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The high-frequency expansion is used to study the validity of the Kramers-Kronig relations 
(KKR) for the dielectric constant of systems with Coulomb interaction. The KKR are shown to 
be valid only when the moments are nonnegative. Several criteria for the violation of these 
relations are derived, and they lead to negative values of the dc dielectric constant. The fact that 
these criteria are obeyed can be verified on the basis of the experimental data on the structure and 
thermodynamic properties of real media. It is shown that solution of the problem of violation of 
the KKR for the dielectric constant is directly related to the type of plasma oscillations in the 
system. 

1. Much attention has lately been paid to the theoretical 
study of the dielectric constant ~ ( q , w )  of CS.L-9 The reason 
is that knowing the dielectric constant, we can determine 
various CS characteristics, such as the themodynamic prop- 
erties, the structure, the spectrum of collective excitations, 
and optical properties. Rigorous relations for the dielectric 
constant play an important role here because they determine 
the general laws governing the behavior of the dielectric con- 
stant as a function of the wave number q and the frequency 
w. The first candidate for such relations is the well-known 
Kramers-Kronig relations (KKR),  which for arbitrary CS 
parameters are valid only for the inverse dielectric constant 
~ - ' ( q ,w)  (Ref. 10). Here the dielectric constants of any ma- 
terial medium for nonzero (but otherwise arbitrary) values 
of the wave vector q do not necessarily obey the KKR with- 
out conflicting with causality and stability requirements." 
At the same time the problem of the validity of the KKR for 
the dielectric constant is important for determining the sign 
of the dc dielectric constant &(q,O). When the KKR are val- 
id for E ( ~ , w ) ,  the dc dielectric constant c(q,O) is limited in 
value by the conditionlo 

while the KKR for the inverse dielectric constant E-  ' (q,w) 
allow for negative values of the dc dielectric con~tant:'~." 

At present it is believed that inequality (2) holds because of 
local field effects, that is, the deviation of the effective field 
acting on the medium particles from the mean macroscopic 
field with respect to which the dielectric constant is de- 
fined.12 The inequality (2) is valid only for large local field 
corrections, which can occur only in highly nonideal sys- 
tems such as metals and nonideal p l a ~ m a . ' ~ , ' ~  At the same 
time, the semiphenomenological methods often used in theo- 
retical investigations of dielectric constants of nonideal CS 
cannot serve as a sufficient basis for describing the dielectric 
constants of real media. There are also practically no data on 
the behavior of the dc dielectric constant &(q,O), except for 
the classical nonideal plasma, whose dielectric constant is 
determined via Monte Carlo and molecular dynamics meth- 
OC 

One must accept the results of numerical studies of clas- 
sical CS cautiously, however. The point is that at present 

there exists a rigorous proof of stability of electroneutral CS 
only when the negatively and/or positively charged particles 
are fermions15 (see also Ref. 16). There is one more essential 
factor directly related to the stability of CS and involving the 
most extensively studied model of a one-component plasma 
(OCP) . According to the results of numerical studies, both 
the cla~sical '~  and the degenerate quantumi8 ocp have a neg- 
ative isothermal compressibility x, for fairly high values of 
the nonideality parameter, which contradicts the well- 
known thermodynamic stability condition19 

Although attempts have been made3*6 to explain the 
violation of condition (3) in OCP, the problem cannot yet be 
considered resolved. More than that, with allowance for the 
exact limiting relation for the dc dielectric constant &(q,O) of 
0CP,l0 

lim q2 ( E  (q ,  0) - l )  =4nz.Ze2n,2xT, 
9'0 

where n, is the mean number density of particles with 
charge z, e and mass ma, the problem of violating condition 
(3)  is directly related to the problem of negative values of 
the dielectric constant &(q,O) in ocp. In any case, the existing 
numerical calculation data lead to negative values of the dc 
dielectric constant precisely for values of ocp thermodynam- 
ic parameters with x ,  < 0 (see Refs. 3 and 6) .  

This attaches great importance to the problem of con- 
firming that the dc dielectric constant can be negative [or 
the violation of KKR for ~ ( q , w )  ] of real media, where the 
thermodynamic stability condition (3)  is sure to be met. In 
view of what has been said about solution of this problem, 
there is need for such additional information on the behavior 
of the dielectric constant as the high-frequency expansion in 
powers of 1/u2, which is determined by the dielectric-con- 
stant moments. In this connection Ref. 20 should be men- 
tioned. There modified KKR for the dielectric constant 
were derived and the relation between the characteristics of 
the additional pole term and the high-frequency expansion 
for the dielectric constant was discussed. 

In this paper the high-frequency expansion is used to 
directly analyze the KKR for the dielectric constant. These 
relations are shown to be valid only for nonnegative values of 
the moments. The exact expression for the second moment is 
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used to derive a number of criteria for violation of the KKR 
for the dielectric constant. These in turn lead to negative 
values of the dc dielectric constant. On the basis of this it is 
found that the CS in which the plasma oscillation spectrum 

(q) lies below the plasma frequency m, have a negative dc 
dielectric constant. 

