q,,z) 
a = L E;! l , , ,  u . . e ~ ~ ~ + u . . . ~ a . . + e z k ~ )  

T;' 
n ,? 

[ l + s i n Z ( ~ , J ) l k d J r h  ' 

where V is the volume of the plate and p G ( x , y )  . 
By substituting the Eq. (9) in the Hamiltonian of the 

magnet, 

after first expressing the MSW magnetic field h in terms of m 
by use of appropriate magnetostatic equations. The resulting 
expression is then equated to the standard form 

We will determine u,, and v,, coefficients in u,u-transfor- 
mation ( 10): 

o , + o , ( k )  .kr-ik, oo-cf,"(k) 
tiL,, = -- 72.. = (-,- ) - 

21 0 , o  ' ( 1 ~ )  1'" ' 2[0+(0,  (k) I l k  ' 

Although there are four sound vibration types known to 
exist in plates (see Ref. 4), we will only be interested in those 
phonons whose emission or absorption does not alter the 
symmetry of an MSW. On the other hand, we shall see below 
that, in limiting cases, the damping of an MSW is dominated 
by a sound wave whose displacement vector U is homoge- 
neous with respect to the coordinate z.  It is therefore permis- 
sible to consider only one vibration type, 

(14) 
Here p denotes the mass density of the magnetic; f is the 
(two-dimensional) wave vector of the phonon; b, and b iL 
are Bose operators; Dm is a root of the equation 

and the frequency R, (f)  and polarization e, are given by 
the respective equations 

We note that the phonons ( 14) are transverse with respect to 
f and that one possible solution of (15) is that for which 
Po = 0. 

The Hamiltonian for one-phonon processes of interest 
here is quadratic in m and linear in the strain tensor compo- 
nents 

(see Refs. 3 and 5). For an elastically isotropic magnet, ne- 
glecting inhomogeneous exchange effects, we can confine 
ourselves for the interaction Hamiltonian to the simplest in- 
variant with one magnetoelastic constant y. 

X i n r = y  1 ~V~Af,~zz,~dv. (17) 

From this, separating the anharmonic terms quadratic in a 
and a + and linear in b and b + and remembering that both a 
operators belong to a spectrum branch of the same symme- 
try, we have 

where 

+ 
sin ( y n + q n , - P r n )  d +.  sin ( q n f  qnr+e,,) d 

(qn+qn,-pm) d ( q n f  qn,+Pm) d 
( f i .+ i f , ) '  

ti, = f(af,,) ' 

Equations ( 19) justify our neglect of the antisymmetric 
phonon modes: they drop out of the matrix-element calcula- 
tion anyway integration over z. 

We are now in a position to calculate T; ' ( k ) ,  the in- 
verse lifetime of an MSW. Taking account of both the direct 
and inverse processes but retaining only the loss terms in the 
collision integral, it is found that3 

-On,  ( k t ) - a m ( ! ) )  
+ I  y2I"(Nf,-nk, ,~)A ( k - k r + f ) 6  ( o n ( k ) - o n r ( k ' )  

+ ~ , ( f ) ) + l ~ ~ ) ~ ( n k ~  ,.-Nf,) A (k+k'-f  )6 ( o n  (k) 
+on. (k l ) - f i rn( f )  )). (20) 

Here 
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are the equilibrium distribution functions for phonons and 
MSWs, respectively, and we have made use of ( 1 ) in pro- 
ceeding from the Bose function to the exponential function 
in the last equation. 

As is customary, the summation over k' can be replaced 
by an integration 

where S = V/2d is the plate surface area and q, the polar 
angle. Unfortunately, both the dispersion laws (3  ) and ( 15) 
and the expressions for the amplitudes Yi (i = 1,2,3) are too 
complicated to allow a straightforward evaluation of r, (k)  
even in the limiting cases we have chosen. 

