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A scaling approach developed previously'4 to describe the diffusion of particles in a two- 
dimensional disordered medium is generalized to the three-dimensional case. Three-dimensional 
lattice models are investigated for hopping diffusion on a regular cubic lattice consisting of two 
types of edges, which differ in their characteristic hopping times. A scaling transformation 
procedure is developed that allows us to derive renormalization group equations for the resulting 
spatial and temporal scaling transformations. We obtain analytic forms for the values of the 
diffusion coefficient in a three-dimensional heterogeneous medium and the time dependence of 
the mean square displacement of migrating particles in the limiting cases when the fraction of one 
component of the medium is small or the hopping times along edges of different types are very 
different. In the remaining cases the corresponding quantities are found numerically. 

INTRODUCTION 

Interest in the study of diffusion processes in disordered 
media has been unflagging because many physical phenome- 
na in real heterogeneous condensed media are diffusive in 
nature or are associated with diffusion processes, and in a 
number of these cases the diffusion stage is the limiting fac- 
tor. As examples we could cite descriptions of the properties 
of polymer macromolecules,' diffusion in amorphous sys- 
tems and polymer solutions and in polymer gels,' the kinet- 
ics of diffusion-controlled chemical  reaction^,^ dispersive 
t ran~por t ,~  etc. 

Despite their relatively simple formulation, diffusion 
problems in disordered media can be difficult to solve math- 
ematically due to the non-Markovian nature of random walk 
processes, which in many cases prevents us from finding ex- 
act solutions. Random migration processes in disordered 
systems are usually investigated using both analytic meth- 
ods of various kinds5-'' and mathematical simulations" for 
simple lattice models. The most widespread method is ex- 
pansion in the impurity concentrationG8 using an averaged 
generating fun~tional .~ The scaling approach1' has been 
used successfully to describe the random walk process in a 
special case, random walks on fractals; this approach ap- 
pears to us to be very promising. We are led to use the con- 
cept of scaling, which has been found to be an extraordinar- 
ily fruitful way to describe phase transitions and properties 
of polymer molecules, by the analogy with the block-spin 
(coarsening) lattice procedure introduced by Kadanoff in 
Ref. 12 and the renormalization group method for calculat- 
ing thresholds in the percolation theory.13 

In a previous paper'4 we proposed a rather simple, 
transparent, and approximately analytical method for solv- 
ing the problem of diffusion of particles in a two-component 
two-dimensional disordered medium. In this paper, which is 
the direct continuation of our previous one, we have suc- 
ceeded in generalizing the approach proposed in Ref. 14 to 
the case of a three-dimensional medium. 

STATEMENT OF THE PROBLEM AND MODEL DESCRIPTION 

The medium in which diffusive migration of particles 
occurs consists of regions of two kinds ( I  and 11), which 
differ in the values of their diffusion coefficients (DC); in 

what follows we will refer to these as the "intrinsic" DC's 
D f >D y. For simplicity we will assume that these regions 
have the same characteristic linear size Lo, and that their 
random locations in space are distributed uniformly on the 
average and independently of one another. Let the volume 
fractions of regions with rapid ( I )  and slow (11) diffusion be 
p and 1 - p, respectively. According to the approach devel- 
oped in Ref. 14, our problem consists of finding the average 
DC's D, of media with corresponding scales L, which in the 
limit allow us to calculate the average macroscopic DC of 
the medium D,, = D m .  (The definitions that we will use for 
these quantities will be made more precise below.) 

For convenience in presenting the material that follows, 
let us briefly formulate the basic idea and conclusions of our 
previous paper,14 generalizing it where necessary to the case 
of a three-dimensional medium. Our approach is based on 
the use of the scaling hypothesis (scale invariance), which 
when applied to the medium under discussion here has the 
following meaning: we propose that at any coarsened scale 
L, >Lo the original two-component medium can be treated 
once more if it were composed of random scaled (size L, ) 
regions of two types with new values of the intrinsic DC's 
D f, and D f, and volume fractions p, and 1 - p,, i.e., like 
the original medium with scale Lo. In other words, when we 
replace the original medium by a new medium consisting of 
coarsened regions, we should preserve (even if approximate- 
ly) the macroscopic DC of the medium (D,, ) and also the 
average DC (Dm ) for scales Lm >L, . For this case the laws 
of transformation of the intrinsic DC of regions and their 
volume fractions should depend only on the ratio of the ini- 
tial and final scales L,/L, . 

