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The anomaly in the dynamics of the orbital vector i in superfluid 3He-A, which corresponds to the 
chiral anomaly and zero-charge effect in 3 + 1 quantum field theory (QFT) with chiral fermions, 
is considered in the presence of superflow. The hydrodynamic action which describes the 
dynamics of both the ivector and the superfluid velocity v, field, is derived at T = 0 in the 
collisionless limit using the fact that in the vicinity of the gap nodes the Bogoliubov quasiparticles 
behave as chiral relativistic fermions. While the quantity B = k,l plays the part of the vector 
potential of fhe effective electromagnetic field acting on the chiral fermions, the combination 
B, = k, (v, 1) corresponds to the scalar component of the electromagnetic field. As a result the v, 
field contributes to the Wess-Zumino term in the action which is responsible for the chiral 
anomaly. The derived hydrodynamic action, which appears to be Galilean invariant, leads to a 
closed set of hydrodynamic equations for the reversible motion of 1 and v, at T = 0. The problem 
of the conservation of the linear momentum (mass current) of the liquid is discussed. In the 
collisionless limit the hydrodynamic momentum is conserved but is not well-defined because of 
the chiral anoma,ly: due to the flow of the quasiparticle energy levels through the gap n ~ d e s  during 
the dynamics of I, the linear momentum of the liquid depends on the prehistory of the 1 field and 
therefore cannot be expressed in terms of the instantaneous values of 1 and v, . In the opposite limit 
(the case of a slowly moving ivector ) the quasiparticle scattering on the container wall becomes 
important. As a result the quasiparticles which fill the energy levels crossing the gap nodes are 
removed from the coherent motion of liquid and their linear momentum transfer to the walls at a 
rate dictated by the level flow process. In this limit the linear momentum is well defined in terms 
of i and v, but is not conserved. This nonconservation of the hydrodynamic linear momentum is 
analogous to the nonconservation of the chiral charge in QFT with chiral anomaly. It leads to an 
additional force acting on the moving quantized vortices, which resembles the Iordanskii force. 

1. INTRODUCTION 

The remarkable phenomenon which characterizes the 
superfluid 3He-A is gapless superfluidity (see the review in 
Refs. 1 and 2). The gap nodes exist in the quasiparticle spec- 
trum at the momenta k = f k,l, where k, is the Fermi 
momentum. The Bogoliubov quasiparticles in the vicinity of 
the gap nodes are chiral, which leads to anomalies in the 
static and dynamic properties. These anomalies, which are 
essentially analogous to the chiral anomaly and to the zero- 
charge effect in quantum field theory (QFT) with massless 
chiral fermions, should appear at low temperatures ( -0.1 
T, ), when the low-energy chiral excitations start to be im- 
portant. Experimentally this temperature region in the A- 
phase is accessible now, which requires extensive theoretical 
investigations of the problems related to low-temperature 
anomalies. 

Our purpose here is to continue the derivation of the 
hydrodynamic equations for 3He-A developed in Refs. 2 and 
3, which take into account the anomalies. We are restricting 
ourselves to the limiting case of T = 0 where we can use the 
Lagrangian technique for the description of the A-phase dy- 
namics, because this method naturally treats the chiral 
anomaly which is represented by the Novikov-Wess-Zu- 
mino term in the hydrodynamic action.'z3 We consider here 
the collisionless limit, in which one can neglect the dynamics 
of the normal component; however the opposite limit case of 
intensive scattering of the quasiparticles on the walls of the 

container is also discussed. We consider first the anomaly- 
free dynamics (Sec. 3), which is appropriate for the liquid 
with the same symmetry as the A-phase but without gap 
nodes in the quasiparticle spectrum. The hydrodynamic ac- 
tion for the anomaly-free A-phase can be obtained in a phe- 
nomenological way using the gauge and Galilean invar- 
iances. This is a generalization of the well known action for 
the conventional superfluidity of ,He discussed in Sec. 2. 