In Eqs. (18) through (20), the following three one- 
phonon processes are covered: 

1) an MSW emits a phonon; 
2) an MSW absorbs a phonon; and 
3) two MSWs merge to emit a phonon. 
A discussion of the third process will not be given here 

because for such an event to occur one MSWs must meet 
another, and the number of such potential partners is expo- 
nentially small-hence a small factor exp( - &,/T) in the 
corresponding probability expression. 

2. We begin with phonon emission, with particular em- 
phasis on the kd< 1 case. The relevant energy and momen- 
tum conservation laws 

impose considerable restrictions on the calculations that fol- 
low. It is therefore necessary to analyze (22) in detail for 
various situations that may arise. 

a )  Both the initial and finite n values are zero 
(n = n' = 0)  and kd<l .  Combining (6), (16), and (22) 
gives 

showing that k ' < k, with a consequence that this result only 
holds form = 0 in the limit as k-0. Looking back, this justi- 
fiesourchoiceofthe/3, =Omodein (14).Form = O  (22') 
yields then 

where q, is the angle between the vectors k and k'. Hence 

(k2+k") ( l -~Z)+  2a2kk' 
-I<cos (p = <I, k ' tk .  (24) 

2kk' 

It is seen that for a < 1 there is no solution, whereas for a > 1 
the emission process gives rise to MSWs with wave vectors k ' 
in the range 

and it will be noticed that to every such k ' there correspond 
two angles determined by (23), q , (kl)  and 2n- - q,(kl)-a 

very natural result if one recalls that the vector k specifies 
the only preferred direction in the plane of the plate. The 
possible values of k ' = k '(k,q,) are shown schematically in 
Fig. 2, where the ends of the k' vectors lie on the curve jT 
located between the circles of radii k and 
[(a - 1) / ( a  + 1) ] k. As a approaches unity (a> 1), the 
curve X contracts to a straight segment (0 , k )  on the q, = 0 
axis, and the equation (24) for the curve X degenerates into 
cos q, = 1 (i.e., q, = 0 and 2n).  

The inverse lifetime3' l / rm(k)  due to phonon emission 
is evaluated by performing the necessary integration in the 
first term in (20). In doing so, the integration over k ' helps 
dispose of the 6-function that occurs. The result is 

where 

Inspection will show that as a- 1 expression (25) tends to 
infinity, 

f , (u )m ( 3 - i ) - I h .  f 2 ( u )  (a-I)-" 

and one can enquire, why? The inequality a > 1 is in fact the 
condition for the Cherenkov sound radiation: for the MSW 
velocity at a > 1 we have 

At a = 1, a resonance-type situation takes place (u ,  = u ) ,  
leading to a divergence in the probability for an MSW to emit 
a phonon. The dispersion law (6)  is only an approximation, 
however, and we can eliminate the divergence by refining 
Eq. (61, 

FIG. 2. Curve X: variation of the wave vector k ' with the angle q, for 
phonon emission processes. The vector k is fixed; n = n' = 0; 
k ' ( q , = O ) = k ; k l ( q , = r )  = [ ( a - ] ) / ( a +  I ) ] k ; k d < l .  
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Equation (23 ) then becomes 

(k"-+k'z-2kk' cos 9)'"- (k -k ' )  

This is solvable only if 

which means that, for a  values close to unity, the processes 
under study have a threshold as a function of the wave vector 
k  on going from the short wavelength side. Its value is4' 

4 (a- 1 )  
k  - , a-l<l, 

th - d ( 2 S o o l w )  

implying that kthd< 1 and thereby confirming the validity of 
the expansions above. 

We now recalculate [rTOO(k) ] by applying expression 
(27)  to the first term in (20) .  As before, the result will be 
strongly dependent on the relationship between the tempera- 
ture and the dispersive part of the magnon energy 
+i[w, ( k )  - w, 1. Also, different analytical expressions will 
be obtained, depending on whether, 

2 (a- 1) 
k < >  - 1 - - 

d(2+0nrl(t~o) 2 
kc, 

(these expressions are of course identical for k  = kt,  /2 ) .  
Thus, for T& h, kd, 

kt, - 3k 
k  arcsin kt, [ ( k t , - k ) - : ] '  k ' ~ '  

kth 
~ ( k t h  - k ) ,  -'k<kt, , 2  

and for T-4 h , kd  

kth - 3k 
k 2  arcsin 

kt, 

[ ( k t . - k ) - s ] '  k ' ~ '  
kth 

r ( k t h  - k )  (3k - kth 1, -<k < kt, 
2  

Comparing these results with equations (25 )  reveals their 
identity in the case k d ( a  - 1: the first and third of equa- 
tions (30)  duplicate, respectively, the first and second of 
equations (25 ). 

