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An analytic expression is obtained, within the context of the density-matrix and linear-response 
theories, for the EPR line width in the spectrum of a triplet exciton of a paired AB center (A and B 
are differently oriented molecules in a crystal cell), for coherent motion and with allowance for 
single-phonon and two-phonon processes. The temperature dependence of the EPR line width is 
investigated for an impurity AB cluster in deutero-naphthalene crystal, and the temperature 
corresponding to the maximum of a homogeneously broadened EPR line is analyzed as a function 
of the exciton-phonon coupling constants. 

The temperature dependences of the shapes, widths, 
and intensities of EPR lines in the spectra of paired impurity 
clusters in a deuteronaphthalene crystal were experimental- 
ly investigated' using the methods of optical detection of 
magnetic resonance and spin echo. A theoretical analysis of 
these results, with allowance for single-phonon processes, 
was carried out in Ref. 2. It was impossible there, however, 
to reconcile in this approximation the calculated and experi- 
mental temperatures ( T,,, ) corresponding to the maxi- 
mum EPR line width of the triplet exciton of a paired AB 
center (A and B are differently oriented molecules in the 
crystal). The difference between these values reached 
-60%. 

We show in the present paper that this effect can be 
explained by taking two-phonon processes into account. Us- 
ing the density-matrix and linear-response theories we ob- 
tain an analytic expression for a homogeneously broadened 
EPR line of the considered paired impurity cluster. We ana- 
lyze the value of the maximum temperature as a function of 
the exciton-phonon interaction constants. Account is taken 
of the influence of the anisotropy of the spectroscopic-split- 
ting g-factor. 

1. SYSTEM HAMlLTONlAN 

The initial Hamiltonian describing an impurity AB cen- 
ter is of the form3 

where Hex is the exciton Hamiltonian and determines the 
spectrum of the system in the absence of exciton-phonon 
coupling: 

B: and Ba are operators corresponding to creation and 
annihilation of excitation on the a th  molecule of the cluster 
(a = A, B); Ea is the electron-level energy of the a th  mole- 
cule; J i s  a matrix element of the resonant (exchange) inter- 
action between neighboring (A and B)  molecules of the im- 
purity; 

is the Zeeman interaction between the excited a th  molecule 

and the stationary magnetic field H (S  is the electron-spin 
operator,ga -tensor of spectroscopic splitting of a th  mole- 
cule ) ; 

H, ,=Sd,S (4)  
h 

is the fine-structure (FS) energy operator (Da-FS tensor 
of the a th  molecule). 

Assume that the AB center in question contains a single 
exciton, i.e., 

BA'BA+BB'BB= 1, ( 5 )  

and that both molecules of the cluster have identical electron 
levels (resonance case): E, = E, = E. The Hamiltonian 
(2)  can then be written in the form 

where E, is the energy of thepth Davydov component: 

A ,: and A,, are the creation and annihilation operators of 
the symmetric and antisymmetric states of the impurity AB 
pair: 

A,+ =2--'~ [ B  A++(-l)pBg+]: 
(8  

A,,=2-" [B,+( -  1)"BBl. 

The operator 

V='/z  (HzA-IfzB+JIr..-H,B) A 

describes the correlation of the spatial and spin motions; in 
Eq. (9)  we have 

d4=/1, +fl2+fI2. A , .  (10) 

The interaction V is determined by the anisotropy of the g 
factor of the spectroscopic splitting and by the anisotropy of 
the FS which are, respectively, smaller by 3-4 and 1-2 orders 
than the resonant interaction. The influence of Von the exci- 
ton motion will therefore be small and can be taken into 
account by perturbation theory. The energy levels of the 
Hamiltonian ( 6 )  are shown in the figure. 

The transition matrix elements A,, which we need in 
the subsequent calculations are given by 
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where 

and p, p' = 1, 2; ,G, ji' = 2, 1; s, s' = 1, 2, 3. The correspon- 
dence between the indices p s  and i is shown in the figure. 

The operator H, in the Hamiltonian ( 1 ) describes the 
energy of the phonons in the crystal ( f i  = 1 ): 

b,+ and b, are phonon creation and annihilation operators 
in the state j. 

The operator Hi,, determines the exciton-phonon inter- 
action: 

g, and gy are the respective interaction constants for one- 
and two-phonon processes. 

Our analysis has shown that the main contribution to 
the exciton-phonon interaction is made by modulation of the 
positions of the electron levels E, of the individual mole- 
cules. Modulation of the resonance interaction J does not 
lead to any substantial effects. 

2. SYSTEM EQUATIONSOF MOTION 

Let us write down an equation for the density matrix 
describing a dynamic system with a Hamiltonian (6)  

where the Liouville operator is of the form 

klmn 

FIG. 1 .  Energy-level diagram of triplet exciton pair center in coherent 
motion. 

- fn'z (AlmAmk.. . Il>tkl +AmlA,JK>(m( . . .) 
klm 

Here n, = [exp(w,/kT) - 11 -', and account is taken also 
of the most effective two-phonon processes that cause the 
 transition^:^ En, = w, - w,. . 

The EPR line shape is determined by the imaginary part 
of the complex susceptibility. According to the linear-re- 
sponse theory, it is given at H, ( t ) lHz  by 

where 

and 

Differentiating (20)^and taking into account the explicit 
form of the operator L [Eq. ( 16) 1, we obtain the equation of 
motion for xik ( t )  : 

We change in (21) from summation over the phonon states 
to integration over the frequencies, taking into account the 
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linear dispersion law for the acoustic oscillations excited at 
low temperatures (T-  1 K) .  We shall assume here that the 
constants g, and g, which describe the exciton-phonon inter- 
action for one- and two-phonon processes are constant in the 
considered frequency region. 

We seek the solution of (21 ) in the form 

xik ( t )  =e-iet~iA (22) 

Taking into account the maximum values of the matrix ele- 
ments A ,  in ( 1 I ) ,  namely A ,  - 1, which correspond to 
transitions between the lower and upper Davydov compo- 
nents (these transitions are shown by arrows in the figure), 
we obtain 

where 

with 

Here Vo is the volume of the unit cell of the crystal, c is the 
phase velocity of the acoustic phonons, and w, = 2.J. We 
have considered only transitions of frequency w,,, since 
transitions of frequency w,, have not been observed in exper- 
iment.2 We have also used the approximation n(w,,) 
zn(w,,) =.n(w,) = no. 

The width of the EPR line is determined by the imagi- 
nary part of the transitions w,,: 

I' (T) =-Im o,,=g;E, [X- cos((p/2) 1, (26) 

where we use the notation 

We obtain the maximum value of the temperature from the 
condition 

For AE/g:C, < I  we obtain from (28) an approximate 
expression for the maximum temperature: 

It is seen from (28) that T,,, is a function of the ratio g2/g, 
of the exciton-phonon coupling constants. For the typical 
values c = lo5 cm/s and Vo = 10W2' cm3, the ratio C,/l, is 
large. Therefore even a small nonlinear interaction in- 
fluences substantially the value of T,,, . Direct calculation 
using Eq. (29) shows that the experimentally observed 
T,,, = 1.7 K corresponds to g2/g, = 1.3. lo-'. An investi- 
gation of the temperature dependence of the EPR line width 
of AB centers yields thus information not only on the linear 
but also on the nonlinear components of the exciton-phonon 
interaction. 
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