The derivation of the anomalous terms in the hydrody- 
namic action for the real A-phase with the gap nodes requires 
that the fermionic states of the liquid be considered. The 
topological contribution to the action from the chiral anom- 
aly effect resulting from the gapless fermions in the vicinity 
of gap nodes is found in Sec. 4, while the logarithmically 
divergent term due to the zero-charge effect is calculated in 
Sec. 5. This scheme of separation of the anomaly-free hydro- 
dynamic action and the anomalous action resulted from the 
fermionic zero modes in the vicinity of the gap nodes is 
equivalent to the superhydrodynamics developed by An- 
dreev and Kagan,, which describes the bosonic and fer- 
mionic zero modes. They first noticed that the Lagrangian 
for the fermions in the vicinity of the gap nodes can be de- 
rived phenomenologically, so that the total hydrodynamic 
action can be obtained solely on the basis of symmetry consi- 
deration without any microscopic calculations. Integrating 
over the fermionic degrees of freedom within their approach, 
they found the contribution corresponding to the zero- 
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charge effect. In Refs. 2 and 3 it was stressed that the topo- 
logical similarity between the fermionic zero modes in 3He-A 
and chiral fermions in quantum electrodynamics leads to a 
similar effect in these two systems. In this approach, also 
phenomenological, both the zero-charge and chiral anomaly 
effects have been calculated. 

In addition to the results obtained in Refs. 2 and 3, the 
superfluid velocity v, field is now included into the anoma- 
lous contributions to the hydrodynamic action. The v, field 
represents one of the components of the effective gauge field 
acting on the chiral fermions and thus contributes to the 
general 5-form of the topological Novikov-Wess-Zumino 
term in the hydrodynamic action, which describes the chiral 
anomaly. Introduction of the superfluid velocity into the 
general scheme of chiral anomaly restores the Galilean in- 
variance of the Novikov-Wess-Zumino term. In Sec. 5 the 
us contribution to the zero-charge effect is considered, which 
restores the Galilean invariance of the logarithmically diver- 
gent term in the action. 

The derived Galilean invariant action allows us to con- 
sider the problem of the conservation of the linear momen- 
tum related to the chiral anomaly. The dynamics of the lin- 
ear momentum in the process in which the levels of the chiral 
quasiparticles flow through the gap nodes, which is the es- 
sence of the chiral anomaly in the A-phase, is discussed in 
Sec. 6. In the collisionless regime, due to the level flow the 
linear momentum is not a function of the instant v!lues of 1 
and v, , but instead depends on the prehistory of the 1 field. In 
the opposite limiting case of the intensive quasiparticle scat- 
tering on the container wall, discussed in Sec. 7, the quasi- 
particles on the energy levels, which cross the gap nodes, are 
scattered by the walls with their linear momenta being trans- 
ferred to the normal component. In this limit the hydrody- 
namic linear momentum is not conserved, but now is well 
defined in terms of 1 and v,. The nonconservation of the 
momentum leads to an additional force acting on the moving 
quantized vortices, which resembles the Iordanskii force. 

2. HYDRODYNAMIC ACTION FOR CONVENTIONAL 
SUPERFLUIDS 

Here we recall the Lagrangian for the superfluid dy- 
namics at T = 0 for liquids with conventional superfluid 
properties (,He and 3He-B), which are described by a single 
Goldstone field @, the phase of the Bose condensate, and by 
the mass density p. The condensate phase forms the potential 
a for the superfluid velocity v, : 

where M is the mass of the boson in the Bose-condensate, 
M = m, for ,He and M = 2m3 for 3He-B. The variable a 
changes under the Galilean transformation as 

a(r. t)+a(r--ut, t)+ (ur) -'/,u2t. (2.2) 

The Galilean invariance of the hydrodynamic action and the 
facts that the mass density p and a are dynamically conju- 
gate variables and that the energy of the liquid contains ki- 
netic energy and internal energy ~ ( p )  dictate the following 
form of the hydrodynamic action (see e.g., Appendix in Re- 
view 5): 

Here we have also introduced the electromagnetic gauge 
field for the case of the electrically charged superfluids. 
Equation (2.3) is invariant under the gauge transformation 
a-a + ,y/m3, A, -A, + d,x/q. For a neutral system the 
charge satisfies q = 0; nevertheless, introducing the gauge 
field is the easiest way to find the contribution of the v, field 
to the anomaly in the hydrodynamic action for 3He-A using 
the gauge invariance arguments. The scalar potential of the 
gauge field is transformed as A, -A, - (uA) under the Gali- 
lean transformation. 