It is seen that, in a more elaborate analysis, the reso- 

FIG. 3. The dependence of [?PO(k)] - ' on k for phonon emission pro- 
cesses (a? 1 ,  k d 9 1 ) .  

4 (a- 1)  
kt, = 

d(2+ona/oo) 

name between the magnetostatic and sound waves produces 
a peak in the wave-vector dependence of the inverse lifetime 
(Fig. 3) .  In the limit as k+O, the inverse relaxation time 
tends to zero as k  4, and at k  = kt,  it vanishes linearly. Its 
maximum value is 

I T, TBAoMk ,hd, 
y2 (a-1)5'z 

42 (a-1)  
M 2Opud& (2f oM/o~)~  . T<AoMkthd. do' 

Now if the process above exhibits a threshold behavior 
for k d 4  1, the relevant question is whether a threshold k  
value exists for a substantially different from unity. A non- 
expansion analysis of the conservation laws (22 )  for m = 0  
will give the answer [cf. Eqs. (22 )  and (22')  1. From (22 )  it 
is readily found that 

kZ+kf2- (a0  ( k )  -Q0  ( k ' ) ) 2 / 1 ~ ?  
cos cp = 

2kk' > (32)  

so that the condition for a solution is 

u(k-k1)<to0(k) -oo(k ' )  (33 

which, applying ( 3 )  with n = 0, is easily shown (33)  not to 
hold for k  > kt, where kt, is a root of the equation 

Based on the definition ( 4 )  for go, this last result may be 
considered as an equation for god and is conveniently re- 
written as 
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FIG. 4. Graphic solution of Eq. (35 ). The solid and dashed lines represent 
the left and right sides of the equation, respectively. It is seen that the lines 
do not intersect if a = o,d /2u  < 1. 

0.w x t g z  sin s cos x -- + l=a , z=q,d. 
x 

(35) 
0 0  a 

Referring to Fig. 4, a graphic solution of (35) clearly shows 
the existence of a threshold value kt,  (recall that w, - w, ) . 
I f a  =: 1, it is only natural that the previous value is retrieved; 
for arbitrary a values, the root of (35) cannot possibly be 
written down, and for a > 1 the dashed curve in Fig. 4 climbs 
up while the solid one goes somewhat down. It is seen that as 
a - ccr , the root x tends to r/2, giving for a > 1 

Assuming that w, -w, we have 

indicating that kt ,  d % 1 for a % 1. Figure 5 shows schemati- 
cally the dependence of kthd on a for w, = 213,. It is seen 
that this dependence differs only slightly from a linear one. 

The existence of a threshold MSW wave vector for 
phonon emission processes must be attributed to the neglect 
of inhomogeneous exchange interaction. If it is this latter 
which dominates the spin wave dispersion, then 

and the condition for a long wavelength phonon with 
v ( k )  > u to be emitted is given by 

k>u/ (20, ,aZ)  = k,,. 

The threshold k dependence we predict here can only be 
observed if kt, is smaller than k,, , that is, 

which is actually the same as condition (2).  We note also 
that the condition a> 1 is consistent with inequalities (2)  
[or (37) 1 if 

Oc 
d B - a ,  

@ D  

where 
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FIG. 5. The threshold wave vector as a function of the parameter a. For 
a- 1, 

and for a- m 

is of the order of the Debye temperat~re.~ 
We conclude this section by estimating the phonon 

emission probability for k values close to kt ,  and a values 
not too close to unity. Also, the maximum value of l/roO( k )  
will be calculated. 