The specific form of these scaling transformation laws 
in the case of a two-dimensional medium were found in Ref. 
14 for a model of hopping diffusion on a square lattice. In 
that paper we found that it is possible to use the renormaliza- 
tion procedure, i.e., to apply the scaling transformations 
many times with renormalized quantitiesp, , D t,, and D 
at each step, to find the values of the average macroscopic 
DC of the medium D,, as a limit of a sequence D, as L, -+ CQ . 
The existence of such a limit is ensured by the fact that for 
infinitely large scales the medium is averaged and becomes 
macroscopically homogeneous. 
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SCALING TRANSFORMATION ALGORITHM 

In order to find the required scaling transformation 
laws in the three dimensional case we introduce the initial 
scale Lo and approximate the two-component medium by a 
cubic lattice So consisting of randomly located (uniformly 
and independently) edges of two kinds ( I  and 11) corre- 
sponding to the "fast" and "slow" regions (the length of a 
region is Lo). For random migration of particles along such a 
lattice the jump time is .f, along a type I edge and 7'6 along a 
type I1 edge (.f,<$); the direction of a jump is equally 
probable in all directions, and does not depend on the prop- 
erties of the neighboring edges. The intrinsic DC's of the 
edges are defined in the following way: 

where h, = 7$/d1, O\<hO( 1. 
The fractions of type I and type I1 edges equal the vol- 

ume fractions of the corresponding regions, i.e., p, and 
1 -Po. 

In order to introduce a new coarsened scale L, , we con- 
sider the family {R, ) of all possible 2" -link paths (including 
self-intersecting paths) w, for particle migration along the 
initial lattice So. Each path from this family has length 2" Lo 
(where n = 0,1,2,..), while the squared displacement of a 
migrating particle averaged over the family {On ), {R, ) 
equals 

here R,, is the distance between the beginning and end of a 
given path w, from the family {R, ) while the angle brackets 
denote averaging over all the paths from the family, {R, ). 

The mean DC D, for a scale L, is defined in the follow- 
ing way: 

where t , ,  is the time spent by a particle in transversing the 
path w,~{fl,). Then the average macroscopic DC of the 
medium D,, = D, is 

D,= lim D,. 
n-m 

(4)  

Introducing a new consolidated scale allows to intro- 
duce a new cubic lattice as well, with edges equal to the new 
scale L,. In order to define the required scaling law, it is 
necessary to average over all possible paths with 2" steps in 
keeping with (3)  and (4) ,  i.e., to consider all possible paths; 
this is realistic only for n = 1. Thus, the scale transformation 
L,+L, = 2'" LO is the one of interest to us. Whereas in the 
two-dimensional case the sites of lattice S, with edges L, 
coincided with the corresponding sites of the initial lattice 
So, and the edges of the lattice S, were diagonals of the unit 
cells of the initial lattice So so that a coarsened square lattice 
arose in a natural fashion, in the three-dimensional case this 
simple geometric connection fails. However, by virtue of the 
properties of the random migration (R, RA ) = 0 we are per- 
mitted to introduce a lattice with mutually orthogonal edges 
[Eq. (2)  is also based on this property 1. 

DISCRETE SCALING TRANSFORMATION 

For single-link paths the average DC equals 

D,=paD , , I +  ( I - -pJ )D ;I1--O '-'-D,"= [ I ) ,  ( 1  - p o )  h,]DLO1 ( 5 )  

Consideration of all possible two-link paths on a cubic 
lattice leads to the same expression as for the square lattice: 

where D A = p$ f ,  and D = ( 1 - p,) D 5 are the "effec- 
tive" DC's along the type I and type I1 edges, respectively, 
and h,= T:/# = D;/Dk. 

