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An effective form for the periodic solutions of the Landau-Lifshitz equations describing a 
uniaxial ferromagnet is derived and various degenerate cases and the soliton limit are studied. The 
solution technique employed augments the well-known inverse scattering method used for 
integrating soliton equations. 

1. INTRODUCTION 

Nonlinear spin waves have started to attract attention, 
starting, apparently, with Akhiezer and Borovik's paper 
(Ref. 1). In addition to being applied to the description of 
ordinary magnetic  material^,^ such waves emerge in the 
physics of quasi-one-dimensional ferromagnet~~-~ and in the 
physics of quantum paramagnetic gases6.' Soliton solutions 
of the appropriate Landau-Lifshitz equation for the magnet- 
ization have attracted special attention.27839 Discovery of the 
fact that the Landau-LifshitzlO." equation can be integrated 
by the inverse scattering method has made it possible to 
study many-soliton for a uniaxial ferr~magnet.~." 

Some applications, however, require knowing not only 
the soliton solutions but the periodic as well. Unfortunately, 
the standard method of finite-zone in t eg ra t i~n '~"~  devel- 
oped for finding such periodic solutions of integrable equa- 
tions has proved insufficiently effective for the Landau-Lif- 
shitz equation, as in many other cases. For example, the 
singly periodic solution found in Ref. 7 by this method for an 
isotropic magnetic material yielded effective formulas only 
in the very special two-parameter case, whereas the general 
singly periodic solution depends on four parameters. For an 
adequate description of experimental inhomogeneous and 
non-steady-state situations one must know the solution that 
depends on all four parameters. 

Such difficulties always arise when the respective L op- 

assumed here that in terms of the chosen variables, vector M 
is normalized by the condition 

B12=1. (2) 

As shown in Refs. 10 and 11, Eq. ( 1 ) is integrable, that is, 
can be represented in the form of the capability condition for 
the following two linear systems of equations: 

~I$~/~ .T=F$,+G$~,  d$,IG't=A$,+B$,. 
( 3 )  

a$?ldx=H$,-F$,, d$2/dt=C$i-A$2, 

where in the given case 

F=- ( '  ~A/2)h1,, G=- ( i / 2 )  (A2+I)lhM-, (4)  

H=- ( '  z/3) (hz+p)'6ill+. 

A= (il2) (?.'+p)1U3+ (3.14) [ (flf-)~li+-M-(~lr,),], 

B= (i/2)?. ()..'+o) ''.L1l-+ ('I2) (h2+B) ' I r [  (11I5)J1--N3 (-41-)1]. 
(5 

C= (112) h ( A 2 +  fi)'hM+- (I/..) (A2+fi)"' [ (III~),,IM+-.M~ (.]I-),I 

with M +  = MI + iM2 and (M,), = dM3/dx, and A the 
spectral parameter. Substituting Eqs. (4)  and (5)  into the 
condition 

d21$,/dxilt=d'$,/~tdx 

erator of the inverse scattering method is not self-adjoint. In and equating the coefficients of equal powers of we arrive 
Ref. 15 a way to overcome this difficulty was suggested, and at Eq. ( ) 
in Ref. 16 an example in which the oscillating regions were The system ( 3 )  has two basic solutions, ($,,$,) and 

at the wavefronts pulses in light- which can be used to build a vector with the spheri- 
guides was discussed. An effective form of the periodic solu- cal components 
tion for an isotropic magnetic material was found in Ref. 17. 
In the present paper Periodic solutions are obtained for the f=-(iI2)($l(pa+ll.?ql). g=$,q,. h=-$Zqfr (6) 

- -  . 

case of a ferromagnet with uniaxial anisotropy (the easiest 
magnetization axis). satisfying the following linear systems: 

2. BASIC EQUATIONSOF THE INVERSE SCATTERING 
METHOD 

In this section we set up the equations of the inverse 
scattering method for the case of the Landua-Lifshitz equa- 
tion in a form found convenient. 

A uniaxial ferromagnet is described by the Landau-Lif- 
shitz equation 

anI/at=[hi. azarlax2] +p (&In) [M.  n] ,  (1 

where M(x,t) is the local magnetization, p the anisotropy 
constant, and n the unit vector along the x axis (the easiest 
magnetization axis) along which a wave is propagating. It is 

In the process of evolution the length of the vector with com- 
ponents ( 6 )  is preserved, that is the quantity 

is independent of x and t. Periodic solutions are specified by 
the condition that P ( A )  be a polynomial of A. Aided with 
(7),  we can easily verify that in our case the single-phase 
solutions correspond to the fourth-degree polynomial 
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Z 

I-' (h)= (?,-?.i)=A1-~lh? + ssA2-s,,i. J- s,. (9)  

For many physical applications knowledge of just such solu- 
tions is sufficient. 

Function of the following type correspond to systems 
(7): 

Identity (8 )  then yields the following equations: 

with M=M3. The equations for the variablep introduced in 
( 10) can easily be obtained from (7)  : 

Thus, p depends only on the phase 

The components of vector M can be found from equations 
that follow from (7): 

We now turn to solving these equations. 

