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We consider a field-theoretical three-dimensional spectral decomposition for the amplitudes of 
low-energy ~Nscattering, which, in contrast to the familiar quadratically-nonlinear Low 
equations for this problem contains not only pions but also nucleons off the mass shell. 
Correspondingly, the particle-exchange part of the inhomogeneous term of the proposed 
equations consists of a sum ofs- and t-channel ~Nscattering diagrams and does not contain the 
familiar u-channel crossing nonlinearity. We linearize these equations and then reduce them to a 
Lippman-Schwinger equation, whose potential is unambiguously related to the inhomogeneous 
term of the original Low equations. Based on these fully linear equations we reproduce the P3, 
resonant ~Nscattering phase shift. 

1. INTRODUCTION 

The field-theoretic approach to the problem of pion- 
nucleon(~N) scattering in the region of low and intermedi- 
ate energies (up to 1-2 GeV) permits reproduction of the 
microscopic picture of the interaction (the exchange of nu- 
cleons and heavy mesons), including the requirements of 
special relativity, chirality and crossing symmetry. Such an 
approach to TN scattering gives hope that also other impor- 
tant properties of strong interactions that follow from QCD 
can be included in the problem. 

The relativistic description of ~Nscattering usually em- 
ploys the three-dimensional linear integral equations of the 
Lippman-Schwinger type.'-'' Such equations are often 
specified from the very beginning including relativistic kine- 
matic~, ' -~ but they can be derived by three-dimensional re- 
duction of the Bethe-Salpeter equationP7 or after lineari- 
zation of the field-theoretic Low  equation^.^-" In the 
approach based on the Low equations,"I4 starting from the 
celebrated Chew-Low model,'' there appears explicitly the 
nonlinear u-channel term, which is obtained by crossing of 
pions in the corresponding s-channel term with a pion-nu- 
cleon intermediate state (Fig. l a  and lb)  . Just such a nonlin- 
ear term is also present in the dispersion relations for TN 
scattering," thus taking into account the important contri- 
bution of the so-called left-hand cut. A similar nonlinearity, 
which appears as a result of crossing the external pions in the 
s-channel term, arises also in the Bethe-Salpeter equation 
after inclusion of disconnected diagrams with the m N N  in- 
termediate state.9 Further, as was shown in Refs. 8 and 9, a 
similar nonlinearity arises in any field-theoretic formulation 
of the TN scattering problem which takes explicitly into ac- 
count the crossing symmetry of the pions, due to the essen- 
tially nonpotential nature of the crossing symmetry. The 
presence of such nonlinear terms significantly complicates 
practical evaluation of the integral equations. For this rea- 
son they are often neglected, or included approximately, 
which however violates the crossing symmetry of the desired 
amplitude for TN scattering. 

Another difference in the approach based on the Low 
equations or on the field-theoretic spectral decomposition of 

the scattering amplitude is connected with the historical tra- 
dition of the Chew-Low model,12 according to which in 
Refs. 9,12, and 14 the P3, resonance is reproduced by solving 
these equations without the introduction of any additional 
parameters which could be related to the properties of a 
"bare" A particle. In particular, in the approach based for 
example, on the quasi-potential equations of Refs. 5-7, the A 
resonance is viewed as an independent degree of freedom. 
The necessary connection between these two approaches 
was established in Ref. 16, where it was shown for the case of 
r N  scattering in the bag model in the static approximation, 
that the "physical" solution of the Low equation contains a 
Castillejo-Dalitz-Dyson pole, which is due to the existence 
in this model of a state corresponding to the "bare" A isobar. 

The essential difference between the approaches based 
on the Bethe-Salpeter and Low equations consists in the dif- 
ferent virtual and off-mass-shell behavior of the amplitudes 
that solve these equations. Thus the t-matrix, which appears 
in the Bethe-Salpeter equation, is usually treated on the en- 
ergy shell, while all the particles in the intermediate states 
are off the mass shell. In contrast to this, all the particles on 
whose momenta the t-matrix that figures in the Low equa- 
tions depends, are on the mass shell. In particular, in the 
amplitude that is the solution of the Low equation for TN 
s~a t t e r in~ ,~ - " , ' ~  both nucleons and one of the pions are on 
the mass shell while the second pion, to which one assigns a 
4-momentum calculated from the energy-momentum con- 
servation law, is considered to be off the mass shell (Fig. 2a). 
It is relevant that the t-matrix in the Low equation does not 

FIG. 1 .  a)  The nonlinear u-channel crossing term in the Low equation, 
related to the s-channel term by crossing of the pion lines. b) The s-chan- 
nel term in the Low equation, corresponding to the time-ordered product 
of the two transition amplitudes n-N-a"N" and a " N "  - d N ' .  
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FIG. 2. The TN-scattering amplitude a )  with the pion off the mass shell 
(N'(pls')j,. (0) (N(ps), a(qi);  in) and b) with the nucleon off the mass 
shell (a'(q'l*)l~p,s.(0)IN(p~), ~ ( q i ) ;  in). 

depend on the 4-momentum of this off-mass-shell pion. Con- 
trariwise, if we view such a pion as being on the mass shell, 
then the scattering t-matrix under consideration can be 
viewed as prescribed off the energy shell. Below we shall 
follow the second interpretation, in close analogy with the 
potential theory of scattering. However, in agreement with 
the generally accepted terminology we shall use for the t- 
matrix determined in Sec. 2 the name "off-mass-shell t-ma- 
trix." Namely we consider all the incoming and outgoing 
particles to be on the mass shell, while the total energies of 
the nN system in the in- and out-states, generally speaking, 
do not coincide, i.e., the t-matrix that appears in the Low 
eauation re~resents the off-energy-shell t-matrix. The con- 
nection between the amplitudes that are the solutions of the 
Bethe-Salpeter and Low equations is considered in more de- 
tail in Ref. 17. 

