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We give a derivation of the radiative transfer equation in a randomly inhomogeneous unsteady 
cold magnetized plasma; this enables us to describe multiple scattering processes of 
electromagnetic waves when the geometric optics approximation is valid for the mean field. 

INTRODUCTION 

Multiple scattering effects may be of considerable im- 
portance for the propagation of electromagnetic waves in 
continuous media containing random inhomogeneities. A 
space or laboratory plasma in an external magnetic field is an 
important example of such a medium. According to multiple 
scattering theory's2 the average field satisfies the Dyson 
equation (DE) and the incoherent component the Bethe- 
Salpeter equation (BSE). It is well known that the solution 
of the Dyson equation is equivalent to determining the effec- 
tive dielectric permittivity tensor. This problem was consid- 
ered for a randomly inhomogeneous magnetized plasma in a 
number of papers (see, e.g., Ref. 3 where the Bourret ap- 
proximation was used). When the vector nature of electro- 
magnetic waves and the plasma gyrotropy is taken into ac- 
count the Bethe-Salpeter equation encounters considerable 
mathematical difficulties. In our opinion a solution can be 
found in this case by transforming the BSE into a radiative 
transfer equation (RTE) . 

The RTE has been studied in detail in connection with 
its applications in a s t r o p h y ~ i c s ~ ~ ~  and the physics of nuclear 
reactors6 and also in the theory of wave propagation in ran- 
domly inhomogeneous media.',' Various analytical and nu- 
merical methods have been developed for solving 
Methods for changing from the BSE to a RTE have been 
considered in a large number of papers (see citations in Ref. 
7),  as a rule for scalar wave fields. The most general pre- 
scription for obtaining the RTE from the BSE for vector 
electromagnetic waves is expounded in Ref. 11 in which a 
RTE is obtained for an isotropic randomly inhomogeneous 
medium. A search of the literature shows that the transfer of 
radiation in a magnetized randomly inhomogeneous plasma 
has been considered only in the quasi-isotropic approxima- 
tion,''-l4 which greatly restricts the possibility of using the 
results. 

The problem of the present paper is to apply the method 
of Ref. 11 to derive a RTE for a magnetized plasma. The 
equation obtained is valid under the same conditions under 
which the geometric optics approximation is valid for the 
mean field. The potential range of its use is rather broad and 
includes the propagation of electromagnetic waves in space, 
near-earth, and laboratory plasmas. 

We stick to the following plan in the present paper. We 
give the initial equations in Sec. 1 and list the basic assump- 
tions. In Sec. 2 we collect some useful relations used in what 
follows. In Sec. 3 we develop a method of successive approxi- 
mations to solve the Bethe-Salpeter equation. In Sec. 4 we 
analyze the conditions for compatibility of the equations of 

the zeroth and first approximations for the coherence func- 
tion. We introduce in Sec. 5 the energy characteristics of the 
scattered waves. The RTE is brought into its canonical form 
in Sec. 6 .  In the Conclusion we analyze the applicability do- 
main of the resulting equations and discuss possible general- 
izations. 

1. INITIAL EQUATIONS AND BASIC APPROXIMATIONS 

The electric field strength vector E(r,t) of an electro- 
magnetic wave propagating in a randomly inhomogeneous 
nonstationary medium satisfies a wave equation which can 
be written as follows: 

[ L  ( X )  +,v (XI l E  ( X )  =o, (1 

where we have introduzed the notation X = {r,t) whik the 
deterministic operator L (X) and the random operator V(X) 
are defined by the equations 

2 ( X ) E ( X ) = V Z E ( r , t ) - V  ( V E ( r ,  t ) )  
t 

- a2 
- t ( t r - ,  - t ) > E ( r l  t ,  (2)  

atz-  rn 

az 
P ( X ) E ( X ) = - c - ' -  dt' hr ' ;  (r, t , r r ' ,  t - t l ) E ( r l ,  t ' ) ,  

at2 - 

where B(r,t,r - r',t - t ' ) is the kernel of the permittivity op- 
erator, 

2 (r, t ,  r -r l ,  t-t') =; ( r ,  t ,  r-rl, t - t l ) -  ( i ( r ,  t ,  r-r'. t - t ' ) ) .  