Analysis of the conservation laws shows that, for 
k-+ kt,, the domain ofintegration over k ' contracts to a point 
near k ' = 0, with 

22- (dtoo(k),ldk) ,h 
k:,,= ( k , ,  -k )  

1z (u+l) 

u- (doo(k)l;lk),h 
k L =  ( k t ,  -k) 

IZ (a- 2 )  

Making use of this, it is a simple matter to separate the domi- 
nant term in the integrand when employing (20). Utilizing 
integration over q, to dispose of the S-function we arrive at an 
expression (an integral over k ') with a factor lsin q, 1 - ' 
playing the dominant role; the angle q, is given by 

u- (800(k) ldl;)  
cos cp=a- ( k t h  - k )  

uk' 
(39) 

7 

where, using (33) and (34), 

so that 

From (39) it follows that q, = r ,  0 on the boundaries of the 
interval with the implication that Isin q, 1 - ' - w as k -  kt,. 
Except for the factor lsin q, 1 - I ,  it is permissible to put 
k = kt, and k ' = 0 everywhere in the integrand of (20), and 
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p-.~' 1 a - 1  
dk' an lz- ( d u o ( k )  )/ak)tt, mln 2 a + l  kth{l k ' .  =-- 

(kt, -k) 
, s i n  (acl)" u 

(41 a + l  1 '"1 
Finally, 

so that, as in the general case, here again the domain of inte- 
gration over k ' domain contracts to zero as k- kt,. 

1 - (ygM)2fi a k  :h 1 - (d@o(k)/dk) , h ~ - '  -- Finally, we can easily estimate the quantity 
72 26pd (a2 - 1 13'* w ~ ( w ~  + ukth 1 [rm(k) 3;: by noting that for kd& 1 the inverse lifetime 

vanishes as Aok4 whereas for k-kt, it behaves like 
A,, (kt, - k). Assuming these dependences to be valid over 

T(Ciukth * the entire range (0 < k < kt, ) (which they are not ), the max- 
imum value of k, may be estimated from Tsfiuk,,. 

(42) Aok4 =Ath (kt, - k) 

or, for T& Ciuk,, , from 

ex4= I -x. 
Turning back to the case kd( 1 (a- 1) we note that the 
limits of integration can be written as where 

Clearly Eq. (43) is only tractable in the extreme cases ~4 1 which is analogous to (23) and does not contain n' because 
and E )  1, of which the former is easily shown to be not real- the n' dependent term (k  '/n1) has been dropped as negligi- 
izable for a 2 1. In the latter case (corresponding to a% 11, ble in comparison with the others. It will be observed that, in 
we have contrast to (23), equation (45) is solvable both for a > 1 and 

a < 1. In the latter case the angle p is bounded by the condi- 
o ~ + o , ~  Ib n 

.-a(,-) F .  /i,,= k , , ~ - ~ / ~  tion 

sinz cp<ai. 

giving 

1 N - ( g * )  ( o. ) '/' 
d. (44) [ iqi 1 .., 25n2po:p o , + m M  

Recall that in the (opposite) case a -1  the value of 
[l/rm(k)],,, is given by (31). 

The l/roO(k) curve for a 2 1 was shown schematically 
back in Fig. 3. In the case a % 1, the curve retains its shape 
while shifting very markedly towards large k values. 

3. One possibility that arises from the anomalous MSW 
dispersion law (3)  is the creation of an n' > 0 MSW through 
the emission of a phonon by an n = 0 MSW. In this section, a 
discussion of this process for MSWs of long wavelengths 
such that kd( 1 will be given. 

The same argument as above shows that it is only the 
sound vibrations homogeneous in z (i.e., the phonons with 
m = 0) which can participate in the interaction processes. 
The conservation laws (22) with m = 0, n = 0, nl#O yield 
for k ' an equation 

Figure 6 shows the allowable values of k ' for a < 1. For a > 1, 

FIG. 6. The curves Z, and Z, represent the dependence of k '  on the 
angle q, for phonon emission processes; n = 0, n' > 0, kd ( 1. There exist 
two solutions [or two functions k '(q)], for one of which 

min It' ( c p = O )  = k ( l - a ) ,  

while for the other 
max lc' (cp=O)  = k  ( l  + a ) .  