2. Further discussion will be done on the assumption 
that the KKR for the dielectric constant hold true: 

Allowing for the fact that the imaginary part of the dielectric 
constant is nonnegative for 020  (see Ref. lo), 

I ~ E  ( q ,  o )  2 0  (7) 

we see that Eq. (5  ) directly implies inequality ( 1 ), which is 
the necessary and sufficient condition for the validity of the 
KKR for the dielectric constant." At the same time, accord- 
ing to (5), the real part of the dielectric constant, Re ~ ( q , m ) ,  
can be represented in the high-frequency limit as an expan- 
sion in powers of 1/m2: 

where the dielectric-constant moments m, (q) are defined as 
m 

1 
m. ( q )  = ; 1 da2a2"-' Im e (q, a ) .  (9)  

0 

Combining Eq. (9) with Eq. (7), we find that for the KKR 
for the dielectric constant to be valid the moments m, (q) 
must be nonnegative: 

Thus, violation of inequality (10) for any moment 
m, (q) indicates that the KKR for the dielectric constant 
have broken down. One must bear in mind that satisfying 
condition (10) for a finite number of moments does not 
guarantee that these relations are valid for a given value of 
the wave vector q. More than that, it is possible in principle 
that inequality ( 10) is violated for a certain moment m, (q) 
only within a definite range of wave vectors. 

To determine the moments m, (q) we employ the high- 
frequency expansion for the real part of the inverse dielectric 
constant: - 

1 
M., ( q )  = - - I da2a'"-2 im IY' ( q  a ) ,  (12) " 0 

where, with allowance for (7),  the moments M, (q) of the 
inverse dielectric constant must be nonnegative, 

M,, ( q )  30, (13) 

for all wave vectors for arbitrary thermodynamic CS param- 

eters, since Eqs. ( 1 1 ) and ( 12) are corollaries of the KKR 
for E - I  (q,w ), which are always valid.'' Bearing in mind that 
in the high-frequency limit the imaginary part of the dielec- 
tric constant is smaller than any finite power of w (Ref. 21 ), 

and combining this with (8 )  and ( 1 1 ), we obtain 

For one thing, 

Hence, under condition (13) the inequality (10) is always 
true for m, ( g ) ,  while it may be violated from m2(q) if 

Thus, 

can be considered a sufficient condition for violation of the 
KKR for the dielectric constant. Hence, in the range of wave 
vectors and CS thermodynamic parameters where the in- 
equalities ( 17) and ( 18) are valid the dc dielectric constant 
is negative. Note that the inverse statement is generally not 
true. 

3. A realistic estimate of the validity of ( 17) and ( 18) is 
possible only if we know the specific expressions for MI  (q) 
and M2(q), which can easily be obtained (the corresponding 
calculations are detailed in Refs. 22 and 23) if one allows for 
the relation between the inverse dielectric constant and the 
charge-charge response function.1° As a result we get 

Here 

ma= (4nz,2e2n,lm,) ": 

is the plasma frequency for particles of species a,  

Sab (q) is the static structure factor for particles of species a 
and b and is related directly to the respective correlation 
function gab ( r )  (see Ref. lo) ,  

h 

and (Ta ) is the exact mean kinetic energy per particle of a 
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species, which in the classical limit ( f i - 0 )  is 

In deriving Eq. (21 ) we used the Coulomb interparticle in- 
teraction potentials, 

According to Eq. ( 2 1 ) ,  the second dielectric-constant mo- 
ment rn,(q) is fully determined by the mean kinetic energy 
and the static structure factors S,, ( 9 ) .  The factors can be 
measured directly in experiments in which particle beams 
a%d photons are ~cattered.,~ As for the mean kinetic energy 
(To ), fairly rigorous estimates can be obtained. As it hap- 
pens, in many cases heavy charged particles in real disor- 
dered CS can be treated by classical statistics with the use of 
( 2 3 ) .  The mean kinetic energy of electrons can easily be 
determined on the basis of the experimental values of pres- 
sure P, which in a CS, according to the virial theorem,I9 is 

A 

The mean potential energy per unit volume, ( U ), can also be 
calculated using the experimentally measured structure fac- 
tors Sob ( q )  : 

Thus, condition ( 18) for violation of the KKR for the 
dielectric constant can be verified fairly rigorously for real 
CS by employing the experimental data on the structure and 
the equation of state. 