Introducing the coherence matrix 

" r x , ,  x ~ ) = ( E ( x , ) @ E * ( x ~ ) )  

and the correlation matrix of the scattered field, 

m x , .  x z ) = F ( x l ,  xZ) - i ;O(x1 .x2) ,  

where 

?(x~,x~)=(E(x~)>@(E'(xZ)) 

and the sign indicates the external product of vectors, we 
can write the Bethe-Salpeter equation in the "ladder" ap- 
proximation:' 
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where &x) = 2(x) - G,(x) (^vcx,)^v(x2)) is the Dyson 
yerator j n  the %ourret a~proximation, and we have 
G(X) = D -'(X), Go(X) = L - ' (X). Note that the Dyson 
operator can be written in the equivalent form 

where be' is the kernel of the effective dielectric permittivity 
operator. 

To obtain the RTE from ( 3 ) we shall follow Ref. 1 1 and 
assume that the following conditions are satisfied. 

1. The medium is quasistationary and quasiuniform, 
i.e., the inequality 

is satisfied where 

L and T are characteristic spatial and temporal scales on 
which the average properties of the medium change, A and T 

are the average wavelength and oscillation period of the radi- 
ation propagating in the medium, and p, and i, are the spa- 
tial and temporal scales of the nonlocality (dispersion) of 
the medium. Condition (5) is the condition for the applica- 
bility of the geometric optics method.I5 

2. The correlation matrix of the scattered field, 

depends more strongly on the difference variable p than on 
the "center of gravity" coordinate RAsince the characteris- 
tic scale of changes in the quantity Sr(R,p)  with respect to 
R is as a rule much larger2 than with respect top)  : 

3. The mean field is defined by the geometric optics 
method. It can then locally be written in the form of a super- 
position of plane waves satisfying the dispersion relation 

where S(K) is the Fourier transform of the kernel of the 
Dyson operator (K = (k, - w) ) and the effective dielectric 
permittivity tensor Zeff (k,w) is defined as the Fourier trans- 
form of the kernel of the effective dielectric permittivity op- 
erator). 

4. The local damping of the mean field due to collisional 
losses and scattering is small: 

IDd(K) 1 - ~ I D ~ ( K )  1 ( p e l ) ,  ( 8 )  

where D y(K) and D (K) are the Hermitean and anti-Her- 
mitean components of the tensor DU (K). 

The Bethe-Salpeter equation (3),  which is the starting 
point for obtaining the RTE, is written in the "ladder" ap- 
proximation for the intensity operator. It is then natural to 
find the mean field from the Dyson equation in the Bourret 
approximation for the mass ~perator . ' .~  It is permissible in 
the Bourret approximation to neglect the change in the real 
part of the refractive index, assuming that the action of the 
inhomogeneity reduce~solely to a ckange in its imaginary 
part. We can tkus put DH (R,K) = A(R,K) where the dis- 
persion tensor A(R,K) of the regular plasma has a structure 
determined by Eq. (7)  with the substitution 
Pff(k,w)+ (C(k,w)). 

2. RAY EQUATION AND SOME USEFUL RELATIONS 

The requirements we have formulated are, in fact, the 
conditions for the applicability of the geometric optics meth- 
od in space-time form, taking into account the spatial and 
temporal dispersion. The equations for the ray trajectories in 
a magnetized plasma have the form" 

where we have written R = {r,t) and K = {k, - w), 
H = 4 [k  - k in2(R,w) ] is the ray Hamiltonian, n(R,w) is 
the refractive index for the ordinary or the extraordinary 
wave, and d /ds is the derivative along the ray trajectory. For 
a compact representation of the subsequent calculations it is 
convenient to introduce Poisson brackets of two functions of 
arguments R and K: 

a f  ag a f  ilg [ f ,  g ] =  ----- a~ a ~  a ~  aK 

Using (9) and ( 10) we can obtain the following relation: 

We introduce into our considerations the polarization vector 
e which satisfies the relations 

The identity 

with Q = le12 - lek12/k is then valid. Using ( 12) and the 
fact that H = 0 holds in the transparency region of the plas- 
ma we can obtain the relations 

The equation 

also follows from ( 11) and ( 13). In what follows we need 
the following relations, which hold for waves in a magne- 
tized plasma:I6 

A 

where A is the matrix of the cofactors of the matrix elements 
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A,. ( E , , ~  is the Levi-Civita tensor), 

h t , = l / u ~ l a f i ~ , y ~ A ~ a ~ \ ~ ~ r  (16) 

(Ai,,L\,J-Aitj*Lt) I (17) 

h,,hrr=h,,hk,+f\~,k,n~Jni~i,,,>,, ( 1 8 )  

and also the relations 

2 1 
---= 2in6 (I\), 

il' 11 
(19) 

6 ( ~ ) =  Isp-laal {Q-i[6(k2-k,2)+6(k2-kL2)l +6(k,(e,,)kJ 1. 