In Eq. ( 6 )  the first and third terms correspond to paths 
consisting of two edges of the same kind (types I or 11, re- 
spectively). The second term corresponds to a "mixed-type" 
path, i.e., consisting of two edges of different types. The frac- 
tions of "fast," "slow," and "mixed" edges are, respectively 

Let us specify the jump time along each of these three 
types of edges in such a way that it coincides with the time for 
traversing a two-link path of the corresponding type on the 
lattice So. Then for the fast, slow, and mixed edges of the 
lattice S, we have 

In order to construct a consolidated lattice S, with the 
same average DC Dl (6)  but, like the initial lattice So, con- 
sisting only of fast and slow edges (i.e., only of edges of two 
types), we break up the overall number of mixed edges for 
the lattice S,, whose fraction is pi3', into two parts: 

Let us combine (only formally for the moment) the 
first part with the fast edges to form a single group, and do 
the same with the second part and the slow edges. Then in 
place of the three types of edges we obtain only two types, 
with fractions that are, respectively [see ( 7 )  1 

p1'=p1=p,"'+aop1'3', 

In accordance with this decomposition, the contribu- 
tion Dl  to the DC corresponding to mixed edges [i.e., the 
second term in Eq. ( 6 ) ]  is also divided into two parts. The 
first of these, which is proportional to a,, is combined with 
the first term, and the second term, which is proportional to 
( 1 - a,), is combined with the third. As a result, we obtain 
from (6) an expression that is structurally analogous to (5):  

The average intrinsic DC's of the new edges in the first 
and second groups equal 

Let us also note that the following recursion relation is 
implied by (7)  and (9): 

Note that up to this point in our discussion it has no- 
where been necessary to take into account the specific struc- 
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ture of three-dimensional space, and that all the expressions 
(5) to (12) coincide formally with those obtained for the 
two-dimensional case. However, in order to find the form of 
the parameter a,~a,(h,,p,) used to split the mixed paths 
into two groups, it is necessary to include the specific fea- 
tures of the three-dimensional situation. 

As in the two-dimensional case, the parameter a, is de- 
fined by comparison with the percolation problem. The pro- 
cedure for consolidating the lattices then reduces to investi- 
gating certain effective paths that join sites of a new 
"consolidated" lattice. Since the percolation problem (i.e., 
the problem of connectivity) corresponds to successively 
traversing paths in our algorithm (in contrast to diffusion 
processes), it is the time a particle takes to travel along a 
given path that is averaged. Therefore, if we initially replace 
the mixed edges by edges of two types in a proportion corre- 
sponding to the percolation problem (a fraction p, for the 
fast paths, and a fraction 1 -p, for the slow paths) and 
compare it to the diffusion-equivalent partition (fractions a, 
and 1 - a,, respectively), then the following relation should 
hold: 

(where A is the hopping scale), from which we immediately 
find the required form of a,: 

The form of the function po(po) is determined by the 
following features of the percolation problem in the three- 
dimensional case. First of all, there exist two percolation 
thresholds in the problem of bonds on a cubic lattice: 
pCl = 1/4, andp,, = 3/4, corresponding to the appearance 
of connectivity along type I edges and loss of connectivity 
along type I1 edges. In the concentration interval 
1/4<p0 < 3/4, connectivity exists for edges of both types 
(the region of combined connectivity). Secondly, in the 
scale transformation equations for the probability of connec- 
tivity along edges of type I in analogy with ( 12) : 

pl-po-p,(I-po)(2~~,-I). (15) 

we find that, in addition to the unstable stationary points at 
p, = 1/4 and po = 3/4, corresponding to the percolation 
thresholds, and the stable points at p, = 0 and p, = 1, the 
stationary point at p, = 1/2 should also be stable, corre- 
sponding to a macroscopic state of the system with com- 
bined connectivity along edges of both types. In order to 
satisfy these conditions, the expression for po(p)  
=a,(p,h, = 1 ) should be a polynomial of degree no more 
than three and have zeroes at the points 1/4, 1/2, and 3/4. 
Consequently, the simplest possible form of the function 
p,(p) is given by the relation 

!to (P) =k (p-'/ , ,)  (p-'12) ( p 3 / i )  +'I*. (16) 

This expression has the required symmetry with respect 
to the replacement p +  1 - p: p,( 1 -p) = 1 - p,(p), i.e., 
po( 1/2) = 1/2. The coefficient of proportionality k in ( 16) 
is determined from the conditionp,( 1 ) = 1, which by virtue 
of symmetry is equivalent top,(O) = 0. As a result, we find 
that k = 16/3 and 

Thus, taking into account ( 14), we obtain the required 
expression for a,: 

where L?(po) = 1/3 ( 16p: - 24po + 11 and y(po) 
zL?(1 --PO) = 1/3(16pg - 8po + 3). 

