
Structural relaxation in amorphous metallic alloys 
V. E. Egorushkin and N. V. Mel'nikova 

Institute of the Physics of thestrength ofMaterials and Materials Technology, Siberian Branch 
of the Russian Academy ofscience 
(Submitted 26 June 1992) 
Zh. Eksp. Teor. Fiz. 103,555-567 (February 1993) 

We have made a microscopic investigation of the kinetics ofhigh- and low-temperature structural 
relaxation of amorphous metals and alloys. We show that a nondiffusive mechanism of structural 
relaxation is possible in these systems. The mechanism is associated with cooperative barrier-free 
restructuring of atomic configurations accompanied by spatial redistribution of the electrons. 
The description of this mechanism of structural relaxation is based on the concept of dynamical 
concentration excitations, which makes it possible to take into account the characteristic 
structural state of the systems studied. 

1. INTRODUCTION 

Much important information on the structures and 
properties of amorphous metals and alloys that is uncharac- 
teristic of crystalline materials and cannot be explained 
within classical solid-state physics has now been accumulat- 
ed. The differences between the properties of metallic amor- 
phous systems (ASS) and those of crystals, such as the un- 
usual character of the low-energy dynamical structure 
factor,' anomalies of the kinetic and thermal properties at 
low  temperature^,'^ characteristics of the electronic struc- 
t ~ r e , " ~  etc., are associated primarily with the structural state 
of the systems. The amorphous state is not unique; it incor- 
porates significant and continuous change of the atomic 
structure. Structural studies and the reversibility of many 
properties of amorphous systems indicate that within the 
amorphous state there exist local atomic ordering processes 
which are not associated with a phase transition into a crys- 
talline state via crystallization (see Ref. 4, Chapter 6).  Such 
microscopic states are described by atomic short-range or- 
der. A basic problem is to incorporate such dynamical short- 
range order in the theoretical description of the physical 
properties and structure of amorphous systems. 

In this work we have made a microscopic investigation 
of the kinetics of structural relaxation of amorphous metals 
and alloys, taking into account the characteristic structural 
states of these systems described by the dynamical concen- 
tration excitations (DCEs)."' In Sec. 2 we review the exist- 
ing experimental and theoretical information on structural 
relaxation of amorphous systems. In Sec. 3 we give a brief 
presentation of the concept of DCEs and on the basis of this 
concept we develop a microscopic theory of structural relax- 
ation of amorphous metallic systems. 

2. STRUCTURAL STUDIES OF METALLIC AMORPHOUS 
SYSTEMS 

Structural studies of metallic amorphous systems, an- 
nealed or slowly heated up to temperatures below the vitrifi- 
cation point T, , have shown that different local atomic con- 
figurations appear and decay in the structure of these 
materials. As a result of such structural changes, termed 
structural relaxation (SR), the density of amorphous sys- 
tems increases and the metal transforms into a more stable 

amorphous state. Energy-resolved diffraction analysis (see 
Ref. 4, Chapter 6) has shown that in the structural relaxa- 
tion process the position of the peaks and dips in the radial 
distribution function does not change significantly, and the 
positions of the atoms become more definite. The relative 
change in the heights of the first and second maxima is 2- 
3%, and the shoulder changes by - 10% from the second to 
the fifth maxima. Therefore, structural relaxation is due to 
the simultaneous motion of many atoms and not the diffu- 
sion of single atoms. In contradistinction to the crystalliza- 
tion process, when the height of the first peak in the struc- 
ture factor i (q)  decreases and the shoulder transforms into a 
Bragg diffraction peak, in the course of structural relaxation 
the height of the second peak in i(q) increases and the height 
of its shoulder decreases. This means that structural relaxa- 
tion is not the process initiating crystallization. This feature 
of structural relaxation in amorphous metals makes it possi- 
ble to introduce the structural relaxation ~ a r a m e t e r ~ . ~  

where Ta and ta are the annealing temperature and time and 
q, = 5 A-' and 9, = 6.15 b;-' are the wave vectors bound- 
ing the region of the second peak in i(q).  

The parameter R ( To, ta ) increases during structural 
relaxation, while during crystallization it decreases. For this 
reason, it clearly marks the difference between these two 
restructuring processes in amorphous systems. 