The Euler-Lagrange equations for electrically neutral 
superfluids include the equation for the phase, 

and the continuity equation 

6 s  --- = (I= p (V). j=pVa.  
6a 

In Eq. (2.4) we have introduced the spatial independent La- 
grange multiplier p, which ensures conservation of the total 
number of particles. The mass current may be also defined as 
the response to the vector potential A in the limit 9-0: 

The linear momentum is defined as the response to the coor- 
dinate transformation r - r - ut: 

and coincides with the total mass current. Since P is ob- 
tained from the general Lagrange formalism, this is a con- 
served quantity, which can also be checked directly using 
Eqs. (2.4) and (2.5). 

3. HYDRODYNAMIC ACTION FOR ANOMALY-FREE 'He-A 

The hydrodynamics of the A-phase without anomalies 
resulted from the gap nodes was first discussed by Lebedev 
and Khala tn ik~v.~  The superfluid with the A-phase symme- 
try but without gap nodes can be realized in the strong-cou- 
pling limit when the liquid is close to the state in which the 
Cooper pairing occurs in real space. When the interaction in 
the Cooper channel increases the transition from the A- 
phase state with gap nodes to the A-phase state without 
nodes occurs at some critical value of the interaction param- 
eter as a Lifshitz (zero-temperature) phase tran~ition.~ In 
this section we discuss the hydrodynamic action for the A- 
phase above the transition. 

In 3He-A the superfluid and orbital motions are de- - scribed by two orthogonal unit vectors, 1'" and 2'2', with 
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The superfluid velocity, which in conventional superfluids is 
v, = Va, in the case of 3He-A is expressed in terms of these 
vectors: 

and is not curl-free. In the same manner the time derivative 
a, a in conventional superfluids transforms to the quantity 

in 3He-A and is not the total time derivative. As a result we 
have four hydrodynamic quantities, v, = (v, ,v,), which 
correspond to the gradients of the single potential a in con- 
ventional superfluids: v, = V,a = (Va,a, a). These guan- 
tities are not independent, but are connected with the 1 field 
by two kinematic relations which can be derived from Eqs. 
(3.1 ) and (3.2). The Mermin-Ho relation expresses the vor- 
ticity in terms of the gradients of the i field: 

The Josephson equation 

describes the phase slip process in terms of the i dynamics. 
The action for anomaly-free A-phase, Pf can be ob- 

tained by a generalization of Eq. (2.3) which takes into ac- 
count the constraints (3.3) and (3.4) using Lagrange multi- 
pliers f and g (see also Ref. 4) : 

The Euler-Lagrange equations are 

6s --- =O=p+ (Vg), 
6v, 

(3.7) 

(3.8) 

Expressing the Lagrange multipliers f and g, and function v, 
in terms of the other hydrodynamic variables we find that at 

T = 0 the dynamics of the anomaly-free A-phase is described 
by the Euler-Lagrange equations which include the continu- 
ity equation 

with j =pus; the Josephson equation which follows from 
(3.6) and the kinematic equation (3.4) : 

and the equation for the orbital momentum i: 

The mass current and the linear momentum of neutral 
liquid are defined in the same way as in Sec. 2: 

The linear momentum is a conserved quantity. 

4. CHIRAL ANOMALY ACTION FOR aHe-A 

The anomaly-free hydrodynamics of the A-phase, like 
liquids without gap nodes, does not depend on the type of 
quantum statistics of the atoms of the liquid. It is determined 
only by the symmetry of the order parameter and can be 
constructed using a phenomenological approach. The 
anomalies in the real A-phase are essentially related to the 
spectrum of the fermionic excitations and are defined by the 
topological properties of the spectrum. The anomalies ap- 
pear below the Lifshitz transition when the topologically 
stable gap nodes appear in the Bogoliubov quasiparticle 
spectrum. The Lagrangian which describes the Bogoliubov 
quasiparticles is 

where ri are the Pauli matrices in the Bogoliubov-Nambu 
particle-hole space, ~ ( k )  is the quasiparticle energy in the 
normal 3He, and c, = A/k, where A is the amplitude of the 
gap. In contrast with the general scheme of Ref. 4 for the 
fermionic action we use here the simplified model with 
~ ( k )  = k '/2m3. The structure of the anomalous terms in the 
hydrodynamic action, obtained after integration over the 
fermions, should not depend on the model if the topological 
properties of the spectrum and gauge and Galilean invar- 
iances are relevant. Also we do not consider the spin struc- 
ture of the fermions, which, however, becomes important if 
we are interested in the spin dynamics. 