At the intersection point 

kl(cp=arcsina) =k( l -a2) ' l$ ,  a t 1  . 
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the emission of a phonon by an MSW with k d 4  1 occurs 
either with or without a change in the mode number (so that 
either n = 0, n' #O or n = n' = 0, respectively), whereas for 
a < 1 only processes changing the wave mode number are 
possible. Since the probability of a mode number conserving 
process is much higher, only the result for a < 1 is of interest 
here: 

1 1 : 0 n r 2  ah (a2+1) - 
rYnr (k) Z n f 4  ( A ) oo"pdl 

Using the fact that 

it is easily shown that the total probability for emitting 
MSWs with all nl#O is much less than that for emitting an 
MSW with n' = 0. The latter probability determines com- 
pletely the value of l / rO(k)  for a < 1 (when l/rm=O) and is 
given by 

1 

(kd)", kda.-a.1, 

x / Awo 

(kd' ' zoo. - Kkda.1. 
ti00 

Although we have found it unnecessary to cite the value 
of l/rO"'(k) for a > 1, it should be recognized that l/ron' f 0 
fork > kt, (see the discussion in the preceding section). This 
means that the total probability for the generation of a 
phonon with k > kt, is different from zero. The existence of a 
threshold should manifest itself as a kink on the wave vector 
dependence of the inverse lifetime (see the concluding sec- 
tion of this paper). 

4. We now consider the emission of a phonon by an n # 0 
MSW and we assume again that kdd  1. It is readily shown 
that this process is not allowable unless m = 0 and q,!, > qn . 
To the first nonvanishing order in kd, the conservation laws 
(22) yield 

(k2+k"-2kk' cos cp)" = 

which is only solvable for 

showing that the range of allowable angles is very narrow so 
that the MSW propagation direction remains virtually the 
same after a phonon has been emitted. The allowable values 
of k' are shown in Fig. 7. The existence of a solution of (47) - 
has nothing to do with the value of a. We also note (in antici- 
pation of a future result) that, for 

FIG. 7. k ' values possible for phonon emission processes for a wave with 
n > O(kd< 1, n'> n). There exist two solutions k '(k) represented by the 
solid line X ,  and dashed line X,. For one of the solutions, 

for the other, 

and for both 

The value of p, is very small: 

a 

the situation differs from all the examples above in that the 
major contribution into the damping of MSWs with n > O 
comes from phonon absorption (rather than phonon ernis- 
sion) processes. Accordingly, we omit the (rather clumsy) 
formula for l / F ' ( k )  for the case k d g  T / & ,  and limit 
ourselves to the condition 

to obtain 

Since this last expression clearly diverges when summed 
over n', we are faced, for the first time in our analysis, with a 
situation where the exchange interaction may no longer be 
neglected when calculating the total probability of phonon 
emission by an MSW with n > 0 ('total' meaning the summa- 
tion over all n'). Allowance for the exchange, on the other 
hand, complicates the theory to such an extent that an analy- 
tical calculation of l / rn (k)  becomes hardly possible. We 
note, finally, that, for the wave number n' fixed, equation 
(48) is of course valid if the exchange-neglect conditions (2 )  
and (37) are fulfilled. 