Two types of structural relaxation are distinguished: 
low-temperature ( Ta < Tg - 150 K )  and high-temperature 
( To - Tg ). In these two types of structural relaxation pro- 
ceses, different properties of the amorphous system behave 
differently. On plots of the volume, enthalpy, Young's mod- 
ulus, positron lifetime, and resistivity versus the annealing 
temperature, the low- and high-temperature regions of 
structural relaxation are separated either by an inflection 
point or an e ~ t r e m u m . ~  It is conjectured that in the case of 
low-temperature structural relaxation in a more or less rigid 
matrix some local atomic order (short-range atomic order- 
ing) forms. In the second case cooperative processes which 
establish long-range order occur, decreasing the structural 
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nonuniformity of the amorphous 
Energy-resolved x-ray diffraction with energy disper- 

sion (see Ref. 4, Chapter 6 )  is a method for investigating 
structural relaxation in amorphous systems directly. How- 
ever, this method does not make it possible to determine the 
physical reasons for this phenomenon. It  can only establish 
that the structural factor has changed in the process of struc- 
tural relaxation. The mechanisms of structural relaxation 
are determined by indirect methods for studying amorphous 
systems. These methods involve measurement, for example, 
of the resistivity combined with differential scanning calori- 
metry,lO." using different electrochemical, microcalorime- 
tric, x-ray diffraction, and others. The results of these ex- 
periments indicate that low-temperature structural 
relaxation in amorphous alloys is accompanied by chemical 
(or compositional) short-range ordering, and topological 
changes of the geometric structure are manifested to a high 
degree at higher annealing temperatures. 

On the basis of analysis of the experimental data on the 
heat capacity, positron lifetime, resistivity, etc. it can be con- 
jectured (see Ref. 4, Chapter 6) that 1) structural relaxa- 
tion, responsibile for the reversibility of some properties of 
amorphous systems, is due to localized structural relaxation 
over short distances, occurring in a stabilized amorphous 
matrix, and 2)  irreversible structural relaxation, associated 
with corresponding properties of amorphous systems, is as- 
sociated to either cooperative structural relaxation at mod- 
erate distances, encompassing only some of the amorphous 
matrix, or cooperative structural relaxation over large dis- 
tances (the latter process, which encompasses the entire sys- 
tem, can usually be observed at Ta - Tg ). 

Thus, for Ta < Tg the relaxation of an amorphous sys- 
tem consists of reversible structural relaxation at short dis- 
tances and irreversible cooperative structural relaxation at 
moderate distances. At T, and with prolonged annealing 
structural relaxation precedes in the form of the cooperative 
process over large distances. The accompanying increase of 
positron lifetime T and resistivity p is connected with reversi- 
ble structural relaxation and the decrease in r and p is con- 
nected with irreversible structural relaxation, the latter pro- 
cess being due to the change in the degree of heterogeneity as 
a result of annealing at different temperatures Ta . 

Computer experiments designed to study relaxation of 
amorphous systems9~'* have shown that relaxation of a geo- 
metric structure is a process in which the amorphous metal 
is stabilized while the atoms strive to occupy positions as 
close as possible to the geometric centers of the polyhedra. 
As a result, the degree of local short-range order increases 
gradually. The change in the positions of the atoms as a re- 
sult of structural relaxation is only 1/10 of the average inter- 
atomic distance, but almost all atoms undergo a displace- 
ment. Therefore, in the process of structural relaxation the 
atoms move in local regions and this motion results in atom- 
ic short-range ordering. 

Using the model of multilevel systems in amorphous 
metals,13 it has been shown by the method of relaxation of 
atomic positions that structural changes in the relaxed state 
occur mainly as a result of simultaneous displacement of 
many particles over short distances (-0.1 of a particle di- 
ameter). 

Different models are employed to describe the mecha- 
nism of local restructuring of atomic  configuration^.^*^^'^-^ 

For example, in Refs. 3 and 4 it is suggested that these struc- 
tural changes in amorphous systems be described in terms of 
the vanishing of structural defects during annealing. Struc- 
tural defects are regions containing 10-20 atoms with high 
stress and low symmetry. They coexist with clusters of the 
same size, but low stress and high symmetry. Removal of 
structural defects in this case occurs by recombination of 
regions with low atomic density and regions with high atom- 
ic density. Local "motion" of defects over distances of the 
order of several interatomic separations is also possible. This 
motion can be described in terms of two-level systems 
(TLS).I9v2O This type of atomic motion is more likely, since 
in this case the atoms undergo tunneling between states with 
close energies.' However, the use of the two-level model to 
describe the properties of amorphous metals and alloys un- 
dergoing low-temperature structural relaxation is still prob- 
1emati~al.l '~ Many authors therefore conclude that in such 
systems there are other low-energy excitations, whose spec- 
trum is bounded by a frequency which is an order of magni- 
tude higher than the maximum frequency of the two-level 
system ( - 1 K).'','' 