The potential in the Low equations consists of two 
parts. The first part is determined by the equal-time commu- 
tators of the field operators of two particles, while the second 
part corresponds to particle-exchange diagrams with parti- 
cles from intermediate states on the mass shell. The particle- 
exchange part considered in Refs. 9,10,13 and 14 contained 
exchange of particles in the s-, u-, S- and ii-channels, while 
the equal-time commutator, calculated by means of the sim- 
plest model of a nN Lagrangian, corresponded to single-par- 
ticle exchange of a and p mesons. Further, in the equations 
of Refs. 9, 10, 13 and 14 the pions in the initial and final 
states were off the mass shell. In this work we derive a differ- 
ent version of the Low equation, which contains off-mass- 
shell effects not only for the pion but also for the nucleon. 
Correspondingly, the particle-exchange potential in the pro- 
posed equation is described by nN interaction diagrams in 
the s-, t-, 2- and?-channels, while the equal-time commutator 
in the model with simplest nN Lagrangians is determined by 
the one-nucleon-exchange diagram in the u-channel. Using 
the linearization procedure for these quadratically nonlinear 
integral equations, which was proposed in our previous pa- 
per,9 we obtain linear integral Lippman-Schwinger equa- 
tions. In the proposed equation the nN-interaction potential, 
in contrast to the potential of Ref. 9, does not contain the 
nonlinear u-channel term, shown in Fig. la. The price that 
must be paid for this total linearization of the Low equation 
for n N  scattering is that the potential of this equation con- 
tains vertex functions of the meson-nucleon system with off- 
mass-shell contributions not only for the pion but also for 
one of the nucleons. Moreover, the proposed equation is not 
manifestly crossing-symmetric. 

We further show that the numerical solution of this to- 
tally linear equation can reproduce the P,, resonance, pro- 
vided use is made of the accepted parametrization of the 
vertex functions. 

2. THE LOW-TYPE EQUATION WITH OFF-MASS-SHELL 
NUCLEON 

To proceed further we need two kinds of n N  scattering 
amplitudes: 1) the n N  amplitude with nucleons in the 
in- (N) and out- ( N  ') states on the mass shell and the pion .rr 
from the in-state, also on the mass shell: 

(1) 
t... (p', p) =<p'sl ( j i ,  (0) Ips, qi; in), 

and 2) the n N  amplitude in which the particles n' (out), n 
(in) and N (in) are on the mass shell: 

ta'2d (p', p)=-<q'il 1 q p . , ~  (0) Ips, qi; in), 

where ps, qi and p's', q'i' denote the 3-momentum, spin and 
isospin of the nucleon and pion respectively in the initial and 
final state. We consider the amplitudes in the center-of-mass 
frame, i.e., p = - q and p' = - q'. The indices a and a' have 
been introduced for an abbreviated description of the spin- 
isospin indices of the ~Nsys tem in the initial and final states. 
Herej, ( x )  and (x) denote the operators for the source of 
the meson and nucleon fields, which are expressed in terms 
of the Heisenberg field of the pion Qi(x)  and nucleon 
$(x) as follows: 

Everywhere in what follows we use the notation and 
normalization from the book by Itzykon and Zuber.I8 The 
particles that appear in the state vectors in expressions ( la)  
and ( lb)  are taken to be on the mass shell, i.e., p0 = w, (p) 
= ( M 2  + p2),112 qO = w,(q) = (m: + q2)'I2 and pfO 
= w,(pi) = ( M 2  + p'2)1'2 in ( l a )  and qtO = w,(ql) 
= (m: + q") 'I2 in ( lb).  Moreover the expression ( la)  

does not depend on the pion 3-momentum q', and the expres- 
sion ( l b )  depends on the nucleon 3-momentum p' only 
through the spinor function ii (p's'). It follows from the ex- 
plicit form of the expressions ( la)  and ( I b) that we can 
consider the 4-momentum of the pion in ( l a )  and the 4- 
momentum of the nucleon in ( lb )  as given in terms of the 4- 
momenta of the remaining particles: q; = p, + q, - p; and 
p; = p, + q, - q; , respectively. Further, the mass-shell 
conditions qL2 = m: and pL2 = M 2  are satisfied only on the 
mass shell, when I p 1 # I p' ( in the center-of-mass frame. Con- 
sequently we can view the amplitude t ''' ( la)  as correspond- 
ing to the pion n' in the out-state being off the mass shell, and 
the amplitude t "' ( lb)  as corresponding to the nucleon N '  
in the out-state being off the mass shell. These amplitudes 
are shown graphically in Figs. 2a-2b. In these figures, and in 
those that follow, the lines describing particles off the mass 
shell are marked by a wavy line. 

According to the LSZ formulation of S-matrix field the- 
ory," the relation between the pion-nucleon scattering ma- 
trix S3 and the t-matrices ( la)  and ( Ib) has the form: 

where Pni, is the total momentum of the n N  system. 
Further, making use of the LSZ reduction formalism in the 
center-of-mass system, where p = - q and p' = - q', we 
have 
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ti!,' (P',P) = ( p's' (I,,  (0) b,,+ (ps) (qi) The relations (3a) and (3b) provide the basis for the 
derivation of the Low equation. Thus, if we introduce into 
the second terms on the right-hand sides of relations (3a) 

=(p'sl I (- [ j , ,  (0). bpeT(0) I and (3b) the completeness condition between the source op- 
erators and integrate over x, using the integral representa- 

- i  I b ~ e - ' ~ ' T  (1.. (0) qp.(x) ) ) (qi). (3a) tion of the step function, we obtain similarly to the Low 
equations in Refs. 9, 1 1, and 13: 

1 ( 0 )  (a) 
t$a(Pf, p) =-(q'i' ( qpra, (0)ai,+ (qi) Ips) t:? (p', p)= Yo,. (p', p)+Vd. (P', P)  

( 5 )  
-i j ~ s e - ~ " ~  (qpv.9 (0) i i  (x) ) ) IPS), (3b) where db"cd3p"  [ M / ( 2 ~ ) ~ 2 w ,  (p")w,(p")]. E, 

= w, (p)  + w, (p) is the total energy of the ITN system in 
where b i;t (ps) and a,: (qi) denote the nucleon and pion cre- the center-of-mass frame, Y '"' (a = 1,2) denote the equal- 
ation operators in the in-state, while the operators b ;  (xO) time commutators: 
and a$ (xO) are expressed in terms of the Heisenberg field (1) 

operators of the nucleon and pion as follows: Yo,. (P', P)=-(P's'( [ i , ~  (0). bp,+(0)l (qi), 

Y?: (p', p) =(q'il 1 [ q p , . ,  (01, agie(0) ] Ips)', (6b) 
(4a) 

and V'"' (a = 1,2) correspond to the n-particle-exchange 
interaction, when all the particles in the intermediate state, 

(4b) in accordance with the completeness condition, are on the 
mass shell: 