5. There are two condensation points recognizable in 
the MSW spectrum, kd-0 and kd- CO. Our discussion so 
far has been focused on MSWs of long wavelength. In this 
section, phonon emission processes with kd> 1 will be con- 
sidered. If number-conserving emission (n' = n)  is allowed, 
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that then = 0 wave has nothing special about it as compared 
with the others. Interaction is only possible for m = 0 and 
q,, > q, and, simultaneously with the condition kd)1, the 
inequality k 'd) 1 is necessarily obeyed. From Eq. (22) it 
follows that 

(k2+k"-2kk' cos cp)" 

reducing the allowable angles to a narrow range of the order 
of (kd) - '. Figure 8 shows the allowable k ' values as func- 
tions of the angle p for a fixed vector k. The probability for 
an n-n' phonon emission event can now be obtained by 
appropriate integration to give 

1 -- ( y g M )  ZA - 
znn' ( k )  2'ndpu2 

where 

o ~ o ~ ~ ~ ~  ( 1 ~ ' ~ + 2 n '  -rt2-2n) '1 = 
2 [(fie ( ( ~ ) o + o n r )  3'"~ 

Note that l/rnn=O because A vanishes when n = n'. Since 
the quantity 

FIG. 8. Possible values of k '  = k ' ( q )  for photon emission processes 
(kd, 1 ) .  There exist two solutions k '(p) (solid line XI and dashed line 
.F2 ). For Z2 

max k'(rp=O) =k l + - ( 3 
and for XI 

At the intersection point, 

is divergent, our result is again of no use in the calculation of 
the total phonon emission time. It is natural, however, that 
equation (50) is quite adequate for fixed-n' no-exchange cal- 
culations-a point of special importance for the situation 
where the condition kd) 1 is fulfilled (see the discussion 
above ) . 

A limiting-case analysis will give an order-of-magni- 
tude estimate of the inverse MSW lifetime due to phonon 
emission. By assuming a 2 1 and w, -w,, it is a simple mat- 
ter to show that 

with a function f(kd) whose behavior for k d g  1 or kd, 1 is 
easily obtainable from the formulas above and which turns 
out to have a maximum f,,, - 1 at kd- 1. Thus 

admittedly a very crude estimate in view of our full disregard 
for dimensionless factors. 

6. Turning now to phonon absorption processes, the 
conservation laws take the form 

and it can be shown that, analogous to the phonon emission 
case, see section 1, in the limiting cases kd < 1 or kd)1 only 
z-homogeneous phonons are allowed to participate. For the 
zeroth mode, the absorption processes with kd < 1 contrib- 
ute much less into the damping than do the emission pro- 
cesses. As for the nonzeroth (n#O) mode, however, it is 
precisely the absorption processes with n' # O  which control 
its damping at kd< T / h , ,  and it is therefore worthwhile 
to discuss them in more detail. For n > 0, n' = 0 we have 

(k2+k"-2kk' cos cp)'"=akl. k'>k. (54) 

If a > 1, there are no restrictions on the angle p, and the 
valuesofk'rangefromk/(a + 1) t o k / ( a  - l ) . F o r a < l ,  
the value of p is restricted by 

and for each pair {k,p} there exist two values of k ' (see Fig. 
9),tobefoundbetweenk/(l  + a )  a n d k / ( l  -a ) .The in-  
verse damping time is calculated to be 

One further equation (which we omit here) indicates that 
for kd) 1 the phonon absorption contribution to the inverse 
lifetime is much less than that of phonon emission. 

Referring to Fig. 10, the (schematic) dependence 
l/r"("'(k) for d,d,, summarizes the results we have ob- 
tained for the two damping processes discussed (it will be 
recalled that the contribution from the third process is ex- 
ponentially small). For a- 1, the maximum of the first 
curve is in the wave vector region for which kd- 1 [cf. 
(5  1 ) 1. Interestingly, the MSW lifetime is longer the greater 
the mode number n, that is, the larger the corresponding 
value of q, . The lifetime of the n = 0 mode is shortest, as one 
might expect for the mode with the maximum frequency. 

539 Sov. Phys. JETP 75 (3), September 1992 M. I. Kaganov and T. I. Shalaeva 539 



FIG. 9. Solid lines represent the possible values of k ' ( q )  for phonon ab- 
sorption with n > 0, n' = 0, kd( 1. For a > 1 

lc 
max li' (cp=n) = ---- , 

a - I  

k 
min Ii' (v=O) = --- . 

a + l  

For a < 1 there exist two solutions k ' (q ) .  For one of them, 

k 
max k'  (rq=O) = --- . 