Since we have limited ourselves to two-link paths in 
order to derive the scaling transformation law, we must in- 
clude (if only in an average way) those correlations in the 
mutual positions of same-type edges that effectively arise 
from returning portions of the migration paths of particles 
for long migration path lengths. As in the two-dimensional 
case, we include these correlations by altering Eq. (7)  in the 
following way: 

In the case where correlation is absent, Q(p,) =p,, and ( 19) 
coincides with ( 7 ) .  

Let us pick the correlation function Q(p,) in the sim- 
plest form 

For the function Q(p,) defined in this way, at a = 0 
there is no correlation at all, while for a = 1 the correlation 
corresponds to the two-dimensional case. It is clear that in 
the three-dimensional case the effect of correlation will be 
smaller than in the two-dimensional case (this is due to a 
well-known property of random walks the probability of re- 
turn to an initial point in the two-dimensional case is finite, 
while in the three-dimensional case it equals zero'). There- 
fore, in the three-dimensional problem the parameter a 
should take on a value between zero and one. It is found that 
by choosing a = 2/d (where d is the dimension of the space) 
we obtain the correct time dependence in the asymptotic 
expression for calculated quantities in those cases where the 
answer is known"' (in the corresponding expressions t is 
replaced by td''d+2' ), both for the two-dimensional 
( d  = 2) and three-dimensional ( d  = 3) cases. 

As a result, we have completely specified the procedure 
for scale transformations in these systems from the initial 
scale Lo to the coarsened scale L,. Repeating this procedure 
many times, we can obtain a scale transformation law from 
an arbitrary scale L, to a scale L, + , : 

In the three-dimensional case, d = 3, and the factor 
d / ( d  + 2) is 3/5. 

INFINITESIMAL SCALE TRANSFORMATIONS AND THE 
RENORMALIZATION GROUP EQUATIONS 

The right-hand portions of the recursion relations 
(21 )-(23) are in aform that allows us to pass from a discrete 
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scale transformation Ln +Ln + , = 2Ln to an infinitesimal 
oneL, +L,+,, = 2"Ln (Sn-+O).Infact,Eqs. (21)-(23) 
can be written in the form of difference equations; from 
there, we can pass to the differential equations: 

-- 3 
dp(ll) -Tp(n) [t-p(n)] [2cr(p, b)-I], 

dl: 
(24) 

u 

Integrating (25) and (26) we obtain 

D1 ( n )  =p,D, ,' exp { - - s .I' [l-p(n)l 

4a(i1, / / ) / I  (n) ] d r l } ,  

After differentiating the function h (n ) = D (n)/ 
D f (n) ,  taking into account relations (25)-(28) we obtain a 
differential equation which, along with Eq. (24), determines 
the functions p(n ) and h (n):  

A very simple analysis of the system of kinetic equa- 
tions (24) and (29) shows that the point (p = 1, h = 0) is an 
unstable node, the point (p = 1/2, h = 1) is a stable node, 
and the points (p = 1/4, h = 1) and (p = 3/4, h = 1) are 
saddle points. Furthermore, the lines p = 0 and p = 1 are 
lines of stationary equilibrium. The phase portrait of the sys- 
tem of kinetic equations (24) and (29) in the quadrant 
(O<p, hg  1 ) is shown in Fig. 1. The unstable node (p = 1, 
h = 0) is connected with the saddle points (p = 1/4, h = 1) 
and (p = 3/4, h = 1) by two separatrices, which divide the 
physical region of the phase plane (the square O<p, h( 1) 
into three parts. If an initial point (po,ho) lies below the low- 
est separatrix (region I, thenp, = 0, which corresponds to 
complete disappearance at large scales of regions with rapid 
diffusion, while all the space will consist only of regions of 
small diffusion, whose rate is increased due to absorption of 
regions with rapid diffusion. In the opposite case, if the ini- 
tial point (po,ho) lies above the higher separatrix (region 
111), then p m  = 1, which conversely corresponds to com- 
plete disappearance at large scales of regions with slow diffu- 
sion, and the entire space will consist only of regions of rapid 
diffusion whose rate is decreased due to absorption of re- 
gions with slow diffusion. If the initial point (po,ho) lies be- 
tween the separatrices (region 11), then p, = 1/2 and 

FIG. 1. Phase portrait of the system of equations (36) and (37): the 
separatrices are pointed out by boldface curves. 

h, = 1, i.e., at large scales the fractions of regions with rap- 
id and slow diffusion become equal, while the properties of 
these regions due to the mutual mixing become equal. If, 
however, the initial point (p,, h,) lies on one of the separa- 
trices, then p, = 1/4 or p, = 3/4; however, in both cases 
hoo = 1, i.e., the intrinsic DC of regions of both types are 
equal. We note that in region I the connectivity takes place 
along the slow edges, in region I11 along the fast edges, while 
in region I1 it is sometimes along one, sometimes along the 
other. The presence of region I1 is a distinctive feature of 
three-dimensional space. 

