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It is shown that the dynamics of spiral autowaves in an excitable medium of finite size is much 
more variegated than in an unbounded medium. A simplified analytic description is proposed of 
the kinematics of a spiral autowave in a small round region. The results of a kinematic approach 
are compared with results of modeling equations of the "reaction-diffusion" type for the medium. 

Phenomena in media called excitable have been attract- 
ing considerable interest of late. The rapid advances in this 
direction are due greatly to the fact the properties of excit- 
able media are possessed by nerve and muscle tissues,'*2 a 
number of chemical  solution^,^ electronic and solid-state 
 system^,^ magnetic  superconductor^,^ and many other phys- 
ical, chemical and biological systems. 

A distributed excitable system consists of locally inter- 
connected nonlinear active elements capable of producing a 
pulse in response to an incoming external signal. The pulses 
propagating in excitable media are frequently called 
autowaves. 

A special type of elementary excitations in two-dimen- 
sional excitable media are rotating helical waves whose front 
line has the form of a helix moving with constant angular 
velocity w, around an immobile center. The amplitude of the 
pulses near the rotation center is small.6 This region of the 
medium is called the core of the helical wave. The form of the 
front and the rotation frequency of a helical wave in a medi- 
um of sufficient dimensions is an important property of the 
considered excitable medium. 

A generally acceptable mathematical description of ex- 
citable media is provided by a system of nonlinear parabolic 
equations of the "reaction-diffusion" type: 

au - - = DAU + F(U), 
at 

where U the state vector of a unit volume of the excited 
medium, D is a matrix of diffusion or heat-conduction coeffi- 
cients, F(U) is a nonlinear function that specifies the dy- 
namics of the "reactions" ocurring in each unit volume. 

In the overwhelming majority of cases it suffices to de- 
scribe processes in excitable media by investigating only one 
of the two  equation^:^-^ 

aE ,, = DE AE + F(E, g), 

= D, Ag + rG(E, g), at 

where E and g (frequently called activator and inhibitor) 
have the meaning of the densities of the reacting substances, 
the temperature, the electric potential, etc., while the "excit- 
able" properties of the medium are due to the kl-shaped 
zero-isocline of the first equation of (2) and the monotonic 
dependence of E on g, specified by the zero-isocline of the 
second equation of (2). It is usually assumed that E ( 1. 

In the general case of two or three measurements, only a 
numerical solution of (2) can be obtained. It is therefore 
very important to develop approximate methods of analyti- 
cally describing the autowave regimes. One such approxi- 

mate method is the kinematic 
Investigations of autowave regimes are usually con- 

fiend to infinite excitable media. However, the dynamics of 
autowaves (particularly spiral ones) in bounded media ac- 
quire qualitatively new features. Foremost is the drift of spi- 
ral waves along the boundary and their attraction to or re- 
pulsion from it. " 

The present paper is devoted to an analytic investiga- 
tion of the circulation of a spiral wave in a bounded excitable 
medium having the form of a circle of radius R. Within the 
framework of the kinematic approach, we derive expressions 
for the circulation frequency and the core radius, obtain the 
form of the autowave front, and investigate the stability of 
the circulation. We show, in particular, that the circulation 
can be either stable or unstable, depending on the radius of 
the circle. This effect, predicted by the kinematic descrip- 
tion, is confirmed by a numerical integration of the "basic" 
system (2).  

1. KINEMATIC APPROACH 

According to the kinematic description, an autowave in 
a two-dimensional medium is fully specified by describing its 
front. Each section of the front moves in a normal direction 
with velocity V = V(K) defined by the front curvature K on 
this section. The front can have a break (free edge) which, 
beside moving along the normal at a velocity V(K,) (where 
KO is the curvature of the front at the approach to the free 
edge), "sprouts" in a tangential direction with a certain ve- 
locity C = C(K,). At a certain critical curvature KO = Kc, 
the velocity C vanishes and at KO > Kc, the sprouting gives 
way to a shortening of the front. Near KO = Kc, one can put 
C =  y(K,, -KO), where y>O. 

Accurate to the position on the plane, any curve can be 
specified by its natural equation K = K(1) which determines 
the dependence of the curvature K on the length I of the arc 
of curve, which is best measured from the end point of the 
front. As the wave propagates, the curvature of its front can 
depend also on the time t .  It is shown in Refs. 12 and 13 that 
the front curvature K(1,t) satisfies the equation 

As already stated, the natural equation describes a 
curve only accurate to its position on the plane. To describe 
fully the front displacement it suffices to cite the low of mo- 
tion of one arbitrary front point. It is convenient to formu- 
late this law for the end point of the front. Thus, ifX, and Yo 
are the Cartesian coordinates of the end point on a plane, and 
a, is the angle between the vector tangent to the front at the 
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point 1 = 0 and to the axisx, they are subject to the following 
equations: 

Yo = V(1 = 0)cos a. - C sin ao, (4)  

From Eqs. (3) and (4) we can determine the form and 
position of an autowave front on a plane. 