We propose a different approach to the problem of 
structural relaxation. Our approach is based on representing 
the amorphous structure as a quenched liquid, in which 
there can be a variety of short-range-ordered regions, many 
of which (with respect to the type of short-range order) are 
not encountered in the crystalline state of this system.'' In 
this case, the interaction potential of the amorphous system 
typically contains several minima, of which the deepest (the 
principal minimum) corresponds to the crystalline state of 
the system and all other minima correspond to one or an- 
other type of short-range order. The short-range-ordered re- 
gions, forming the secondary minima of the interaction po- 
tential, are clusters, in which the interatomic bond 
determined by the spatial distribution of the electrons is dif- 
ferent from the crystalline bond. This bond is of a dynamical 
(resonant) character and, correspondingly, it is formed by 
"resonance" d l f )  electrons. The short-range-ordered for- 
mations are maintained stationary by the fluctuation elec- 
tronic states formed by them. In this sense the electronic 
states can be called autolocalized. 

The last stage of the relaxation process in the structure 
described above is configurational rearrangement of a typi- 
cal short-range-ordered regions via a transition of the elec- 
trons and, correspondingly, ions into a more favorable spa- 
tial position. In the process, a new chemical bond is formed 
between atoms in the cluster. Such restructuring is not of a 
vibrational or tunneling character, since it is associated with 
collective motion of atoms resulting from spatial redistribu- 
tions of electrons with formation of a new (more favorable) 
chemical bond. This cooperative atomic motion is nondiffu- 
sive, and it is evidently similar to the motion observed in 
alloys during martensite transformations. 

Thus in metallic amorphous systems another mecha- 
nism of structural relaxation, besides the known mecha- 
nisms based on diffusion, drift, or tunneling of atoms, is pos- 
sible. It corresponds to virtually barrier-free, cooperative, 
nondiffusive restructuring of atomic configurations.'"he 
proposed mechanism of structural relaxation actually indi- 
cates local atomic ordering. For this reason, it can be de- 
scribed in a manner similar to Ref. 23, where a microscopic 
theory of ordering in alloys is proposed. 
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3. DESCRIPTION OF STRUCTURAL RELAXATION KINETICS 
OF AMORPHOUS METALSAND ALLOYS 

The kinetics of the structural relaxation of amorphous 
metals and alloys is described by the scheme proposed in 
Ref. 23 in terms of the equations of motion (averaged over a 
nonequilibrium statistical ensemble and describing changes 
in the electronic subsystem in the process of structural relax- 
ation) for the electronic polarization and the population dif- 
ference as well as for the creation and annihilation operators 
for quasiparticles generated or absorbed by the electronic 
subsystem as a result of structural relaxation. The electronic 
structure of disordered metallic alloys is ~haracter ized~~ by 
the presence of a zone of a crystalline phase (ZCP), to which 
the system relaxes under certain conditions, and a collection 
of so-called fluctuation zones (FZ), corresponding in the 
amorphous system to different types of short-range order 
(SRO) realized in the amorphous structure. In this case the 
structural relaxation corresponds to configurational rear- 
rangement of a typical short-range-ordered regions owing to 
transition of ions and, correspondingly, electrons into an en- 
ergetically more favorable spatial position. Relaxation of the 
fluctuation zones can occur both directly into ZCP and suc- 
cessively from one fluctuation zone into another. 

The quasiparticles generated or absorbed by the elec- 
tron-ion system in the process of structural relaxation corre- 
spond to excitations (DCEs), associated with the dynamical 
short-range order owing to microscopic concentration fluc- 
tuations. A quantum-mechanical description of DCEs is giv- 
en in Refs. 8 and 18, and a microscopic theory of electron 
transfer in amorphous metals and alloys, which is based on 
the concept of DCEs and describes low-temperature anoma- 
lies of the resistivity, thermo-EMF, and thermal conductiv- 
ity, is proposed in Refs. 6-8 and 18. 