Our analysis shows that (as we assumed) at large scales 
the medium becomes macroscopically homogeneous. Thus, 
in order to solve the problem as posed-i.e., to determine the 
effective DC of a disordered medium-it is necessary for us 
to solve the system of equations (24) and (29), substitute 
the resulting solutions into (27) and (28), and determine 
the required quantities using the expression 

After some uncomplicated mathematical transforma- 
tions taking into account (27)-(29), Eq. (30) reduces to a 
rather simple form 

where h, r l i m  [h(n) ]  is the value of h whenp- =lim 
n- m n-m 

[p( n ) 1, equaling 0, 1, or 1/2 depending on the initial condi- 
tion, 

and the functionp( h is determined from an ordinary differ- 
ential equation obtained by dividing Eq. (24) by Eq. (29) : 

COMPUTATION OF THE AVERAGE DIFFUSION COEFFICIENT 

Unfortunately, Eq. (32) cannot be integrated in gen- 
eral. Analysis of the phase portrait (see Fig. 1 ) shows that 
the asymptotic solutions to Eq. (32) can be obtained for the 
following limiting types of initial conditions: 
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1) h,-.O,p,suchthat h d ( 1  - ~ , ) ~ - 4 l ;  

2) p,-. for any h,; 

3) po-+ 1, h, such that h d ( 1  -polZ% 1. 

In case 1 ) Eq. (32) simplifies greatly 

d ~ l d h =  ( p -  1)/2h.  (32a) 

which allows us to immediately write the functional relation 

while the inequality h /( 1 - p)' 4 1 holds on all the phase 
trajectories. 

Since p, = 0, from (33) we immediately find that 
h, = h,/( 1 - p,)'. Substituting the expression so obtained 
into (31) gives [to second order in the parameter 
h,/( 1 - P ) ~ ]  the following value for the average DC: 

In case 2), Eq. (32) takes the form 

from which we have 

while the value h, is determined from (35) taking into ac- 
count the condition p, = 0: 

which to first order in p, gives 

Substituting (37) into (3 1) and assuming that asp-0, 
W(p) -- 3/11, we obtain to second order 

In case 3), Eq. (32) takes the form 

from which 

while because dp/dh > 0 by virtue of (32c), the inequality 
dp/dh > 0 holds on all the phase trajectories. The value of 
h, is determined from (39) taking into account the initial 
condition p, = 1: 

FIG. 2. Concentration dependence D,, (p,) (in units of D ) for various 
values of h,: 1-4.01; 2-4.2; 34.5; 44.8. The solid curves correspond 
to the three-dimensional problem, the dashed curves to the two-dimen- 
sional problem. 

which to first order in ( 1 - p,) gives 

Substituting (41 ) into (31 ) and taking into account that as 
p+ 1, W(p) ,-- 1/3, we obtain 

In the remaining cases, Eq. (32) is integrated numeri- 
cally, and the exponent in Eq. (31) is also calculated by 
numerical integration. The results of these calculations are 
shown in Fig. 2 as solid curves (for comparison, the corre- 
sponding functions for the two-dimensional case are plotted 
as dashed curves). The function D,, (p,) so obtained is 
monotonic for fixed h,, and has two inflection points, corre- 
sponding to the separatrices on the phase portrait. 

TIME DEPENDENCE OF THE MEAN SQUARE DISPLACEMENT 

The quantity D,, calculated above is asymptotic when 
the scale of particle migration is large, and analysis of the 
phase portrait shows that complete averaging occurs in the 
system. For finite scales or after a finite migration time, fluc- 
tuations in the positions of the regions can turn out to have a 
considerable influence of the character of the motion of the 
migrating particles, as a result of which the time dependence 
of the observable turns out to be nontrivial. In principle, we 
can determine the time dependence of the quantity D,, ( n )  
that we have introduced for finite values of n; however, it is 
more interesting to construct the time dependence of the 
mean square displacement R 3, (t).  