This Lagrangian is invariant under the gauge transfor- 
mation 
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,. ,. 
e(l)+ie(z) 4 e z i ~ ~ ( * ) + i ~ ( 2 )  , A -+ expl -~T~xA]  exp   IT^^], 

and under the Galilean transformation 

r+r-ut. e(*)-ki~(2)--e~p [2im, ( (ur) -uzt/2) ] (i("+ie^(2)), 
A-+exp[--ia3m3 ( (ur)-uzt/2) ]A exp [ i~,m, ((ur) - u 2 f / 2 )  1, 

A,&A,- (uA). (4.2b) 

The chiral anomaly is the consequence of the flow of 
energy levels through the gap nodes. Therefore the anomaly 
is completely defined by the fermionic spectrum in the vicin- 
ity of the nodes and depends on the topological charge of the 
node. In the case of Eq. (4.1 ), where the spin structure of the 
fermions is not taken i+to account, the energy spectrum be- 
comes zero at k = ek,l, e  = + 1 for the north pole of the 
Fermi-sphere and e = - 1 for the south pole, and 

The topological charge of each node coincides with e (see 
Ref. 2). The Bogoliubov Lagrangian (4.1 ) can be linearized 
and reduced to the following form, which is general for the 
fermions with the topological charge + 1 or - 1: 

Here r4 is the unit matrix, k4 = - id,, and the coefficients 
4 form a four-vector with the following components in the 
case of the A-phase: 

where cll = v,. The components of the effective U( 1 ) gauge 
field are 

So the Bogoliubov quasiparticles in the vicinity of the 
topologically stable gap nodes with unit topological charge 
are equivalent to massless relativistic chiral fermions mov- 
ing in a curved space described by the four-vector 4, under 
the U( 1 ) field B, . The corresponding metric tensor 

has the following components: 

4 
g'4 = x- ( 4 . 5 ~ )  

Note that the vector potential A of the electromagnetic field 
influences the quasiparticles both through the U( 1 ) field B, 
in Eq. (4.6) and through the effective gravity fields in Eq. 
(4.5). 

The anomalous contribution to the hydrodynamic ac- 
tion is completely defined by the analogy with the axial 
anomaly for relativistic chiral fermions, supplemented by 
the arguments of the gauge and Galilean invariance. The 
chiral anomaly implies the creation of the chiral charge from 
the superfluid vacuum. The rate of chiral charge production 
from the vacuum is defined by the level flow through the 
zeroes in the particle spectrum induced by the "electric" and 
"magnetic" fields of the gauge field B, : EB = VB, - a, B 
and H, = [VB] : 

The right hand side of Eq. (4.7) can be represented as d ~ y  
where 

is an additional anomalous term in the vacuum chiral cur- 
rent. 

Our aim is to construct the action which leads to such a 
current: jy = SFaC/SeB,. The variation of the action is 
thus 

while the action itself is not local. One of the ways to con- 
struct the nonlocal action is the Wess-Zumino approach in 
which a new fictitious 5th dimension is introduced (see e.g., 
Ref. 7).  The 5-dimensional   disc"^, = (r,t,r) is considered 
whose boundary coincides with the physical (t,r) space. The 
Novikov-Wess-Zumino action, SNWZ , is defined as the inte- 
gral over the 5-d disc: 

ed =-I u . z { I / ~ , H , ( B ~  TB] )-B,([TB]rl-,H) 
6..rZA2 

The variation of this action is a total derivative: 

which transforms to the integral over the boundary of the 5- 
dimensional disc, i.e., over the physical space, giving rise to 
Eq. (4.9). 

In the case of the A-phase with the gauge field given by 
Eq. (4.6) and with B, = 0 the Eq. (4.10) becomes 

This action is not invariant under the Galilean transfor- 
mation and under the gauge transformation associated with 
the electromagnetic field A, +A,  + (l/q)d,x. This oc- 
curred because we still did not take into account the anoma- 
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lous contribution to the action from the fields v, and v,. The 
latter transform under the gauge transformation as 
u, -u, + (l/m,)a,x. 

To find this contribution one could use the gauge invar- 
iance requirement which dictates that one must replace A, 
by the gauge invariant quantity 

and 

qA,.-+qA,-rn3v,,. 