I -a 

for the other 

k 
min k'(cp=O)= ---. 

I + a  

and for both 

k 
11' (cp=arcsin a )  = ------ . 

(I-az) " 

7. We dwell briefly on the damping of the antisymme- 
tric MSW. The expressions for u,, , vk, , and w, (k )  are the 
same as those for the symmetric MSW, see Eq. ( 13 ), and the 
only difference is that the quantities q, are solutions to (5 )  
rather than to (4).  Also, instead of ( 10) we have 

FIG. 10. Damping time as a function of the wavevector for an MSW 
interacting with phonons (schematic). Solid line represents the behavior 
of l/T'""(k) (note the kink at k = k,, . Dashed line represents 1/rfl"'(k) 
for n > 0. The maximum value of the inverse lifetime is estimated to within 
an order of magnitude; the value of I/?/( y%/pd ') depends strongly on 
the system parameters. 

As is the case for the symmetric wave, the energy w, (k)  
decreases, instead of increasing, as the mode number n is 
increased. 

Turning to the inverse lifetime calculation, we note that 
for k d 4  1 the main contribution to the damping comes from 
phonon emission. The derivation parallels quite closely that 
given for a symmetric wave with n > 0, with nn formally 
replaced by nn + n/2. The process is only possible for nl>,n. 
It is found that 

1 -- ( g )  fia4d5k'" 
- 

T" (k) 212n4002 p (n+'j2) 

2n,'n2T 
<< (kd)'<l, 

f i o n r  

2 x i n 2 ~  2n2n2T ( 5 6 )  
, (kd) << ------ . 

(kd) 'fro, f i o M  

It is not necessary to treat the n = 0 MSW separately 
because in this case too the frequency w, (k )  depends qua- 
dratically on k in the limit as k-0 [see Eq. (8) ]. 

To obtain l/rnn'(k) for k d s  1 it suffices to replace 
(n + 1/2) and ( n l +  1/2) by, respectively, (n + 1) and 
(n' + 1) in (49). As with the symmetric MSW, the lifetime 
increases with increasing mode number. Comparison shows 
that at extremely small (large) kd the lifetime of the sym- 
metric MSW is shorter than (of the same order that) the 
antisymmetric MSW lifetime. 

8. Using equation ( 17) for Xi,, , we can estimate the 
influence of an interaction of two magnons with one phonon 
on MSW as well as phonon damping can be estimated. If the 
phonon energy fii2Cf) is less than the doubled magnon ener- 
gy, the decay of the phonon into two MSWs is forbidden and 
the two-magnon processes result in an exponentially large 
phonon lifetime ('exponentially' referring to temperature). 

Turning back to Eqs. ( 14) and ( 15) we consider a 
phonon with a very small wave vector and homogeneous in z 
(m = O), and take into account the interaction of such a 

1 phonon with a symmetric MSW. We have already men- 
a= - r ,  V,,, [uk,,akn exp (ikp) +vkn'akn+ exp (-ikp) ] tioned that for f-0 coalescence of two MSWs with phonon 

kn  formation is impossible because it requires that uf> 201,. 

sin (qnz) For f-0, the integrals for phonon absorption and phonon 
X 

[ l+cos2 (qnd)/ (kd) ] I h  

' (lo')  emission processes may be calculated by replacing the 
bracket 
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[ exp (- + )- exp (- + ) I  
by the first term in the expansion in fiCk,Cfl/T, i.e., 

1 ( y  J {sin (q.-q..) d 
-= v,n l 
~ " " ( f )  2'ndJpT w n r 4 n + 4 n .  