In order to obtain the required function, we make use of 
the scaling transformation algorithm obtained above. How- 
ever, in order to obtain the time dependence, by analogy with 
what we did in the two dimensional case we consider vari- 
ation of the temporal rather than the spatial scale as we did 
above. 

Let us modify the discrete algorithm for the scaling 
transformation in the following way. Each step of the scaling 
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transformation corresponds to a doubling of the time 

During motion along a type I edge, the mean square 
displacement after a time t, equals the square of the edge, 
L i , for the lattice at the corresponding scale S,, , while after 
the doubled time 2t, - 2L 2,. During motion along the 
"slow" edges, the squared displacement equals h, L 2, and 
2h, L 2, after times t, and 2t,, respectively [for the original 
lattice So, the mean square displacement along a type I1 edge 
equals ( d / < ) L  1. If after a time 2t, a particle has tra- 
versed edges of both types (analogous to the mixed edge of 
the consolidated lattice), the mean square displacement will 
equal 4h, L :/( 1 + h, ). As a result, in place of the discrete 
relations (22) and (23) we obtain 

where d = 3 is the dimension of the space. When we pass to 
the infinitesimal transformation, in place of (25) and (26) 
we obtain the differential equations 

Further transformations give 

R, ' (~I)  =poL,' exp{n - f [  1-p ( h )  ] 
0 

where a ( n )  -a[p(n) ,h(n)]  is given by Eq. (18). 
In addition to the equations for the functions p and h, 

which retain the forms (24) and (29), we obtain from (43) 
an equation for the function t(n): dt(n)/dn = t(n),  which 
relates the scaling transformation parameter n to the time t: 

t ( n )  =T,' exp (n) . (50) 

The average value of the mean square displacement of diffus- 
ing particles as a function of time R 2, ( t )  is expressed in 
terms ofR : ( t )  and R :'(t) from (48) and (49), in which the 
dependence on n is replaced by a dependence on t by using 
Eq. (5): 

R :, (t)' =R,2 (t) +RIIZ ( t )  . (51) 

As a result of some simple transformations, we obtain an 
expression analogous to (3 1 ) : 

Note that Eq. (52) can be written in the form R :, ( t )  

= D,, (t)t, while lim D,, ( t )  equals the quantity D,, de- 
t -  m 

fined in (3 1 ); this demonstrates the correctness of the renor- 
malization group when time scales replace spatial scales. 

In order to compute the integral in (52), it is necessary 
to have an explicit expression for the function 
W(h) = W[p(h) 1, i.e., to have an explicit solution to Eq. 
(32). Furthermore, the functions p ( t )  and h ( t )  enter in 
(32). Their explicit form is determined from this system of 
equations (24), (29), which also requires the solution of Eq. 
(32). However, since Eq. (32) cannot be integrated in gen- 
eral, we can obtain the function R :, ( t )  in analytic form only 
in a few limiting cases, for which we can construct the solu- 
tion to Eq. (32). 

Using (33), (35), and (39)-the solutions to Eqs. 
(32a), (32b), and (32c)-we calculate the integral in (52). 
Then, substituting (33), (35), and (39) into Eq. (29), 
which we simplify in a corresponding fashion, we obtain or- 
dinary differential equations for the function h(n) whose 
solution taking (50) into account gives the functions h( t )  
andp(t). As aresult, weobtain the function R :, ( t )  for finite 
times (i.e., as a result of a finite number of scaling transfor- 
mation steps) in the limiting cases considered above: 

1)  h,+O,p, such that ho/(l  -po)2<1: 

2) po+O for any h,: 

X{l [;*)3'5] h o ( l - h 0 )  I-' 
1- 

l+ho 
l-ho 

o { + p o  - [ I - ( ) } ,  (533) 
l+ho 

3)po+1, h,such that ho/(l 1: 

l-ho .t 1 a/) 
~ ~ . : t { I - ( l - p ~ )  l+h,[2-(1-ho) (f ) I}. ( 5 3 ~ )  

To sum up, we have found that for small times the func- 
tion R :, ( t )  is nonlinear, but that for h,#O its asymptotic 
form when t% 6 [p, ( 1 - p,) /h,] 5'3 becomes linear for all 
the limiting cases, while the coefficient of proportionality 
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coincides precisely with the average DC corresponding to 
the given limiting cases. 