(q'i' I qprar  (0) In; in),6(') (p-kq-P,) (n; inlii (0) Ips), 

n=+ nN Pn0 - -~ ,  (P ) -o~ (P ) -  i0 

(q'i' (j,(O) ( m ;  in),6(3) (q'-q-P,) (m;  in1 qP,,, (0) Ips), 

M=B,P, 

The first two terms in the relations (7a) and (7b) are 
described by diagrams with on-the-mass-shell n-particle and 
m-particle intermediate states (see Figs. 3a,b and 4a,b). We 
denote the total bmomentum of these intermediate states by 

FIG. 3. The RN-scattering diagrams a) in the s channel and b) & the t 
channel with all possible n = N, aN, raN, ... and m = u, p, 2n-, NN, ... in- 
termediate states. 
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Pn = (P:,Pn ) and Pm = (PO, ,Pm ). Usually such terms are 
called the s- and t-channel exchange terms of the potential of 
the corresponding  equation^.'^.'^ The last terms in the rela- 
tions (7a) and (7b) arise after cluster decomposition of the 

FIG. 4. Same as Fig. 3, but with N' and a off the mass shell instead of a' 
and N. This difference leads to a change from the temporal sequence of the 
processes a- a' + m, N + m - N '  to the sequence N- m + N ', 
a + m - b .  
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s- and t-channel terms,13'19 which corresponds to the inclu- matrix elements remain in the potential term of the Low 
sion of disconnected diagrams in the passage to the n-parti- equation. These matrix elements are denoted by the sub- 
cle or m-particle state. After this procedure only connected script c. 

U'. ( p f ,  P )  = (2nrJ r (p's' 1 ji, (0) 1 qi, 1;  in)c6(3) ( p  - P,) ( 1 ;  in 1 V p s  (0) 1 0 )  

i=nN, PN, .. ~ , O - - O N  ( p )  

( 0  I ji. (0) 1 k ;  in )  6(3' ( p  t q - P I -  pk) k ,  P I S ' ;  in I ~ P S ( O )  I q i ) ~  
+(2.13 r, - pkO + W N  (p') - O n  (q)  - O N  ( P )  - i0 

k = N N ,  30,' ... 

+ (239' 2 ( 0  I ji. ( 0 ) )  qi, m;  in )  6(3'(p - pf- p , , )  0% p i ' ;  in 1 (0) 10) 

711=o, p, . . . PmO + O N  ( P I )  - O N  ( P )  

- ( 2 r ~ ) ~  
(O(Tjp, (O)l  T ;  i n )  6(3' (-p-pt) (7, p's'; in I j i ,  (0)  (qi ) ,  

.'& 
T=nN. .. . 

pro + O N  ( P I  

(p'siJTjps(0)lqi, k ;  in),6(3'(p'-p-q-Pk)<k; in(ji .(0)(O) 

li=N%, no, . . . 
Pk" + O N  ( P )  $ O n  (q) (P')  

All six terms v:!,' are shown graphically in Fig. 5, in the same order as in Eq. (8a). The negative sign of the fourth and 
sixth term in ( 8a) is due to the permutation of nucleon fields. A similar expression for t : 2 2  is given by Eq. (8b) and shown in 
Fig. 6. 

( 0  Iq,,,b. ( 0 ) )  1; in)  hC3' ( p  t q-  q f -  P,) ( 1 ,  q'i'; in ji (0) ( ps), 
Pro - ~n ( q )  - O N  ( P )  + O n  (q')  - 

I=nN. .. 

(0  I q,., (0) 1 ps, m; in )  (q - q' - P,) ( m ,  q'i': in I ji (0) 10) 

m=o, p .  ... p m O  - 0, (q)  + O n  (q') 

+ ( 2 ~ ) ~  7 (01 ji(0)( k;  in )  6(3' (-q'-Pk) ( k ,  q'i'; in I qnjI1 (0) Ips), 

Ilr 
k=NN,  . . . P k O  + f n  (4)  

(q'i'l ji(0) Ips, T ;  in),6'3' (q' -q-p-Pr) ( I ;  in Iq,,,, (0) 10) 

L n N .  . . . Pro + O n  (q) + O N  ( P )  - O n  (q') 

The main difference between formulas (6a), (7a), (8a) the mass shell in (6b), (7b), ( 8b). This difference leads to a 
and the corresponding expressions (6b), (7b), (8b 1 is that r' different form of the propagators of the particles in the inter- 
(out) and N (in) particles are off the mass shell in mediate states in expressions (7a),(8a) and (7b),(8b). 
(6a), (7a), (8a), while N' (out) and n- (in) particles are off Further, as can be seen from a comparison of Figs. 3b and 5 

FIG. 2. Graphic representation of the inhomogeneous 
term V"' ( 8 a ) .  The first three terms correspond to an 
expansion of the s-channel term and the last three-the t- 
channel term. 
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the diagrams of Figs. 4a,4b. 

with Figs. 4b and 6, the particle-exchange potentials V"' 
(7a) and V"' (7b) differ in the temporal sequence of ab- 
sorption of the in-particles a ,  N and emission of the out- 
particles a', N '  and the interaction of these external particles 
with the particles in the intermediate states. 

The system of integral equations (5) for the amplitude 
of ~Nscattering with different off-shell behavior of t  ' I '  ( la)  
and t '2' ( lb)  is one of possible versions of the Low equation 
for the aN-scattering problem. One usually considers Low- 
type equations for a N  scattering with off-shell pions 
only.8-14,16 Such a version of the Low equations contains a 

we obtain from formula ( 10) the desired unitarity condition 
for the t matrix of ?rN scattering on the energy shell: 

<p1s' / j,, (0) Ips, -pi; in>-(ps'. -pi'; i n /  j ,  (0) Ips> 

smaller number of transition matrices in the particle-ex- The same condition of n-particle unitarity is obtained 
change potential V, whose hermiticity isviolated only due to for the amplitude (,, ( la ) ,  which is a solution of the Low 
the nonsymmetric form ofthe propagators of the particles in equations with only pions off the mass she11.8-~4,16 These 
the intermediate states. However, this potential also con- equations contain a more symmetric inhomogeneous term. 
tains the nonlinear u-channel term (Fig. la), which makes 
the solution of these equations substantially more difficult. g LlNEARlZATlON OF THE LOW EQUATION 
In the formulation of the Low equations (5) considered here 
such a crossing nonlinearity in the potentials V"' and Linearization of the Low Eq. (5) can be achieved analo- 

does not occur, the particle-exchange potentials (6a), (6b) 
gously to the linearization of the similar equations with only 

and (7a), (7b) contain only s-, t-, T- and ?-channel terms. In 
pions off the mass shell, which we considered in Ref. 9. To 

another version of Low-type equations for r N  scattering this end we first replace the propagator of the particles in the 
intermediate states in Eqs. (7a), (7b) as follows: 

with all the particles off the mass shell, which was consid- 
ered in Ref. 20, there are also complications connected with 
the u-channel crossing term (Fig. la) .  Similar complica- 
tions occur also after the derivation of the Low equation 
with only the nucleons N '  (out) and N (in) off the mass 
shell, i.e., the equation for the scattering amplitude t '*' 
( lb) .  