This is in agreement with the observation made by Voloviklo 
that the superfluid velocity adds the contribution 
- k,  (iv, ) to the scalar potential B,, which together with 

the gauge field A contribution to B, [see Eq. (4.6)] pro- 
duces the gauge-invariant result 

Restoration of the gauge invariance simultaneously restores 
Galilean invariance. So the correct Wess-Zumino term is 

Here C, is the anomaly parameter: 

k," (4.14) 
C,=3n"f23. 

The Fermi momentum is defined by Eq. (4.3) modified by 
introducing the u, field to restore the gauge invariance: 

where according to the motion equation (3.6) p = &/Sp is 
the local chemical potential. The parameter Co continuously 
decreases as a function of the coupling strength in the Coo- 
per channel and becomes zero at the Lifshitz transition when 
the gap nodes disappear. In Eq. (4.13) we neglected the spa- 
tial dependence of Co. 

One can check that the Eq. (4.13) is invariant under the 
Galilean transformation 

r+r-ut. v,+v,~+u. 

The NWZ action transforms as 

The part which depends on the transformation parameter u 

can be rewritten in the notations of Appendix and disappears 
when Eq. (A1 ) is applied: 

The anomalous contribution, Eq. (4.13 ), is to be added 
to the anomaly-free hydrodynamic action ( 3.5 ) . 
5. ZERO-CHARGE ACTION IN =He-A 

Due to the gapless nature of fermions the zero-charge 
term should also be added to ~ { l ) .  This is the nonanalytic 
gradient term which contains an imaginary part correspond- 
ing to the pair creation if the effective electric field 
E, = VB, - d,B exceeds the effective "magnetic" field 
H, = [VB] (see Ref. 2). Here we consider how this term is 
modified due to the v, field. 

Since the zero-charge effect is also defined by the fer- 
mions in the vicinity of the gap nodes, we again can use the 
linearized equation (4.4) and write down the general expres- 
sion for the zero-charge term, Sc , in action in analogy with 
QFT: 

where 

Using expressions (4.5) and (4.6) for gC"' and Fp, one ob- 
tains 

( d l  - 

where V, = V - i ( i ~ ) .  The gauge invariance of this expres- 
sion is restored by introduction of the us field. By using the 
equation 

one obtains the following zero-charge contribution to the 
hydrodynamic action: 

This term is invariant under the Galilean transforma- 
tion (4.16). Another important symmetry property is also 
satisfied, which corresponds to the Larmor theorem: the 
constant magnetic field is equivalent to rotation. If one takes 
A = 4 [Hr]  th:n the time derivative enters in the combina- 
tion d,l - [ i l l ]  where a= (q/2m3)H is the Larmor fre- 
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quency. Thus we have obtained the total hydrodynamic ac- 
tion (3.5) + (4.13) + (5.5) for combined orbital and 
superfluid dynamics of the A-phase, which satisfies all the 
symmetry requirements and reflects all the anomalous prop- 
erties of the dynamics (chiral anomaly + zero-charge ef- 
fect) : 

6. LINEAR MOMENTUM PARADOX 

We have obtained the hydrodynamic action Eq. (5.6), 
which satisfies all the symmetries. This means that all the 
conservation laws, including the conservation of linear mo- 
mentum, should be valid. The mass current and linear mo- 
mentum are defined in the same way as in Sec. 2. The mass 
current is obtained as a variation over the vector potential A: 

The first term in (6.1 ) represents the response of the action 
in Eq. (3.5), which gives Eq. (3.13). The second and third 
terms in (6.1 ) represent the response of the Novikov-Wess- 
Zumino action (4.13) where j "" represents an anomalous 
current and j If is the current related to the level flow. The 
last term comes from Eq. (5.5). 

The linear momentum is defined as action response to 
the coordinate transformation r-r - ut. Due to the Gali- 
lean invariance the variation over u is equivalent to the vari- 
ation over eA if the full derivatives are neglected in the mass 
current. Therefore the total momentum of the liquid coin- 
cides with the total mass current: 

which also can be checked in direct way using Eq. (A1 ) of 
the Appendix. 