For h,=O, as occurs in the two-dimensional situation, 
the function R iv ( t )  never enters the linear regime: 

We note that in three-dimensional space the nonlinear- 
ity is weaker than in the two-dimensional case; this is easily 
understood if we recall that in three-dimensional space the 
probability that the path of a diffusing particle will return to 
its point of origin equals zero, while in the two-dimensional 
case it is finite.' For this reason, the influence of fluctuations 
on the course of the diffusion process in three-dimensional 
space is found to be weaker than in two-dimensional space. 
As a result, for h,=O we have R :, a t2/5 in the three dimen- 
sional case, and not R :v a t ' I2  as occurs in a plane (see Refs. 
4, 6, 14). 

DISCUSSION OF RESULTS 

Let us investigate the questions of accuracy and region 
of applicability of the results obtained here separately. In 
percolation theory it is well known that the renormalization 
group equations of type (24)-(26) correctly describe the 
scaling properties of systems up to scales on the order of the 
correlation length, and also allow us to determine the limit- 
ing values of the quantities under study to a high degree of 
accuracy. However, the rate at which these quantities reach 
their limiting values is usually slowed. In the scaling ap- 
proach, the quantities under study reach their limiting val- 
ues by way of a power law, while in other approaches, and in 
numerical experiments, this rate is exponential. Conse- 
quently, the reliability of the limiting values we have ob- 
tained for the average diffusion coefficients Dav (34), (38), 
and (42), and also the results of numerical integration 
shown in Fig. 2, should not be doubted. 

However, the calculated results (53) for R :,, ( t )  are 
valid only up to times for which (D  kt) 'I2 is less than or on 
the order of the correlation length, i.e., the Eqs. (53) we 
have obtained are intermediate asymptotic forms. On the 
other hand, for h,f 0, as t-. co the functions (53) reach the 
limiting asymptotic behavior R :, (t )  cc t, which by virtue of 
the considerations presented above is also correct. However, 
the passage from intermediate asymptotic behavior to the 
diffusion regime apparently should not take place by way of 
a power law (as occurs in this paper), but rather should be 
exponential. For h,f 0, our results also have a finite range of 
applicability. For scaling times corresponding to displace- 
ments larger than the correlation length, Eqs. (24) and (46) 
are poor descriptions of the variation of the quantitiesp(n) 
andR :, ( t )  . We note in particular that changing the correla- 
tion properties [the value of the parameter a in the expres- 
sion for the correlation function (20)] does not affect the 
limiting value D,, . 

Unfortunately, we have not been successful in devising 
a universal recipe for correctly modifying these equations. 
To begin with, this is connected with the fact that we cannot 
in general identity the interval of time over which the inter- 
mediate asymptotic form is valid, since we have been unable 
to accurately determine the correlation length quantitative- 
ly for diffusing systems when it differs greatly from the per- 

colation correlation length. However, as h,-0 (i.e., limiting 
case ( 1 ) ), we have succeeded in making the corresponding 
estimates and modifications. 

As h,-0, we determine the consolidation scale that 
corresponds to the correlation scale from Eq. (24) and the 
condition d 2p(n)/dn2 = 0: 

Consequently, the time scale up to which our scaling 
approach is valid is in order of magnitude equal to 

tc.r-To1 [ p o l  ( l - p o )  I5l3. (56) 

Furthermore, the rate of decrease of the volume frac- 
tion (or probability) of the fast regions for scales larger than 
the correlation scale (when h,=O this is the rate of destruc- 
tion of the diffusing particles) should be proportional to 
their number (the probabilityp) and the number of regions 
with irreversible traps, which is proportional to 
(R iv ) 3 1 2  cc ( t  /d )315 (i.e., to the volume occupied by the 
diffusing particles). Consequently, when we have 

and 1 - p -  I ,  Eq. (24) for the correlation scale is modified 
in the following way: 

where we have changed from the variable n to the variable t ,  
taking into account (50). 