(20) 

3. EQUATIONS OCTHE SUCCESSIVE APPROXIMATIONS FOR 
THE QUANTITY 6r 

We consider separately the left-hand and the right- 
hand sides of Eq. (3  ). Using the integral form ofthe operator 
representation we can write the left-hand side of ( 3 )  in the 
form 

In (21 ) we change to the variables R andp and expand the 
integrand in a Taylor expansion in the variable R, retaining 
terms through first order in p. As a result we find 

p 6'5" (R ,  p-x') [a (R, p-x')  &(R, x') + - 
2 a R 

6r (R, X ' )  

By expanding all quantities occurring in the integrand in 
Fourier integrals in the difference variablep we change (22) 
to the form 

K ,  6?(R, K ) ] }  exp(iKp)dK. (23) 

Similarly we get for the right-hand side of (3 )  

(2n)' J ~ . ( R , K ) B ( R ,  K - K , K ,  - K )  

x [ r" (R,  K ' )  +6f(R,  K t )  1 

x exp (iKp) dK dK' ,  (24) 

A 

where B(R,K - K ',K ', - K ') is the Fourier transform with 
respect to the three difference coordinates of the quantity 

B (R, Xi-X,, Xi-X', X2-X" )=<:(xi, X,-X') 

,. 
x >(x,, X-2-X")). 

Comparing (23 ) and (24) we transform Eq. ( 3 )  to the fol- 
lowing form: 

X [?" (R, K') +6?(R, K') ]dK'. ( 2 5 )  

We write the quantity ~ f '  (R ,K)  as a power series in the small 
parameter p :  

A 

where we have Sr"") apn . Using (26) we can reduce Eq. 
(25) to an infinite chain of equations, the first two of which 
have the form 

$H(R,  K ) ~ ? O )  (R,  K )  =0, (27) 

5" (R, K )  8?(" (R, K )  = 2 (R. K) , (28) 

where 

+6f"0)  (R, K') ]dK' .  

The compatibility condition of the equations of the zeroth 
(27) and the first (28) approximation give us the radiative 
transfer equation1 ' 

4. ANALYSIS OF THE ZEROTH AND FIRST APPROXIMATION 
EQUATIONS 

A 

Using (8)  and the equation DH (R,K) = ~ ( R , K )  we 
can write the solution of Eq. (27) in the form 

srrjO) (R,  K) =eie;C6 (A), (29) 

where we have A(R,K) = detllAU(R,K)II and where we 
shall show below that C characterizes the radiation intensi- 
ty- 

For the compatibility of the zeroth and first approxima- 
tion eq~ations it is necessary to satisfy the condition that the 
matrix Z(R,K)  be orthogonal to the polarization vectors: 

e'd (R,  K)e=O. (30) 

This condition leads to the equation 
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5. ENERGY OFTHE SCATTERED WAVE AND RAY INTENSITY 

The energy density of the scattered field can be deter- 
mined by means of a well known formula (see, e.g., Refs. 16 
and 17) which in the present case takes the form 

j B . i ~ m  ( R ,  K-K', K t ,  -K') [ P I m O  ( R ,  K') 

+6I'l!,? (R,  K' )  ]dK' .  ( 3 1 )  
Restricting ourselves in the e.xpression for the coherence ma- 
trix of the scattered field ST to zeroth-order terms in the 
small quantity p and using ( 2 9 )  we note that the expression 
for the total energy of the scattered waves, 

W ( R )  = j do d3kks ( R ,  w _  k)_  

For further transformations it is convenient to add Eq. ( 3  1 ) 
term by term to the equation which is its complex conjugate. 
After this we have for the left-hand side of Eq. (3 1 ) 

can be written as follows: 

Using ( 15) we can reduce the first term in the braces in ( 3 2 )  
to the form 

where 

Using Eqs. ( 16) to ( 18) we can write the second term as 

the index a labels the type of the normal wave, nu, v, ,a, are 
the refractive index, the group velocity vector, and the angle 
between the group velocity vector and the wavevector, and 
dR, is an element of solid angle in the wavevector space of 
waves of type a. The Poynting vector of the scattered waves 
is defined by the relation 

By virtue of ( 1 5 )  the first term in ( 3 4 )  is equal to 

the second can be reduced to the form 

6. RADIATIVE TRANSFER EQUATION 

Using ( 3 5 ) ,  ( 3 7 ) ,  and the definition ( 3 9 )  of the ray 
intensity we get from Eq. ( 3  1 ) by equating the coefficients of 
S ( k 2 - k i )  

and the third and fourth terms vanish because in the trans- 
parency region of the plasma we have A = 0 and [Aij ,Av ] 
= 0. As a result the whole expression can be written in the 

form 

where we have introduced the notation 

where 

After we add Eq. ( 3 1 )  to its complex conjugate the right- 
hand side has the following form: 