To conclude this paragraph we write out explicitly the 
unitarity condition for the sought-for solutions of Eq. (5).  It 
is shown in Appendix A that the following formula is valid 
for the equal-time commutators (6a), (6b) : 

(2) '  r.':; (p', p) =Y,, (p, P I ) +  (E,-E,,) 

Further, it follows from formulas (3a),(3b) with It is not hard to see from the expressions ( 13 ) that for 
expression (9) taken into account, that we have on the ener- E = E ;  = W N  (P1) + Wir (pl) these formulas become identi- 
gy shell Ep = E L :  ties. We also carry out similar transformations in the propa- 

( 1 )  ( 2 ) .  gators from the potential t"' (8a): 
t.,, (P, P) - t . . e  (P, P) 

+eiq'"T (jv ( x )  qpa (0) ) hi).  (10) 
--+ PiO+o, (p) -E 

Keeping in mind that the relation (2) between the S [?tO-~N (P) 1 [P,O-ON(P')-OIT (p ' ) f~r .  (~)+10] 
matrix for a N  scattering and the amplitudes ( la) ,  ( lb)  im- 

X 
1 

plies pl"+,~(p') -WN(P)-O~(P)-~O 
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F'; f ON ( p ' )  -.& - 
[ P k U + ~ N ( p ' ) - ~ N  ( P ) - o ~  ( P ) - ~ O ]  [Pkl ' - -o f l  ( P I )  1 ' 

1 --- 
P,"+(ON ( ~ ) + ( o n  ( p ) - ( i ) \  ( P O  

fI,,"-o)., ( p ' )  - r K  - - 
[ ~ I : + C , , ,  ( p )  r o , ( p )  - 6 ) A  (I)')  I [IJrt"+w-r(p') 1 ' 

and, correspondingly, from v'2) ( 8b) : 

P L U + O ,  (p'  ) -E' - 
[ ~ , " - ( ~ ~ ( p ) - - o ~ ( p )  + o , ( p f )  - i ~ l ' [ ~ ~ ~ - - - o s ( ~ ' )  I '  

1 * ~;-'-o,. ( p )  +E 
p,"+w, ( p )  [P,O+W, (p) I [P,"SWA-(P') + o n  ( P ; )  - O N  ( p )  1 ' 

1 

Pi0--on ( p ' )  + E  
+ 

[ p f + o n ( p ) + o N ( p ) - o n ( p ' )  I [P iO+ow(p ' )  I ' 

It is not hard to see that under hermitian conjugation 
the right-hand sides of formulas (14a) go into the right- 
hand sides of Eqs. (14b), and for E = E i  these formulas 
turn into identities. 

We next introduce the notation for the inhomogeneous 
terms of the system of equations (5): 

(a) ( U )  (")  rv,.. (p', p) = Y,. ,  ( p ' ,  p ) +  ( P ' ,  P) (15) 

and define the potentials 

( 1 )  ( 1 )  ( 1 )  
U.,. ( p ' ,  p: E )  = Y,,. ( p ' ,  p )  +u,-. (I)', 1): E )  (16a) 

+ ( E - E p * )  (p' s'I [a<, (0). ;J;(O) yru ( p s )  I I c1i3. 

where the equal-time commutators YAP,' are determined by 
Eqs. (6a), (6b), and the potentials vj,P,), which depend linear- 
ly on the energy, are obtained from the expressions 
(7a),(7b) for the ViP,' by replacing the propagators accord- 
ing to the formulas ( 13 ) and ( 14a), ( 14b). It can be verified 
from the definition ( 16a), ( 16b) of the U LP,', the relation (9)  
and the explicit form of the propagators (13) and 
( 14a), ( 14b), that these potentials satisfy the following rela- 
tions: 

where a, /3 = 1,2 and a #/3. 
We can then show that the solution of the linear integral 

equation 

(a) (a) 

+ J d y  
Uh-.,. ( p ' ,  p"; E )  Tarta (P", P ;  E )  

E p f r - E - i O  
(18) 

n" 

reproduces the solution of the nonlinear integral equation 
(5). To this end, following Ref. 9, we can construct an itera- 
tive series for Eqs. (5) and ( 18). After making use of the 
properties of the linearly energy-dependent potential U AP,' 
( 17a)-( 17c) and the identity for the product of the linear 
propagators given in Ref. 9 [Eq. (3.1 1 ) from that work], we 
can show that the solution of the Low equation (5) and the 
linear integral equation ( 18) coincide on the energy shell: 

while on the half-energy-shell the solution of the nonlinear 
Low equation (5)  can be expressed in terms of the solution 
of the Lippman-Schwinger equation: 

Next, the desired 7rN-scattering amplitude 
Ip's' bi. (0) Ips, qi; in) ( la)  can be calculated by solving the 
Low equations with only pions off the mass  hell,^-'^^'^ and 
the Low equations (5) with the pion and nucleon off the 
mass shell. The solutions of these nonlinear integral equa- 
tions can be found through the solutions of the correspond- 
ing Lippman-Schwinger equations, namely Eq. (3.12) from 
Ref. 9 and Eq. ( 18). Here the part of the potential containing 
the exchange of particles on the mass shell consists in our 
case of s-, t-, P and?-channel terms, while in the equations of 
Refs. 9 and 10 this part of the potential consists of s-, u-, P 
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and ii-channel terms and contains the u-channel crossing 
nonlinearity which is characteristic of the r N  scattering 
problem (Fig. la) .  Moreover, the potentials contain equal- 
time commutators, whose evaluation requires the explicit 
form of the rN-interaction Lagrangian. In this approach all 
the information about the u- and E-channel interactions is 
contained in these equal-time commutators Y '"' (6a), (6b). 
Furthermore, it turns out to be impossible to extract from 
these terms the nonlinear crossing term (Fig. la). These 
equal-time commutators are evaluated in Appendix A in a 
model based on the simplest effective ?rN Lagrangian. 