3. THE PERIODIC SOLUTION 

As in Refs. 15-17, we assume from the start that p 
moves only along such trajectories on which identity (8)  is 
always satisfied. A convenient variable parametrizing such 
trajectories is the quantity M=M3. Using system ( 1 1 ), we 
can find the link between p and M. 

From the first and second pair of Eqs. ( 11 ) we get 

which yield 

where 

and 

If we allow for ( 17), the last equation in ( 14) assumes the 
form 

which together with the second equation in ( 14) yield 

h 

where M- satisfies the following equation 

Wenowseekpandp*. Equations ( l l ) ,  ( l 5 ) ,  and (17) 
imply that 

from which we find that 

where 

the constant f, is specified by Eq. ( 15), andp* is obtained by 
changing the sign in front of the sequence root in (20). We 
call polynomial R (M) the resolvent of P(A), since asp-. 0 it 
transforms into its well-known third-degree resolvent," and 
its zeros vi , 

are linked to the zeros Ai (i = 1,2,3,4) by symmetric expres- 
sions derived in the Appendix. We have 

where 

hi'= (A:+ B )  (24) 

v, and v3 are obtained from v, by interchanging indices 3 4  
and 3-2, respectively, and v, can be found by the formula 

By introducing the resolvent (21) we were able to de- 
scribe explicitly the trajectory o fp  in the complex plane via 
Eq. (20) and to rid ourselves of the need to allow for addi- 
tional identities. Let us find the equation for the third com- 
ponent of the spin, M = M3, which parametrizes curve (20). 
From (8)  it is clear that whenp is given by (20) and A = p,  
so that g = 0, we have P(p) = f '(p),  and differentiating 
(20) with respect to M yields 

Multiplying (26) by ( 13), we find that 

Since we are considering the case of P >  0 for the easiest 
magnetization axis, the values of M vary within the interval 
v3<M(v2, where R(M))O. Polynomial R(M) is of the 
fourth degree, and the solution of Eq. (27) can be expressed 
in a standard manner in terms of elliptic functions: 
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where W, is the initial phase value, and 

In what follows to simplify notation we put W, = 0 .  
Substitution of ( 2 0 )  and ( 2 7 )  into ( 1 9 )  yields 

{ I S 1 M - 2 f 1  dw}, ( 3 0 )  .fi-= (1-1l1~)"' esp ( i / 2 )  

where the function M( W) is specified by ( 2 8 ) .  It is conve- 
nient to express the integral in ( 3 0 )  in terms of Weierstrass's 
b function. If we use the formula 

where 

then for the integrand in (30)  we obtain 

s,ilI-2f, sl-2jl p (F ir ) -8 '  ( p )  - - 
I -  2(1-v3) p (w)-p ( x )  

where the parametersp, x ,  and x are defined via the follow- 
ing formulas: 

p (p) -e,+p(v,-v3) (v2-v3) /4 ,  

P (.)=e3+p (v l -v , )  (v2-v3)  ( I - v g ) / 4 ( l - v , ) ,  ( 3 2 )  

P ( 2 )  =e,+p (v,-v, j  (v,-v,)  (1+vb) /4 (  l f  v , ) .  

Integration is carried out using the formula 

where 6 and a are Weierstrass's 6 and a functions. Simple 
calculations lead to the following results: 
,TI- ( .r,  t ) =  (1-~~~)"~esp{it(s,fi-s~)/2f~ 

i-2iW (s ,v3-2/ , ) /  (I -v:)  

(33 
with W = x - sl12t.  Formulas (28 ) and ( 33 ) give the gen- 
eral expression for the single-phase periodic solution of the 
Landau-Lifshitz equation in the case of a uniaxial ferromag- 
net. 

4. DEGENERATE CASES 

At f l  = 0 formulas ( 2 8 )  and ( 3 3 )  require a complicat- 
ed passage to the limit, so that it is better to consider such 
degenerate cases separately. Note that f :  is always nonnega- 
tive since 

Combining this with ( I S ) ,  we find that f ,  vanishes in two 
cases: 

We start with case (a) ,  which corresponds to two pairs 
of zeros R on the imaginary axis: 

For values of 0 such that 

we find the system ( 1 1 )  yields 

f l = O .  f,=Mp+ ( P ' - S ~ P + S & ) ' ~ ,  ( 3 6 )  

that is, p moves along the imaginary axis. Suppose that 
y,>y2.  Then we must distinguish between three cases, 

with fl  = 0 only for cases ( 1 ) and ( 2 ) .  The zeros of the resol- 
vent in ( 3 6 )  form the following patterns: 

for case ( 1 ) (p< d 1, and 
\ ~ ~ = - 1 < ~ ~ = - ( y i ~ 2 -  [ ( P - ' f l Z )  ( P - ' f Z Z )  1 ' b ) / p < ~ Z  

= { y 1 y 2 + [  ( P - y i Z )  ( P - ~ ? l ) I ' ~ ) l P ~ v l = l  ( 3 9 )  

for case ( 2 )  (p> y: ). The solutions for M, are obtained by 
substituting these values of vi into ( 2 8 ) .  