Several useful results follow directly from Eq. ( 2 1 )  
when analyzing the behavior of m, ( q )  in the long-wave limit 
of q  -0.  Indeed, 

mzO= lim nz., ( q )  
9+0 

Combining Eq. ( 2 7 ) ,  definition ( 2 2 ) ,  the fact that 

and the electroneutrality condition, for a two-component 
electron-ion CS we get 

Thus, if 

holds in a two-components CS, the KKR for the dielectric 
constant of such a system are invalid in the limit of q - 0  and 
hence 

Note that formula ( 2 9 )  for rn; is valid only for the Coulomb 

interparticle interaction potentials ( 2 4 )  and, therefore, is 
invalid for two-component classical plasma unstable against 
the Coulomb electron-ion intera~tion.~' For such a system, 

Here the potential uei ( k  ) is defined by ( 2 4 )  only in the limit 
of k - 0 .  As Eq. ( 3 2 )  implies, the possibility of rn: assuming 
negative values stems from the fact that Sei ( k ) ,  in contrast 
to S,, ( k )  > 0 ,  has no fixed sign. 

For an ocp, Eqs. (27) - (29)  imply 

which confirms the validity of the limiting relation for arbi- 
trary thermodynamic  parameter^,^ [see Eqs. ( 8 )  and ( 19) ] : 

In this connection we must examine the size of m 2 ( q )  to 
within q2. Equation ( 2 1 )  implies 

Thus, if we allow for ( 18),  we conclude that the KKR 
for the dielectric constant of an ocp of particles of species a 
with the compensating background are violated in the range 
of small wave vectors q  provided that 

This forces the dc dielectric constant of an ocp to become 
negative in the case of strong collisionality and a negative 
mean potential energy. One must bear in mind here that ac- 
cording to Eq. ( 2 5 )  the pressure in ocp is already negative 
for 

If the problem of thermodynamic stability of ocp is ig- 
nored, inequality ( 3 6 )  combined with the limiting relation 
( 4 )  agree with ( 3 7 )  and the data of computer calculations 
for classical O C ~ . ~ , ~ . ~  

4. These problems are directly linked to the studies of 
the spectrum R ( q )  of plasma oscillations in CS. This aspect 
has lately attracted great attention in the literature owing to 
the fact that in highly collisional CS the R  ( q )  spectrum may 
lie below the plasma frequency w, : 

in contrast to weakly collisional CS.2,3,6,26,27 
A theoretical study of the spectrum of plasma oscilla- 

tions, R ( q ) ,  is based on an examination of the dispersion 
equation lo  

which is solved for a fixed value of the wave vector q  at 
complex-valued frequencies z with Im z <O. For well-de- 
fined o~cillation,~ 
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the only oscillations of interest, the spectrum 
R ( q )  = Re z ( q )  is a solution of the equation 

Here 

rm z ( q ) = -  { a  w ,  } -' ~m E (9, o )  I.=.,,,. (42) 

Condition ( 4 0 )  leads to the appearance of well-defined 
peaks in the dynamic structure factor'' 

hq' 
S ( 9 , o )  = 

Im E (970)  ( 4 3 )  
2n (4-exp ( - h o l T )  ) 1 E (q, 0 )  l 2  

at a fixed value of the wave vector q  in the neighborhood of 
the frequencies w = R ( q )  specified by Eq. ( 4  1 ). This fact is 
used to extract information about the spectrum R ( q )  in ex- 
periments in inelastic scattering of electron beams.28 Such 
information exists at present for a fairly broad class of disor- 
dered CS, including the classical nonideal plasma.26g27 

The reader will note that according to ( 8 )  and (21 ) the 
high-frequency expansion of the real part of the dielectric 
constant of a weakly nonideal CS is 

where the moment m y  leaves out the integrated Coulomb 
interaction: 

But formulas ( 4 4 )  and ( 4 5 ) ,  as is k n ~ w n , ~ '  serve to deter- 
mine the spectrum R  ( q )  of plasma oscillations in a weakly 
nonideal CS in the range of small wave vectors. This means 
that in such systems the high-frequency expansion ( 8 )  has a 
radius of convergence in frequency that includes the near- 
plasma-frequency range, w - w, . Here Eqs. (41 ), ( 4 4 ) ,  and 
( 4 5 )  imply 

Hence, inequality ( 3 8 )  is valid only for strongly nonideal 
CS. 

Allowing for the above argument, we can assume that 
the radius of convergence of the high-frequency expansion 
(8) for the dielectric constant encompasses the near-plas- 
ma-frequency range for arbitrary thermodynamic param- 
eters at least in the region of small wave vectors. Then, by 
analogy with the case of a weakly nonideal CS, the disper- 
sion equation for determining the spectrum a ( q )  of plasma 
oscillations can be written as 

which is corroborated by the results of applying models of 
the dielectric constant of a classical ocp that are based on the 
use of moments and are in good agreement with the results of 
computer  simulation^.^.^ But from ( 4 7 )  it follows that in- 
equality ( 38 ) is valid only if condition ( 18 ) is met. 

Thus, if the spectrum of plasma oscillations, R  ( q )  , for 
certain values of q  lies below the plasma frequency w,, for 
certain wave vectors the KKR for the dielectric constant 
become invalid and the dc dielectric constant negative. The 
inverse statement is generally untrue. 

This offers the possibility of verifying experimentally 
the existence of real disordered CS with a negative dc dielec- 
tric constant. 
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