In this manner, Eq. ( 18), in contrast to the equations of 
Refs. 9 and 10, can be viewed as the fully linearized version 
of the Low equations for the ?rN-scattering problem. How- 
ever, additional complications arise with Eq. ( 18), connect- 
ed with the nonhermiticity of the potential ULP,' 
( 16a), ( 16b), for whose construction we must specify not 
only the transition matrices with an off the mass shell pion, 
but also the transition matrices with one nucleon from the 
in- or out-state off the mass shell. 

It is known from the theory of nonlinear integral equa- 
tions that these equations can have a unique solution, as well 
as an infinitude of solutions. Thus it was shown for the 
Chew-Low equation in Refs. 21-23 that, under certain con- 
ditions imposed on the interaction constants and the asymp- 
totic behavior of the form factors, this nonlinear equation 
has a unique solution on a specified class of functions. Ap- 
parently similar studies need to be performed also for the 
more general Low-type equations to clarify the relation of 
the solution manifold of the Low Eq. (5)  and the solution of 
the Lippman-Schwinger equation ( 18). 

4. MODEL OF SINGLE-PARTICLE EXCHANGE FOR THE VN- 
INTERACTION POTENTIAL 

The description of the particle interaction in the low 
and intermediate energy region by the mechanism of single- 
particle exchange is the accepted and simplest model for the 
theoretical study of these interactions. For r N  scattering 
already in the familiar Chew-Low model" nucleon ex- 
change in the s- and u-channel was taken into account. In 
Refs. 13 and 14 for the Low equation with only pions off the 
mass shell the need was demonstrated for including in the 
potential for TN scattering not only the exchange of a nu- 
cleon on the mass shell, but also an antinucleon on the mass 
shell in t he5  and E-channels. The equal-time commutator in 
these papers was described by the exchange of a a meson in 

the t-channel, while in Refs. 9 and 10 we have also included 
the exchange of a p meson in the t-channel. 

Let us consider the potential for Eq. ( 18) in the approx- 
imation where only single-particle intermediate states are 
included. The complication which occurs in such an ap- 
proach to the calculation of the s-, t-, S- and?-channel poten- 
tials (7a), (7b) and, correspondingly, the potentials 
U ::) ( p1,p;E)  ( 16a), ( 16b), arises because these potentials 
are not hermitian due to the asymmetric way the transition 
matrices that determine the particle-exchange potentials 
(7a),(7b) are taken off the mass shell. It should be noted 
that the similar potential in Eq. (3.12) of Ref. 9, containing 
the  in) and r l (out )  pions taken symmetrically off the 
mass shell, is hermitian. For this reason no difficulties relat- 
ing to the unitarity condition arise in the construction of the 
potential in the single-particle exchange approximation in 
Ref. 9. 

In the approximation in which only single-particle in- 
termediate states are included in the inhomogeneous term of 
the Low equation the unitarity condition ( 12) reduces to the 
so-called two-particle unitarity condition, containing in re- 
lation (12) only the two-particle r N  state. However, al- 
though the relation ( 10) is also valid in the single-particle- 
exchange model, to derive the identity ( 1 1 ) and hence the 
very condition of two-particle unitarity additional efforts 
are needed. We note that if in the construction of the poten- 
tials V'") given by (7a), (7b) one uses in the intermediate 
states in place of in-states half of the sum of in-states and out- 
states, then after the partial expansion these potentials will 
be real. We show below that the reality property of these 
potentials permits the reproduction of the unitarity condi- 
tion also in the case when only single-particle intermediate 
states are included. However, i f y e  use from the very outset 
the completeness condition 1 = +(8,,, + 2,;,,, )In) (nl 
then in the s-channel term of the Low Eq. ( 5 )  the expression 
Re[t ("'t (@)*I appears in place o f t  ("'t '8'*. In Appendix B 
we demonstrate the equivalence of the two types of Low 
equations with real potentials. The desired form of the sin- 
gle-particle-exchange potential can be obtained in yet an- 
other way. In Appendix C we show that, if we follow the 
single-particle-exchange approximation, we can obtain di- 
rectly from the expressions (7a), (7b) with intermediate in- 
states the desired potential with a half-sum of intermediate 
in-and out-states. 

For a = 1 the potential U '"' (E) can be represented as 
follows: 

( 0 1  ji. (0) Iqi, (p-pl) A) < (p-P')A, P'S' I ~ P S ( O )  10) a,,,, (p-p')+mn (p)+aN(~') +E 
[oOcp, (p-pf)-oN (p) +aN (p') I [ oo,,, (p-p')-an (pf)+@n (PI 1 Zoo(p, (P-P') 

-1x (0 1 %. (0) I qi, OS,) (M+E) (Os,, P'S' I jir (0) 10) 
2 [ ~ + o ,  (p) + ' o ~ ( p )  I [M+on (P')+@N (P') 1 ' 

R* 
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FIG. 8. The equal-time commutator (6a), calculated on the basis of the 
Lagrangian of the linear urnodel. The solid circle denotes the lrNNvertex 
function (22b) and the open circle-the n-NN vertex function in the tree 
approximation. 

FIG. 7. The potential of the linearized equation ( 18) in the approximation 
when only single-particle intermediate states are included. 

where ( A )  denotes summation over the isospin and polariza- 
tion variables in the terms corresponding to the exchange of 
thep meson, while in the case of the exchange of the u meson 
no summation is carried out. In the last two terms of expres- 
sion (21 ) a double summation is performed--over in-states 
and out-states. The explicit form of the equal-time commu- 
tator, calculated using the model of the simplest phenome- 
nological Lagrangian, is given in Appendix A. Expression 
(21) is depicted graphically in Fig. 7, where the quadrangle 
in the first diagram corresponds to the equal-time commuta- 
tor in that expression. 