For case ( 3 )  ( d  <p< y: ) we have 

that is, 

and the resolvent's zeros are 

which leads to the appropriate solution after substitution 
into ( 2 8 ) .  

We now turn to case (b)  ( p  = s,/s, ). This corresponds 
to the following pattern of the zeros of P ( R )  : 
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so tht A ; = A ; = 0 .  Simple calculations lead to the resol- 
vent 

with zeros 

and the appropriate solution ( 2 8 ) .  

5. THE SOLITON LIMIT 

In the soliton limit the two pairs of complex conjugate 
zeros A, merge into one pair, 

In this limit the zeros ( 2 3 )  and ( 2 5 )  of the resolvent trans- 
form into 

For such values of vi formula ( 2 8 )  yields 

By introducing the angle 8 between vectors M and n, so that 
M, = cos 8, the soliton solution can be written as2.10 

where 

For the applications of the theory developed here it is impor- 
tant that the soliton parameters be expressed in terms of the 
values of the spectral parameterAi , since the Whitham equa- 
tions, which describe the weakly inhomogeneous periodic 
waves, assume the simplest form when expressed in terms of 
just the variables Ai . 
6. CONCLUSION 

The periodic solution obtained here has a fairly effec- 
tive form that makes it possibe to trace the variations of the 
solution caused by the evolution of the parameters Ai in in- 
homogeneous and non-steady-state problems. Employing 
the methods used in Refs. 16 and 17, we can easily verify that 
the corresponding Whitham equations have the same form 
as in the isotropic case," where p = 0 .  Thus, the theory 
forms a basis for applications. 

It can be assumed that this approach, in which the equa- 
tions of the inverse scattering method are re-parametrized 
via the algebraic resolvent of the initial polynomial P ( A ) ,  
which specifies the periodic solution, can be generalized to 
other integrable equations, including those that that are not 
within the scope of the Zakharov-Shabat scattering prob- 
lem. 

APPENDIX 

Let us find the zeros of the resolvent ( 2  1 ). If we com- 
bine ( l o ) ,  ( 1 7 ) ,  and ( 2 0 )  with identity ( 8 ) ,  we get 

P ( h ) =  (hlhZ-f,h+ ( ~ , - ~ , p ) / 2 j , + @ h l ) ~ +  ( I - M e )  (hZ+B) 
~ [ h -  (~,-2f,Af+2(-pR(fil))'")/2(1-11.1~) ] 
~[h-(~,-2f,M-2(-/3X(A.l))")/2(1-M~) 1 .  ( A l )  

If we assume here that M is equal to one of the zeros v of the 
resolvent, the right-hand side of (A1 ) takes on the form of 
the difference of two squares, so that the four zeros of the 
polynomial P ( A )  prove to be the roots of two equations, 

Suppose that the zeros A ,  and A, correspond to the " + " on 
the right-hand side of ( A 2 )  and the zeros A, and A, to the 
" - ." We introduce the following notation: 

Dividing the four relations in ( A 2 )  by each other, we get six 
formulas of the type 

(i) -- hi' 2h i ( l -v2) - s l+2f lv  -*- 
(i hj' 2 h j ( l - ~ 2 ) - ~ , +  2 f l v  ' 

where the " + " corresponds to ( 1 ) / ( 2 )  and ( 3 ) / ( 4 ) ,  and 
the " - " to the other combinations. From ( A 4 )  we can 
obtain for 1 - v2 six expressions of the type 

where we have used the same sign convention. Equating 
(AS)  to each other pairwise, we get four equations that are 
linear in (i), 

and three equations quadratic in (i), 

+ ( 4 )  ( 1 )  (A,-hz)=O. 

(1) ( 2 )  (h3-a') + ( 2 )  ( 4 )  (h,-hO 
+ ( 4 )  ( 3 )  (hr-hl)  + ( 3 )  ( I  ) ( hr-h0 =O. ( A 7 1  

(1) (3) ( ) ,2 -h , )+(3)  (2)  ( h : - h i ) + ( 2 )  ( 4 )  ( h i - h )  

+ ( 4 )  ( 1 )  (h3-hz) =0. 

Only three equations in ( A 6 )  are linearly independent and 
Eqs. ( A 7 )  are corollaries of ( A 6 ) .  Since ( A 3 )  is linear in v, 
Eqs. ( A 6 )  are the linear equations for calculating v. For 
instance, from ( A 6 )  it follows that 

so that Y, can be found by solving the following symmetric 
equation: 

2 f t [  (?-1-hz) (hs'-A,')+ (313-h,) ( h , ' - L ' )  I V  
=2j12[ (Al-hz) (h3lh3'-h,Ih,') + ( L - h , )  (hl/hlr-h2Il.z') ] 
-(s3-s,i3) I (hc-hz) (1 lhs ' - l /L ' )+  (As-hr) ( l /hi ' - l /Az')  1. 

( A 9 1  
After simple transformations that use formula ( 15)  for f: 
we find the root v3 of the resolvent in a form similar to ( 2 3 ) .  
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