The diagonalized Hamiltonian of the DCEs has the 
form8,18 

where 

c l - c  
= z + W( I R1 - R1. I )a1 a,,exp [L(Rl  - Rr) 1. 

I' 

Here b ,t and b ,  are Bose creation and annihilation opera- 
tors for DCEs, a, is a short-range-order ~arameter~and M, 
is the mass of an ion located at the point R,. Next, 9, is the 
static* component of the displacement vector 
gN = 9 1 S ~ ( R ~ , t )  of an ion from an uncharacteristic posi- 
tion in the Nth cluster into a more "suitable" position (the 
displacement lN is caused by dynamical fluctuations of the 
concentration Sc(R, t )  = c(R, t )  - c, where c(R, t )  is the 
microscopic and c is the macroscopic concentration of the 
components of the amorphous system). 

The magnitude of the static component of the displace- 
ment can be determined from the condition, derived in Ref. 
8, for the existence of undamped low-energy DCEs: 

where k, is the vector of the "superstructure" corresponding 
to the short-range-order parameter a , .  

The "force constants" W( IR, - R,. 1 ), determining the 
change in the bonding forces due to Sc, have the form 

where u (R, - R,. ) is the pair interaction potential energy of 
the ions located at the points R, and R,, of the Nth cluster. 

Sinces.18 

we derive from Eq. (5) 

a 2 u ( ~ ,  - Rr)  ~ 1 '  
aRpR,, dc,, 

+ 
whence it is easily seen that 9, -0 as Sc, -0. Therefore the 
displacement of ions owing to the dynamical fluctuations of 
the concentration takes place over distances shorter than the 
interatomic separations. 

The complete Hamiltonian of the electron-ion system 
described above is24 

where the first term is the electronic part of the Hamiltonian 
(the operators a,,? and a, are the creation and annihilation 
operators for electrons in the state k) ,  the second term corre- 
sponds to the nondiagonalized Hamiltonian of the DCES,~ . '~  

and, finally, the last term in Eq. (7)  describes the interaction 
of the electronic and ionic subsystems [g(q) is the Fourier 
transform of the function g ( R )  = VA (R)  - VB (R),  where 
V,,,, (R)  are the "site" potentials of ions of type A ( B )  1. 

It is well known that the microscopic description of the 
kinetics of structural relaxation of metallic amorphous sys- 
tems can be constructed by solving the system of the corre- 
sponding equations of motion. In our case the structural re- 
laxation parameters are the population inversion in the FZ 
and ZCP a,, = a,.?+ ,a, + , - a,,? a,, the electronic polar- 
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. ization d,, = a: a, + , , d ,+, = a&,a,, and the creation 
and annihilation operators b ,t and b, for DCEs generated 
or absorbed by the electronic subsystem in the process of 
structural relaxation. 

We write the corresponding equations of motion for the 
structural relaxational parameters indicated above with the 
help of the Hamiltonian ( 7 ) .  For simplicity we consider the 
process of separation, during annealing, of only one type of 
short-range order: 

;rkq = -ukqt i l  + 2iA(q) [dkqb i  - d&bq 1, 

+ + + + where w,, = E ,  + , - E~ and b, = ( b  , ) , d,, = (d ,, ) . 
After averaging over the ensemble (in the secular approxi- 
mation) in the case of exact resonance 

= d p w ( q ) - p  
kq 

we obtain 

with the initial conditions 

-+ -+o* ': I t=0 = 0, ukq 1 t=o = 4 q '  dkq 1 r=O = dkq 

In Eq. (9a) gq is the rate of change of the amplitude of the 
concentration field. The right-hand side of the expression 
(9a) is the polarization of the electrons, causing b, to be 
time-dependent in the case of resonance and in the absence of 
damping; I?, d 2 is the damping of d due to the interac- 
tion of the electrons with their environment (but without 
any interaction with the concentration field). The second 
term on the right-hand side of Eq. (9b) takes into account 
the polarization generated by the concentration field. The 
sign of the population okq appearing here indicates increase 
or decrease of the polarization, depending on whether or not 
the electrons are excited. In Eq. (9c) okq t ; ' is the popula- 
tion-inversion relaxation caused by incoherent relaxation 
processes. The second term on the right-hand side of Eq. 
(9c) is the interaction of the concentration and polarization 
fields. Summation over k transforms this term to dN, /dt, 
where N, is the product of the operators b ,i and b, , i.e., it 
determines the rate of change of the population inversion 
due to a coherent process (condensation). 