We next write out the single-particle-exchange poten- 
tial (2 1 ) explicitly including only N, g a n d  uas intermediate 
particles. For the 7zNN vertex function with the pion off the 
mass shell we have the well-known general expression, con- 
taining a single scalar form factor: 

When the nucleon is off the mass shell the general form 
of the vertex function contains two independent form fac- 
t o r ~ : ~ ~  

The invariant structure of the vertex functions for the 
UTT and uNN systems is given by the following expressions: 

The vertex functions in formulas (22a),(22b) and 
(23a), (23b) are defined in the space-like region and are real. 
However, in the S- and ii-channel terms in expression (2 1 ) 
the same vertex functions occur in the timelike region, where 
they are complex. The presence of the half-sum over inter- 
mediate in- and out-states in the P and ii-channel terms per- 
mits, similarly to Ref. 13, the product of two complex form 
factors to be replaced by the real part of that product. 

In this way, after taking into account the explicit form 
of the equal-time commutators, obtained by us in Appendix 
A and shown in Fig. 8, we obtained for the potential (21 ) 

M-E + l + y O  
i i (p's')  iriq5F" ( (p' - n )  "- i7*y5 

(M-E*.) (M-EP) 2  

yo- 1 x - h i y 5  2 

1  m a - q O - p ' O  + E' +- 200  (ma - P ' O  -I Po) (ma - q0 + (1") 

The expression (24) for the potential of Eq. (18) is 
given in the form of a product of hermitian kinematic factors 
and real functions, depending on the initial and final 3-mo- 
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mentum and the energy E. Imaginary parts are absent from 
these scalar functions because the full sum over intermediate 
states is represented as a half-sum over in- and out-states. 

Next we carry out the partial expansion of Eq. ( 18 ) for 
the TN-scattering amplitude. To this end we utilize the pro- 
cedure and notation from Refs. 13 and 9. 

(2%) 

where P', and Il' denote projection operators in spin and 
isospin space. It is not hard to see that the potentials U g '  
will be real because the scalar functions entering expression 
(24) are real: 

while the condition that the potentials U'"' ( 17b) be hermi- 
tian, with the reality of (26) taken into account, gives a rela- 
tion for the potentials under the exchange ofp' andp: 

After this we obtain for the TN-scattering amplitude 
from the partial expansion of Eq. ( 18 ) 

where 

1 M 1 d6 - - ------ dk. 
2nZ  ON(^) 2on(k) 

It  is easily seen that 

On the other hand, just as in the derivation of relation 
(12), the condition that the potentials be hermitian yields 
for the solutions of Eq. (28) 

Formulas (29) and (30) ensure the desired two-parti- 
cle unitarity on the energy shell for the solutions of Eq. (28). 

5. CHOICE OF PHENOMENOLOGICAL FORM FACTORS AND 
NUMERICAL CALCULATIONS 

In this section we demonstrate that we can, on the basis 
of the solution of the linear integral equations (28), repro- 
duce the resonant P,, TN-scattering phase shift within the 
framework of the accepted parametrization of the vertex 
functions (22a), (22b) and (23a), (23b). In order to reduce 

the number of independent parameters in the theory as much 
as possible, we have neglected the contribution of thep-me- 
son exchange and confined ourselves to just the contribution 
of the u-meson exchange. Note that according to Ref. 9 the 
inclusion of the p-meson exchange does not qualitatively 
change the behavior of the scattering phase shift in the P3, 
wave. In a detailed study of low-energy ~Nscattering, which 
presumes also the description of other partial waves, a num- 
ber of important effects should be included. For example, the 
exchange of the p meson should be included in the descrip- 
tion of the P,  , wave of TN ~cattering,~ while for the case of 
the S-waves the Low equation with a subtraction should be 
used. We shall not be concerned with these effects in the 
present work and as a first step in the description of TN 
scattering we shall only reproduce the experimental behav- 
ior of the P,, phase shift. 

For the pion-nucleon-nucleon vertex functions 
(22a), (22b) we used the simple single-pole parametriza- 
tion. [Note that (31b) is compatible in the tree approxima- 
tion with the absence of pseudovector coupling in the TN 
Lagrangian, which is satisfied in the linear a model.] 

& L M 2  

F,"' ( t )  = - F V X ( t )  =gnNN 
AN2-t ' 

where we have used for the TN-interaction constant the val- 
ue gWNN = 14.0, and for the cut-off parameters pN and A, 
after fitting we found the values p, = 1.195 GeV and 
AN = 1.171 GeV. 

In the potential U  ' I )  given by Eq. (2 1 ) am and aNN 
vertex functions occur with arguments varying in the space- 
like, as well as in the time-like, region. Therefore, following 
Refs. 25 and 26, these form factors must be taken in the form 
of complex functions: 

Go,, ( t )  

( 3 2 4  
F , O ( t )  =-F-" ( t )  

A:-M2 
= ~ O N N  A,"t- ( i I ' /2)  [ t -  (M+mo)2] 0 (t- (M+m,) ') 

In choosing the constants of the am and aNN interac- 
tions, as well as in the construction of the equal-time com- 
mutator, we started from the linear omodel. Therefore these 
constants were determined from the relations g,,, = gvNN 
and g- = $vNNmo/gvNNh!?, which are valid in the linear o 
model in the tree approximation, where the mass m, of the o 
meson equals 500 MeV. Matching with experiment gives the 
following values for the form factor masses: A, = 1.22 GeV, 
p, = 1.0 GeV. For the parameters y and l? we used the same 
value y = l? = 1.232 that was used for the similar quantities 
in Refs. 25 and 26. It was checked that changing the values of 
these parameters in the rather wide interval 1 <y, I?< 1.5 
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does not substantially change the behavior of the solution in 
the P,, partial wave. 

In Fig. 9 we show various meson-nucleon and meson- 
meson vertex functions, normalized to unity on the mass 
shell for the fitting parameters given above. As can be seen 
from Fig. 9 these form factors, as well as the TNN form 
factors from Refs. 25 and 26, are rapidly varying functions 
near the mass shell in the time-like region. Similar behavior 
of the TNN form factor was obtained in Ref. 27 on the basis 
of the dispersion approach with neglect of inelastic channels, 
while taking inelasticity into account apparently "smooths 
out" these rapid  oscillation^.^' 

In Fig. 10 we show the scattering phase shift in the P,, 
partial wave obtained as a result of solving Eq. ( 18). The 
experimental data are taken from Ref. 28. It is seen from Fig. 
10 that in the region -200 MeV below the resonance we 
obtain a fairly good description of the experiment, while 

' I 0 

0 

so* M@tJ o loo I I I 

zoo 300 

EWflab,, MeV 

FIG. 10. The P,, rN-scattering phase shift. 