-4n sp i 6  ( A )  J ei'e,rBjl,(R, K-K', K1.  -K1)epem'' 
2 

is the cross-section for the scattering of a wave of type0 into 
a wave of type a, while the ray intensity of the coherent 
component is determined by the relation 

x [ E c a 0  ((R, K') 6  (ka-k') 6  ( m a - o r )  +c(R,  K' )6  ( A ) ]  d ~ ' ,  
a- 1 

where the quantity C z  (R,K ') characterizes the intensity of 
the coherent component of the wave field. The set of Eqs. ( 4 1 )  is the analog of the radiative transfer 
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equation for a randomly inhomogeneous magnetized plas- 
ma. When one can neglect conversion of the normal waves in 
the scattering, the set (41) splits into two independent equa- 
tions describing the transfer of radiation in the ordinary and 
the extraordinary components. We note that the structure of 
the left-hand side of Eq. (41 ) is analogous to the correspond- 
ing structure of the RTE in a regular magnetized plasma.18 

In the case of a stationary cold collisionless magnetized 
plasma and when there is no spatial dispersion the second 
term in (36) vanishes. The first term in (36) can be written 
in the form 

iDij"ei'ej='/,ko [ E;' (R, k, o) - E/:R (R, k, a) 1. (43) 

For a statistically uniform and stationary magnetized plas- 
ma the effective dielectric tensor in the Bourret approxima- 
tion is determined by the expression3 

where @, ( x )  is the spatial spectrum of the random inhomo- 
geneities. Bearing in mind that in a uniform magnetized 
plasma the relation16 G On (w,p) = A,, (w,p)/A(w,p) holds, 
and substituting (44) into (43), we obtain 

Using ( 18) and ( 19) after simple transformations we get the 
following relation: 

where 

is the total (integral) scattering cross-section, while the par- 
tial scattering cross-section uaD has the well known form16 

nko2 l e , ' ( < ~ ) - - i ) e , ~ ~  nu 
Oap = -r 

4 
-- (cos @ , ( r ,  k,-k,). 

QaQe ne 

Substitution of (45) into (36) gives the following relation: 

If there are dissipative losses in the medium we must add the 
appropriate absorption coefficient in the right-hand side of 
Eq. (46) .* We have obtained Eq. (46) using Eq. (44), which 
is valid in a statistically uniform medium. It is clear that Eq. 
(44) and hence Eq. (46) retain their validity for a statistical- 
ly inhomogeneous and nonstationary medium in the geo- 
metric optics approximation [provided conditions (5) to 
(8  ) are satisfied]. 

In that case Eqs. (41) can thus be written in the form 

2 

a 2  d [ l a  c;M~~. I -- 
1 cos 6,) ds ]=-amla+ Z I ~ ~ J ~ "  ~3= I 

The last transformation gives a completely clear physical 
meaning to all terms occurring in the equation. The RTE 
describes the change in the intensity of the scattered radi- 
ation along a ray trajectory passing through a point in space 
in a given direction. The first term on the right-hand side of 
(47) describes the decrease in the intensity of the incoherent 
component due to secondary scattering. The second term 
corresponds to the influx of energy into the incoherent com- 
ponent when the coherent component is scattered. The third 
term gives the influx of energy of the incoherent radiation in 
the given direction due to secondary scattering of waves of 
both types, which had already been scattered, propagating in 
all possible directions. We note that the total energy flux can 
be found by using (40) to sum over all ray trajectories pass- 
ing through a given point. In the case of a magnetized plasma 
the use of the RTE thus gives the result which could have 
been obtained by means of a phenomenological approach 
using the geometric-optics energy balance of the scattered 
components. 

CONCLUSION 

Equations (41 ) can be used to analyze multiple scatter- 
ing processes in a randomly inhomogeneous magnetized 
plasma. The range of applicability is restricted only by the 
condition that the geometric-optics approximation be valid. 
This means in particular that these equations cannot be used 
near the region where the normal waves are reflected, where 
n, = 0 and there where n,  z n 2 .  In the latter case one can 
apply the RTE in the quasi-isotropic geometric-optics ap- 
pro~imation. '~- '~  The equations do not describe inverse 
scattering processes, since in that case it is necessary to take 
into account wave corrections which requires leaving the 
framework of the linear radiative transfer t h e ~ r y . ~  In con- 
clusion we note that the method used in the present paper to 
obtain the radiative transfer equation can apparently easily 
be generalized to the case of any randomly inhomogeneous 
anistropic medium. 
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