The second term in (6.1) is known as the anomalous 
current, while the third one is the level-flow term. This term 
is not a well defined quantity: it is not expressed in terms of 
instant values of theAhydrodynamic variables, but depends 
on the history of the 1 dynamics. To understand the physical 
meaning of this term let us consider the integratjon over r as 
;he integration over the history of the 1. We take 
l(t ,r)  = l ( t  - r),?o the parameter T >  0 describes the con- 
tribution of the 1 field to j ( t )  at the previous moment - 
t = t - T < t. Then one obtains for this term 

The term ( 1/27?) [E, ( i ) ~ ,  ( t )  ] is the rate of the quasipar- 

ticle flow through the gap nodes at the time t [see Eq. (4.7) ] 
induced by the "electric" field E,, while k,l(i) is the quasi- 
particle linear momentum. Therefore the whole integral is 
the total momentum reversibly transferred by the quasipar- 
ticles through the gap nodes during the whole history of the 
orbital dynamics. 

In the collisionless limit the quasiparticle scattering is 
absent and the empty levels which under the "electric" field 
enter from the region above the chemical potential ( E >  0)  
through the gap nodes into the region below the chemical 
potential (E < 0)  remain empty. In the same manner the 
occupied levels with E<O, which enter the region with 
E > 0, remain occupied. As a result the state of the liquid at 
the moment t contains a nonequilibrium number of free or 
occupied levels, which depends on the history. Therefore the 
total momentum of the liquid depends on the history of the 
orbital dynamics. 

In the collisionless dynamics, described by the hydro- 
dynamic action, the total momentum P in Eq. (6.2) is a 
conserved quantity according to the Noether theorem 

which also can be checked from the equations of motion. The 
momentum is conserved but is not well-defined. Corre- 
spondingly, the well-defined (equilibrium) part of the hy- 
drodynamic mass current is not conserved: 

which represents the linear momentum paradox in the A- 
phase. The rhs of (6.5) is the rate of the momentum transfer 
through the gap nodes. In the derivation of Eq. (6.5) we can 
use the simplified Eq. (6.3) for j 'f. For the general case of 
j " in Eq. (6.1 ) the Eq. (A6) of Appendix has been used 
which gives 

7. INTERACTION WITH WALLS: ANALOG OF THE 
IORDANSKII FORCE 

If the quasiparticle scattering on the wall is taken into 
account, then the level flow is accompanied by a redistribu- 
tion of the quasiparticles between the levels. In general this 
process should be described by the complicated kinetic theo- 
ry; however the problem is simplified in the limiting case 
when the equilibrization is fast compared with the 1 dynam- 
ics. In this low-frequency limit the liquid is always in a local 
equilibrium and the hydrodynamic momentum is P = P eq. 

This momentum is not conserved according to Eq. (6.5) and 
the rhs of Eq. (6.5) is the rate of the momentum exchange 
with the walls of container: the walls absorb or release all the 
momentum transferred through the gap nodes in the process 
of the level flow. The hydrodynamics of the liquid in this 
limit is also reversible, since we suppose that there is no time 
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delay in the absorption of the momentum by the wall, and 
therefore no dissipation. 

The hydrodynamic action in this limit can be obtained 
by introducing the normal velocity v,, the velocity of the 
heat bath of the walls, which interacts with the quasiparticle 
momenta j Y, transferred through the gap nodes. The hydro- 
dynamic action is modified by addition of the momentum 
exchange term, S '" , describing this interaction: 

As a result the NWZ action is to be modified: 

This action is invariant under the Galilean transforma- 
tion, which now includes also the transformation of the nor- 
mal velocity: v, -v, + u. The variation of the total action 
over A gives an equilibrium value P = P eq of the hydrody- 
namic momentum. Note that the normal velocity which en- 
ters the first term in Eq. (7.2) defined on 5-d disc is the 
velocity of the walls and therefore is assumed to be constant. 
One can check that under this condition the variation of this 
term is defined on the disc boundary representing the phys- 
ical space: 

Therefore the equations of motion are completely local in 
this regime. In particular the motion equation for 1 is [com- 
pare with Eq. (3.13)] 

where the rhs is the variation of the local part of the action, 
which also includes the zero-charge contribution containing 
the second order time derivative. If one considers this equa- 
tion as a kind of conse_rvation l~ for the orbital angular 
momentum a, L = - [1(SS1" /S1] then the dynamical orbi- 
tal momentum appears to be L = ( W M )  (p - m,c,)i. 