- sin (q,+q,,) d 2 

qn-tqn~ 1 

Because of the factor exp [ - tiw, ( k ) /T  1, the integral is 
dominated by small k 's, which enables an expansion in pow- 
ers of kd to be made in the integrand. Consider the case 
n = n' = 0 first. The conservation laws are fulfilled only if 
a > 1. Assuming that f d g a  - 1, the conservation laws im- 
ply that 

cos cp=i/a. (58) 

The angle p here specifies the direction of the vector k [inte- 
grated over in (57) ] relative to the phonon wave vector f. 
Taking advantage of the 6-function when integrating over p, 
we obtain the following expression for the inverse phonon 
lifetime due to the scattering by an MSW with n = n' = 0: 

As a - 1, this expression exhibits a divergence similar to that 
encountered when calculating the inverse MSW lifetime. As 
in the derivation of (30), the condition a - 1 9  1 calls for a 
moredetailed analysis than for (59). Let 1 % f d % a  - 1. The 
refined conservation laws take the form 

and the expression for 1/r$ Cfl becomes 

- r20M3h2f (a-1)"' exp (-Ao,IT) - 
I' 

, a-1. 
2'2~2'"o,pd" (l+onr/2oo) 

Note that the small factor (a - 1 ) ''' in this formula is offset 
by the large factor ( h M / T ) 4  (recall that T<tiwM, tiw, ) .  

In the case n = 0, n' > 0, the conservation laws are 
obeyed for any a and the argument of the 6-function vanish- 
es when 

The corresponding contribution into the inverse phonon 
damping time is obtained by integrating and summing over 
n' > 0, to give 

1 = y'ALu'f" esp ( -hoo / I ' )  
TO,n'>O ( f )  

pfr 
2i~'d3p(finr~02T 

Compared to the terms above, those with n > 0, n' > 0 con- 
tribute much less to the sum (57) over n, n' and may there- 
fore be neglected, as may the terms arising from the interac- 
tion with antisymmetric MSWs. 

To summarize, in plates with a < 1 the inverse damping 
time is given by Eq. (62), whereas in plates with 
( a - l ) @ d  it is determined either by (59) if 
T<ARV)Cfd) or by (62) if T%fiCkCf)(fd) 

9. Two circumstances are noteworthy. 
(a )  For all the examples investigated, the lifetime of an 

MSW is strongly dependent on its wavelength (or its wave 
vector k) .  MSW experiments are usually conducted at a 
fixed frequency w using the magnetic field as a variable pa- 
rameter. The magnetic field dependence of the MSW life- 
time is obtained by simply expressing k in terms of H by 
inverting the dispersion law (3)  and remembering that 
w, = g H  and H<w/g. 

(b)  Of all the results, greatest interest attaches to those 
connected with ( 1 ) the threshold value for the wavevector, 
k = kt,  (and hence for the magnetic field, H = H,, < w/g); 
(2)  quasiresonant peaks in the lifetime dependences on k 
and H, and (3 )  kinks at H = H,,, when one of the scattering 
mechanisms is switched off. 

It should be emphasized once more, finally, that our 
primary interest has been in those aspects of the MSW- 
phonon interaction dominated by the peculiarity of the 
MSW dispersion law. The unusual features of this dispersion 
law are: the decrease of the frequency with increasing mode 
number n; the linear dependence of w = w, on the wave vec- 
tor in a symmetric n = 0 mode; and the existence of two 
condensation points (k  - 0 and k - co ) . 

When comparing the above results with experiment 
(something not attempted in this study) it is necessary to 
take into account the dissipation mechanisms we have ig- 
nored here, such as impurity scattering, surface roughness 
scattering, etc. 

"The notation we adopt here is as follows: w, = g ( H  + 47rpM), g is the 
magnetomechanical ratio, H the steady magnetic field inside the plate, 
M the spontaneous magnetization at T = 0, fl the anisotropy ratio for 
the easy axis normal to the plate, o, = 4rrgM, u the speed ofsound, a the 
interatomic separation, o,, = J/*, J is the exchange integral, J-0, ,  
0, the Curie temperature. 

"m = m(r,t) is the varying term in the expression for the magnetic-mo- 
ment density of the ferromagnetic plate, M(r, t)  = M + m(r,t). 

3'The second superscript indicates the state occupied by the MSW after 
having emitted a phonon. 

4'Here and afterwards the frequencies o, and o, are assumed to be of the 
same order of magnitude. 
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