Equations (9)  describe a nonequilibrium "phase transi- 
tion" process and resemble the laser equations, with every- 
thing this similarity implies. 

The system of equations Eqs. (9) is strongly nonlinear 

and can only be solved numerically with the appropriate val- 
ues of the microscopic parameters. In the approximation of 
exponential relaxation of o,, , however, the third equation of 
the system (9) takes the form 

and the system reduces to the differential equation 

with the initial conditions . 
q I r=o = 0' $ I r=o = i~(q>ds+~.  

where 

is a phenomenological parameter which takes into account, 
besides dissipative processes, the dynamical change of the 
population inversion due to changes in the order parameter. 

The solution of Eq. ( 11) for q ( t )  = ,/N,/N, where 
N = EN,, has the form 

where 

91, = ~ ( q ) d , ' ~ ( ~ ~ / 2 ) - ~ ~ ~ ( ~ ~ ) r ( ~ ) 1 ~ ~ f i ,  

I, and Kv are modified Bessel functions of order v = T ,  /"/, , 
zo = 2 A ( q ) g ,  and T(v)  is the gamma function. 

Numerical analysis of the expression (12) indicates 
that there are three stages to the relaxation process, differing 
by how rapidly q increases at short, moderate, and long 
times. In addition, the form itself of the dependences ~ ( t )  is 
determined by the quantities A ( ~ ) E  and I?, (in units of 
y, ) and characterizes three different relaxation processes 
[the three typical curves 1,2, and 3 in Fig. 1 (Ref. 24) 1. For 
small A ( q ) R -  1 and large r, (curve 1) the function q ( t )  
grows rapidly for a short time and then slowly approaches its 
equilibrium value. The decrease in I?, - 1 for the same val- 
ues of A(~)E (curve 2)  results in a smooth decrease of 
q ( t )  and as in the first case we have rj ac 7, i.e., the relaxation 
is exponential with rj dropping linearly. For large A (q) fl 
-20 (curve 3, r, - 10) the relaxation curve is S-shaped 
with q (t),  rj ( t ) ,  and ij(t) varying nonmonotonically, which 
is connected with the increase in the initial population inver- 
sion ut of the electronic states k + q and k and indicates that 
the phenomenon is of a cooperative character. A decrease of 
r, - 1 results in a smoother change in q ( t )  and rj(t) and a 
shift in the curves into the region of long times. The large 
values of at in turn correspond to small values of the initial 
order parameter vO< 1, starting from which the further re- 
laxation is considered. Therefore, the conditions for the 
curve 1 correspond to large qO- 1, the conditions for the 
curve 2 correspond to average values qo -0.5, and the condi- 
tions for curve 3 correspond to small values of vO. The rate of 
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FIG. 1. Time dependence of the order parameter:24 I )  limit of small 
A (q)K and large T, ; 2) small A (q)R and small T, ; and, 3) large 
A ( q ) R  and T,. 

change of +( t )  for each of the three cases is determined by 
r, -7; I ,  and the smaller the value of T, , the more rapidly + 
changes and the steeper the curve l;l(t) is. 

In the case when the FZ is separated from the ZCP by 
an energy interval 

the kinetic equations in the approximation of exponential 
relaxation of a,, ( t )  reduce to an equation differing from Eq. 
( 1 1 ) in that r, is replaced by I? = r, + i f l ,  , where f l ,  

= w,, - w, is a measure of the deviation from resonance, 
and the solution for ~ ( t )  has the form 

where Y = r / y q  ; the rest of the notation remains the same. 
For fl, ) r, we have 

whence one can see that the function ~ ( t )  oscillates around 
its initial value. 

Under nonequilibrium conditions, for example, in the 
presence of a temperature gradient, the electrons undergo 
population inversion. For this reason, transitions of elec- 
trons with a change in the population inversion become pos- 
sible. In some of these transitions DCEs will be emitted. The 
larger A (q), the greater the number of transitions occurring 
in this channel will be. If the number of pairs of population- 
inverted states having the same difference of the wave vec- 
tors q' = k - k' is macroscopic in both the fluctuation and 
main zones, then a condensate of DCEs with q' = k - k' can 
arise as a result of lasing. Such states can arise only against 
the background of the equilibrium state examined above. We 
note that the appearance of the q' condensate will prevent 
damping tt,, of DCEs, but for sufficiently large gradients 
and therefore sufficiently large population inversion two 

structural states with q and q' can exist in the amorphous 
system. 