Then, using the solution to Eq. (57), which is matched 
for t z  t,,,, with the solution to Eq. (24), we find that the 
intermediate asymptotic form (53a) becomes the asymp- 
totic expression 

while for h,=O the intermediate asymptotic form (54) be- 
comes the asymptotic form 

p o D , o 1 t  l - p o  
R : .  (I)*-erp[- I - P O  -(-$)"I PO . (59) 

Note that the asymptotic form (59) precisely coincides with 
the results of Ref. 6 .  The character of the behavior of R i, ( t )  
for h,-0 is easy to explain. At the initial stage, the primary 
effect is one of diffusive smearing, and the destruction of 
migrating particles (including that due to the influence of 
fluctuations) is insignificant. As time passes, the destruction 
of particles becomes more effective and the average squared 
displacement begins to decrease, since in our method of de- 
fining R :, particles that are annihilated do not contribute to 
the mean square displacement. 

Incidentally, this condition of matching of asymptotic 
forms can be used to justify our choice of the value of the 
coefficient a = 2/d in the correlation function (20). Sup- 
pose that the coefficient in the corresponding equations for 
scale transformations is not d / ( d  + 2), but rather some ar- 
bitrary constant v. Then the time corresponding to the corre- 
lation scale is the quantity t,,,, - ( 1 - p,) I/". On the other 
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hand, from (54) we find that R 2, ( t )  m t ' - ", from which it 
follows that the volume occupied by the diffusing particles is 
of order td" - v ) / 2  . Setting the exponents equal, we obtain a 
relation determining the constant v: 

from which it also follows that v = d /(d + 2) (for d = 3, 
v = 3/5). 

Thus, we can assert that the results we have obtained 
are correct for finite times, and also in those cases where the 
system reaches the diffusion regime, and for very long times. 
Furthermore, the considerations presented above regarding 
the limits of applicability of the scaling approach we have 
given here are valid for both three-dimensional and two-di- 
mensional spaces. l4 

CONCLUSION 

Our procedure for calculating the effective DC of a he- 
terogeneous medium using scaling transformations shows 
that a unified approach is possible in both the three-dimen- 
sional and two-dimensional situations: the law of scale trans- 
formations is defined as the smallest possible coarsening of 
the lattice (by a factor of two). In this case specifics connect- 
ed with the dimensionality of the space arise only at the stage 
of partitioning the mixed paths consisting of links of various 
types into two groups, fast and slow. For the percolation 
problem in three-dimensional space (whose results we used 
at this stage) there exists a region of combined connectivity 
that is absent in two-dimensional space, which corresponds 
to region I1 on the phase portrait of the system of renormal- 
ization group equations (see Fig. 1 ). As a result, the rate of 
growth of the effective DC in the medium for small values of 
the parameterp, is small and increases sharply after the ini- 
tial point of the path passes from region I1 to region I (for 
fixed values of h,) . For comparison we show the correspond- 
ing concentration dependence of D,, (p,) in Fig. 2, using 
dashed curves for the two-dimensional system. Further- 
more, if the parameters po and h, belong to region 11, then 
averaging in the three-dimensional case takes place much 
more slowly than in the two-dimensional case (if the param- 
eters po and h, belong to regions I or 111, then, as we have 
already noted above, the nonlinearity in the three-dimen- 
sional case is weaker), while the contribution corresponding 
to fluctuations falls off like t - 3'20. 

We note one other important difference between the 
two-dimensional and three-dimensional situations. As we 
have already pointed out above, the probability that the ran- 

dom walk of a diffusing particle will return equals zero in 
three-dimensional space, in contrast to two-dimensional 
space; this leads to a weakening of correlations in the proper- 
ties of various portions of the path. 

In conclusion, we point out several real physical pro- 
cesses whose description could benefit from the use of our 
model. One example is the diffusion of small molecules in 
dilute polymer solutions, in which case the regions of type I 
correspond to diffusion in the pure solute and regions in type 
I1 to diffusion through the polymer coils. This situation was 
studied in Ref. 2. We may assume that regions of type I1 
correspond to reversible traps with a lifetime - T: ; for 7:' - W ,  i.e., ho-0, these correspond to true trapping centers. 
A similar situation was studied in Refs. 7 and 8; as we have 
already noted above, in these papers changes in the character 
of the time dependence were observed analogous to those 
obtained in our paper (in the corresponding expressions t is 
replaced by f / ' d  + 2, ) . The asymptotic time dependences we 
have obtained are closest to the power law dependences that 
arise in describing dispersive transport, although the expo- 
nents in them are determined not only by the dimension of 
the space but also by other  factor^.^ The case ho = 0 de- 
scribes the kinetics of molecular chemical reactions with 
randomly located initiation centers as 
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