FIG. 9. The meson-nucleon and meson-meson vertex functions G,(t), 
normalized to unity on the mass shell. a )  the rNNvertex with the pion off 
the mass shell. b) The rNNvertex with the nucleon off the mass shell. c )  
The an-r vertex with the pion off the mass shell. d)  The aNNvertex with 
the nucleon off the mass shell. The vertices are shown for both space-like 
I t (  (m, - m,) ' ]  and time-like [t> (m, + m,)'] values ofthearguments. 
For the TNN vertex in the time-like region we used a parametrization 
coinciding in form with (32a)-(32b), with the same values of the param- 
eters y = r = 1.232. 

above the resonance the solution of Eq. ( 18) lies below the 
experimental points. Apparently this kind of behavior is 
typical of the P,, scattering phase shift, calculated on the 
basis of relativistic Low-type equations in the single-parti- 
cle-exchange approximation. Note that the scattering phase 
shift in the P,, wave, obtained from the Low equation with 
pions off the mass shell, behaves ~imilar ly.~. '~ 

It should be noted that in the approach of the Low equa- 
tion with pions and nucleons off the mass shell various terms 
in the potential are responsible for the resonant behavior of 
the P,, scattering phase shift. For example, the Ti-channel z- 
graph (Fig. 11 ), which gives the largest contribution to the 
potential in the equations of Refs. 9 and 14, is absent from 
the potential of Eq. (18). And conversely, the o-meson ex- 
change, which plays an important role in this approach, is 
much less important in the Low equations of Refs. 9 and 14. 
Evidently the increase in the relative weight of the contribu- 
tions corresponding to the nucleon pole and a-exchange to 
the potential in Eq. ( 18 ), in comparison to the similar poten- 
tial in Ref. 9, arises because the nucleon goes off the mass 
shell and compensates for the absence of the Ti-channel an- 
tinucleon pole. 

6. CONCLUSION 

We show in this work that we can obtain two forms of 
the Low equation for one and the same amplitude for TN 

FIG. 1 1 .  The ii-channel antinucleon pole (z-graph), which doesn't arise 
in the inhomogeneous term of the Low equation with the nucleon off the 
mass shell. 
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scattering (p1s'lii, (0) 1 ps,qi;in), ( l a )  i.e., that there exist two 
kinds of spectral decomposition of this amplitude. In the 
ordinary Low equations only the pions r' and r a r e  custom- 
arily considered off the mass shell,g~10~13~14 while in the equa- 
tion proposed in this work we take off the mass shell the pion 
IT' and the nucleon N. Both types of Low equations reduce to 
Lippman-Schwinger equations, whose potential is uniquely 
determined by the inhomogeneous term of the initial nonlin- 
ear equations. Further, different choices of the particle re- 
duced from the in-states in these equations significantly 
changes the form of the corresponding potentials. Thus the 
potential of Eq. ( 18) or (28) does not contain the u-channel 
crossing nonlinearity (Fig. l a ) ,  and the E-channel z-dia- 
gram (Fig. 11 ), which makes an important contribution to 
the P-wave ITN scattering in the approach of Refs. 9 and 14, 
does not appear. On the other hand, in the proposed equa- 
tion with the particles IT' and N off the mass shell, the con- 
struction of the potential requires a larger number of vertex 
functions than in the equations with pions off the mass 
she11.9,10,13314 

Another interesting question, which arises in the study 
of low-energy P-wave ITN scattering in the approach based 
on relativistic equations, is connected with the nature of the 
A resonance. In our opinion the answer to the question of 
how the P3, resonance should be described-as an indepen- 
dent particle on the same footing as the nucleon or as the 
solution of the corresponding equations-should be looked 
for in the defining conditions imposed on the vertex func- 
tions, in terms of which the ITN-interaction potential is deter- 
mined. Unfortunately such vertex functions are obtained 
these days, in essence, phenomenologically and their para- 
metrization and explicit form are quite ambigu~us.'~ HOW- 
ever, the attempts to calculate various meson-nucleon and 
meson-meson vertex functions within the framework of 
quark models6,16.30s31 permits one to hope that this problem 
will be cleared up. In our opinion such investigations are 
convenient in the field-theoretical approach of the Low 
equations, since taking into account quark degrees of free- 
dom does not change the structure of the equations for the 
scattering amplitudes.32 

The authors are grateful to G. Efimov, T. Kopalekhvili, 
A. Faessler, A. Khelashvili, A. Khvedelidze, and A. Che- 
lidze for interest in this work. 

APPENDIX A 

Equal-time commutators 

We first derive formula (9).  To this end we make use of 
the relation: 

Formula (9) is obtained from ( A l )  for x0 = 0 if we 
make use of the property of translation invariance in the last 
term and use the following relations: 

To calculate the equal-time commutators in (9) we 
make use of the simplest phenomenological Lagrangian of 
the linear a m ~ d e l . ' ~ , ' ~  That Lagrangian contains no field 
derivatives. Therefore, with the help of the canonical com- 
mutation relations we obtain: 

Making use of the expression for the vertex function for 
the ITNN system off the mass shell (23b), we obtain from 
(A3) the explicit form of the equal-time commutator (6a) 
in the framework of the linear a model, which coincides with 
the first term of the potential U This term corresponds 
to the nucleon pole diagram in the u-channel (Fig. 8), with 
one of the vertices, calculated in the tree approximation. 

APPENDIX B 

Low equatlons with real nonhermitlan potentials 

We show below that for a real and nonhermitian poten- 
tial WE' (pf,p), which is endowed with the following prop- 
erties 

the Low equation 

t:y/ (p', k)t::* (p, k) 
r t )(pl ,p)=w:~;  (p', PI+ l d f i *  E,-E,- iO 

(a. ~ = 1 .  2: u-p) (B2) 

has the same solution as the equation 

(a) ~e it::' (p', k)tr::" ( p ,  k) ] 
tlj, (p.1 P ) = w I ~  (P*, P I+  S B  

Ek-Ep-io 

To this end we will show that the solution of the Lipp- 
man-Schwinger equation ( 18 ), which is obtained from Eq. 
(B2), satisfies also Eq. (B3). This is achieved by making use 
of the circumstance that the following relation 

T:]:) (p', p; E,+~o)-T:,": (p', p; Ep-iO) 

= 2ni 5 & T ~ ~ ( ~ ' ,  k ;  E , + ~ O ) ~ ( E , - E ~ ) T ~ )  (p, p; Ep-iO) 

(B4) 

is satisfied by the solution of Eq. ( 18) with the potential 
U g' (pl,p;E), which obeys the conditions (B 1 ) . 