In the general case several states with k = q, q', q", ... 
can appear due to generation of DCEs of the nonequilibrium 
electronic subsystem, i.e., complicated dissipative super- 
structures will be formed. We now construct the microscop- 
ic description for the appearance of such states. For simpli- 
city we confine our attention to a single condensate with 
k = q', i.e., we consider the interaction of electrons only with 
q'-DCE and we neglect the interaction of q- and q'-conden- 
sates. 

Let nonequilibrium conditions (for example, a tem- 
perature gradient) be created in the amorphous system with 
an equilibrium value (as small as desired) of ~ ( t ) .  We main- 
tain the degree of nonequilibrium over some time interval. 
Under these conditions there arises in the electronic subsys- 
tem a population inversion a:, which is constant as a func- 
tion of time. In order to describe the appearance of a dissipa- 
tive structure we write, as before, the Heisenberg equations 
of motion for the operators b ,t , 6,. , d $., dkq. , a,,. . In con- 
trast to Eqs. (9), the population inversion a:,. and the 
damping x,, of DCEs must be included in these equations. 
Transformations similar to those made in deriving Eqs. (9) 
give 

The stationary solution ukq corresponds to compensation of 
the amplification and losses, and for this reason it plays the 
role of the threshold population difference a&. From the 
condition for the existence of a nonzero solution 6 ,f and 6,. 
we find 

C 0:. = ~ ~ , r ~ , l ~ ~ ( q ' ) a .  
k 

In the presence of a macroscopic number of population-in- 
verted states with k - k' = q we can write 

where u$ is the threshold population of pairs of states be- 
tween which the transition proceeds with emission of DCEs 
with wave vector q'; n,, is the number of pairs of such states. 
According to Eq. ( 16), the threshold decreases with increas- 
ing r; I ,  tt; ', A (q'), a, as well as the number of population- 
inverted pairs n,, . Using the last three equations of the sys- 
tem ( 15) and 6 ,t 6,. = N,. , we obtain 
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For a:. < a$ the stationary state with a condensate does 
not arise, whereas for a:. >a$ a condensate will exist, i.e., 
n,, and N,, will be macroscopic. 

In order to analyze how r],, depends on the parameters 
determining the behavior of the system, we rewrite the 
expression ( 17) in the following form: 

Hence one can see that 7,. is, in general, a nonlinear function 
of v. If t ; ', 7tq, and r,, are of the same order of magnitude, 
then for at, > a$ 

Therefore, in order for dissipative structures to exist n,. 
must be a macroscopic quantity, the population inversion 
must be large, and we must have 7720. Dissipative struc- 
tures of this kind can also form during quenching: They can 
be frozen and exist even in the absence of external nonequi- 
librium conditions, since such "frozen" states are nonequi- 
librium states and their relaxation time at low temperatures 
is very long. 

CONCLUSIONS 

The relaxation processes described above correspond to 
high-temperature ( T- T, ) and low-temperature 
( T < T, - 150 K) structural relaxation in the amorphous 
system. In the first case relaxation results in the formation of 
long-range-ordered regions and in the second case local 
short-range-ordered regions form. The reversibility of the 
relaxation of local regions is determined by the dynamical 
conditions under which they appear (structural states). It is 
interesting to note that if v # O  holds, then vp, increases [see 
Eq. ( 19) 1, i.e., reversible relaxation stimulates irreversible 
relaxation. 

Thus we can conjecture that structural relaxation in 
metallic glasses is caused by relaxation of a large set of weak- 
ly interacting clusters and this relaxation is matched with 
relaxation of the fluctuation electronic states corresponding 
to these clusters. As mentioned above, fluctuation zones can 
relax either gradually or directly into ZCP. However, it is 
obvious that gradual relaxation is much more likely to occur 
than direct relaxation. In this sense, there is a hierarchy of 
structural relaxation in amorphous metallic systems. 

In this connection we note that our analysis is similar to 
that in Ref. 25, where the hierarchical levels of structural 
relaxation were regarded as relaxational excitations of a sys- 
tem with structural nonuniformity. Dynamical concentra- 
tion excitations, which we introduced previously for describ- 
ing low-temperature anomalies in the kinetic properties of 
metallic glasses,c8 are excitations of precisely this type. 
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research. 
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