It is instructive to consider the forces acting on the dou- 
bly quantized vortex in the regime of the slow v~rtex~motion, 
when the Eq. (7.2) is valid. For this vortex the 1 field is 
continuously distributed within the soft core without any 
singularity in the order parameter (see the review in Ref. 8) 
and therefore the hydrodynamic equations can be applied to 
describe the vortex motion. TheAvortex is characterized by 
the topological invariant for the 1 field in the soft core: 

where the integral is over the cross section a of the core. If 
the vortex moves with a velocity v, different from the 

asymptotic value of the superfluid velocity far from the vor- 
tex, the conventional Magnus force acts on the vortex: 

where O is the unit vector tangential to the vortex line. 
In addition, if the vortex moves with respect to the 

walls, then according to Eq. (6.5) another force should arise 
which corresponds to momentum exchange between the 
vortex and the walls due to the level flow. The integration of 
the rate of momentum transfer (the rhs of Eq. (6.5) modi- 
fied by introduction of the normal velocity v, ) over the vor- 
tex cross section a gives the following force per unit length of 
the vortex line: 

Inserting the i field of the moving vortex 

and using Eq. (A7) of Appendix one obtains: 

The last expression is obtained using the Eq. (7.5) for the 
topological charge of the vortex. This reactive (nondissipa- 
tive) force resembles the reversible Iordanskii force acting 
on the vortex from the normal component of the l i q ~ i d . ~  The 
Iordanskii force in conventional superfluids disappears in 
the T-0 limit, when the normal component is frozen out, 
while in the A-phase this force extrapolates to the finite value 
proportional to the anomaly parameter C,. This is the result 
of the gapless superfluidity of the A-phase with topological 
zeroes. 

8. CONCLUSION 

We have obtained here the hydrodynamic action for the 
T = 0 orbital and superfluid dynamics of the liquid with the 
topologically stable zeroes in the fermionic quasiparticle en- 
ergy spectrum. This action is gauge- and Galilean-invariant 
and also describes the anomalies related to the existence of 
the topological gap nodes. This allowed us to consider the 
linear momentum paradox. It is shown that there are two 
limiting cases of low frequency and high frequency as com- 
pared with the inverse scattering time of the quasiparticles 
on the walls. In the high-frequency limit the hydrodynamic 
linear momentum of the liquid is conserved but is not de- 
fined in terms of the instant values of the hydrodynamic 
variables. Due to the effect of the level flow, related to the 
chiral anomAaly, the momentum depends on the history of 
the orbital 1 vector which defines the position of the gap 

996 Sov. Phys. JETP 75 (6), December 1992 G. E. Volovik 996 



nodes. In the low-frequency limit the linear momentum is 
well-defined in terms of the local and instant hydrodynamic 
variables, but is not conserved since the momentum which is 
transferred through the gap nodes is absorbed by the walls. 
The momentum transfer rate is described by the level flow. 
In this limit the momentum nonconservation leads to the 
additional reactive force acting on the quantized vortex, the 
analog of Iordanskii force, which in the A-phase exists even 
at T = 0 and is proportional to the anomaly parameter Co. 

This Lagrange approach to the hydrodynamics can in 
principle be applied to more complicated situations with the 
gap nodes. For example the gap nodes exist within the cores 
of the B-phase vort ice~,~ and these nodes will govern the 
vortex dynamics at low T. 
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APPENDIX 

Invariance of the NWZ action (4.17) under the Gali- 
lean transformation was checked using the following rela- 
tion: 

vvq,- v,q,,,=3U,m+-W"m 9 (A1 

where 

.. A- 

qm im 0 [oil) = qmkk t  ~ m v k  = im [Vvl l l ~ .  
A .. 

trvm = 1, (v,i [oil), w,, = - wv, = (1 [v,ivvi]). 

The Eq. (A 1) can be found from the following chain of 
equations: 

Here in the last line we have twice used the equation 
[ a x  (b XC)]  = b(~2.c) - c(a.6). 

Using Eq. (A1 ) with v = 4 one may find the time deriv- 
ative of the anomalous current in Eq. (6.1 ) : 

and its variation if one changes 8, -6: 

Another relation: 

was used to find the time derivative of the level-flow mass 
current in Eq. (6.1 ). 

The Eq. (7.9) is obtained if the Eq. ( A l )  with both 
spatial indices is integrated over the cross section a of the 
vortex core of the nonsingular doubly quantized vortex: 

(A71 

where a = v, - v, . 
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