Substituting (B4) into (20) we obtain 
(a) (a) 

1m I~ I , I  (P'. P)  I=np(~)tr, ,  (P', P) d,;)'(p, PI, (B5 

where 
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We can show, making use of ( B S ) ,  that the solution of 
Eq. ( B 2 )  on the half-energy shell can be represented in the 
form of the product of the solution on the energy shell and a 
real function, which becomes unity on the energy shell: 

When ( B 7 )  is substituted into ( B 3 )  it is easily seen that 
the instruction Re in the integrand of that equation can be 
omitted. This completes the proof of our assertion. 

APPENDIX C 

~Npotential in the approximation of single-particle exchange 

If from the very beginning we use in the completeness 
relation the sum over in-states, and not the half-sum over in- 
and out-states, the linearization procedure can be performed 
directly. As a result we obtain Eq. ( 1 8 ) .  However in the 
potential U ( E )  (21  ) in the last two terms the half-sum over 
in- and out-states is replaced by the sum over in-states only. 

Further, making use of the following well-known rela- 
tion between creation and annihilation operators 

aPif  (in)=a,,+ (out) +i 1 d'x e-'gxj, (s), 

( C 1 )  
b P f .  (in)=bpe., (out)  +i J d'y e T p ' ~ q p , . f  ( y ) .  

we can transform various matrix elements that enter expres- 
sion ( 2  1 ) . For example, for the product of matrix elements 
which appears in the last term of expression ( 2  1 ), we have 

< 0 )  ?ips (0) 1 qi, Os,; in> (in; Os,, p's' Jii. ( 0 )  10) 
= ( O l l j p r  (0 )uqi+( in)  IOs,) (Os,I b , . , ~  ( i n ) j , .  ( 0 )  10) 

=<01qP. (0) (an+(out )+i  d'r e - ' 9 ,  ( x ) )  I & , >  
nos, 1 ( b..., (out) +i d4y  e i p ' ~ q p . . -  ( y ) )  jil ( 0 )  10). ( C 2 )  

It is obvious that the matrix elements 
(olii,, ( 0 ) j i  (x) (OsA ) and (OsA Jrl,.,. ( y ) j i .  (0) 10) vanish in 
the approximation in which only single-particle states and 
the two-particle r N  state are allowed in the full sum over 

intermediate states. Taking this circumstance into account 
leads again to the potential U ( E )  given by expression ( 2  1 ) . 

ID. J. Ernst and M. B. Johnson, Phys. Rev. C. 17, 247 (1978); 22, 651 
( 1980). 
R. J. McLeod and I. R. Afnan, Phys. Rev. C 32,222 (1985). 

3S. Nozawa, B. Blankleider, and T. S. Lee, Nucl. Phys. A513, 459 
( 1990). 

4E. D. Cooper, B. K. Jennings, P. A. M. Guichon, and A. W. Thomas, 
Nucl. Phys. A469,717 (1987). 

5T. Mizutani, C. Fayard, G. H. Lamot, and S. Nahabetian, Phys. Rev. C 
24,2633 (1981). 

6B. C. Pearce and I. R. Afnan, Phys. Rev. C 40,220 (1989). 
7B. C. Pearce and B. K. Jennings, Nucl. Phys. A528,655 (1991). 

G. A. Miller, Phys. Rev. C 14,2230 (1976). 
9A. I. Machavariani and A. G. Rusetsky, Nucl. Phys. A515,621 ( 1990). 
''A. I. Machavariani and A. G. Rusetskii, Yad. Fiz. 53, 1364 (1991) 

[Sov. J. Nucl. Phys. 53,843 ( 1991 ) 1. 
'IF. E. Low, Phys. Rev. 97, 1392 (1955). 
l2 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
l3  J. B. Cammarata and M. K. Banerjee, Phys. Rev. C 17, 1125 ( 1978). 
I4Nien-Chih Wei and M. K. Banerjee, Phys. Rev. C 22,2061 ( 1980). 
I5G. Hohler, Pion-Nucleon Scattering, Vol. 1, Landolt-Bornstein, 

(1983). 
I6S. Theberge, A. W. Thomas, and G. A. Miller, Phys. Rev. D 22,2838 

(1980). 
l7  A. I. Machavariani, Teor. Mat. Fiz. 88, 85 ( 199 1 ) . 
I8C. Itzykon and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, 

New York, 1980) [Russ. transl., Mir, Moscow, 19841. 
l9 V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Currents in Hadron 

Physics (North-Holland, Amsterdam, 1973) [Russ. transl., Mir, Mos- 
cow, 19761. 

20T. I. Kopaleishvili and A. I. Machavariani, Ann. Phys. 174, 1 (1987). 
2'R. L. Warnock, Phys. Rev. 170, 1323 (1968). 
22H. McDaniel and R. L. Warnock, Nuovo Cimento 64,905 (1969). 
23E. P. Zhidkov, M. Nguen, I. P. Nedyalkov, and B. N. Khoromskii, 

Zhurn. vychisl. matematiki i mat. fiziki 19, 998 ( 1979). 
24A. M. Bincer, Phys. Rev. 118, 855 (1960). 
25 W. I. Nutt and C. M. Shakin, Phys. Lett. 69B, 290 (1977). 
26M. J. Reiner, Ann. Phys. 154, 24 (1984). 
"D. N. Epstein, Phys. Lett. 79B, 195 (1978). 
28R. A. Arndt, J. M. Ford, and L. D. Roper, Phys. Rev. D 32, 1085 

(1985). 
29 U. Meissner, rN-Newsletter 2, 8 1 ( 199 1 ), Karlsruhe. 
30A. W. Thomas, Adv. Nucl. Phys. 13, 1 (1984). 
31 G. V. Efimov, M. A. Ivanov, and V. E. Luybovitsky, Few-body systems 

6,17 (1989); G. V. Efimov, M. A. Ivanov, V. E. Lyubovitskii, and A. G. 
Rusetskii, Yad. Fiz. 51, 190 (1990) [Sov. J. Nucl. Phys. 51, 121 
(1990)l. 

32 A. I. Machavariani, Preprinr of Institute of Theoretical Physics, Tubin- 
gen, Tubingen Univ., August 1991. 

Translated by Adam M. Bincer 

594 Sov. Phys. JETP 75 (4). October 1992 A. I. Machavariani and A. G. Rusetskil 594 