We shall use hereafter a linear dependence of the veloc- 
ity Von the curvature K: 

V = Vo - DK, ( 5  

where V, is the velocity of a planar front. At sufficiently 
small curvatures this dependence is quite real is ti^.'^.'^ 

An excitable medium is thus described in the frame- 
work of the kinematic approach by a small number of phe- 
nomenological parameters: V,, Kc,, y, and D. These param- 
eters must be obtained from experiment or by solving Eqs. 
(2),  which are "microscopic" from the standpoint of 
autowave kinematics. It turns out here that in a number of 
cases certain coefficients are independent of the actual forms 
of the functions F and G. lo 

A stationary solution of Eq. (3  ) describes the station- 
ary regime in the form of a spiral wave in an infinite medium. 
The end point of the front moves here along a circle at a 
constant angular velocity w,. For sufficiently large 1, the 
form of the front is close to the evolvent of a circle, and near 
the end point it is close to a Cornu spiral." An approximate 
expression for w approaching the results of the numerical 
calculation was obtained in Ref. 16: 

where p = DK,, / V,, 

and the constants are c, = 0.685, c, = 0.06 and c = 0.293. 
If the parameter p ( 1 (this condition corresponds to 

media called "weakly excitable") it is possible to obtain also 
an approximate analytic solution.13 

We proceed now to investigate the circulation of a heli- 
cal wave in a bounded organic medium in the form of a cir- 
cle. 

2. STATIONARY CIRCULATION OF SPIRAL WAVE IN A 
CIRCLE 

Let a spiral wave rotate in a circle of radius R. We con- 
sider first stationary rotation, when the center of the core 
coincides with that of the circle. 

The shape of the front in stationary circulation is inde- 
pendent of the time t(dK/dt = O), there is no sprouting 
(C = O), and the front's curvature KO on reaching the end 
point is equal to Kc,. 

Under these conditions Eq. (3)  takes the form 

Equation (7)  can be integrated once and reduced to the 
form 

where the unknown integration constant w is equal to the 
angular velocity of the spiral-wave rotation. In fact, it fol- 
lows from (8)  that w = dV/dl for I = 0, but since the wave 
front approaches the core along the normal, d V/dl at the end 
point is the circulation angular velocity. 

If the boundaries of the excited medium are imperme- 
able to diffusion, the front of the autowave must also ap- 
proach the boundary along a normal. It follows hence that 
dV/dl for I = L (where L is the total length of the spiral- 
wave front) is also equal tow. The substitution I = L in (8) 
leads to the following condition on the front length L: 

For a linear dependence of Yon the curvature ( 5 ) ,  the 
investigation of the stationary circulation reduces to solu- 
tion of the equation 

supplemented by the conditions 

The problem ( lo),  ( 11 ) was first solved numerically in 
Ref. 7. Approximate dependences were obtained of the an- 
gular velocity wR of the spiral wave on the circle radius R 
and on the angular velocity a, in an unbounded medium. 

No exact analytic solutuion of the problem ( lo), ( 1 1 ) 
is possible for an arbitrary circle radius. If, however, this 
radius is small enough, a kinematic approach admits of a 
quite simple and accurate analytic description. 

The point is that for small radii of the circle, as shown 
by numerical integration of ( 10) and ( 1 I ) ,  the function 
K(1) hardly differs from a linear one (see Fig. 1 ) . It becomes 
possible therefore to seek the basic characteristics of a spiral 
wave (frequency of roation, shape of the front, etc. ) by using 
an almost linear approximation of K ( I) : 

The succeeding analysis is quite simple. 
Substitution of ( 12) in the third equation of the system 

( 1 1 ) leads to the following dependence of the angular veloc- 
ity wR on the total front length L: 

where V,, is the velocity of a planar front, p = DK,, / V,, and 
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P1G. 1. Curvature X of 8pirel.wave front vs the arc length I, obtained by 
integration of Eq (10) (solid line) and in accordance with the linear 
relation(12) tdas1ted)for Yo= l ,K,, = l , D = O . 5 , o = 0 . 7 , R = 2 .  

Purticula~ Interest attaches, however, to the depend- 
w ~ e  of cu, oo the radius R of the circle. We obtain this 
dependence by starting from the following considerations. It 
follows from ( 12) and ( 13) that the front curvature at 1 = L 
is equal to 

K I l - ~  KL, [1 - f@)l. (15) 

I'he front velocity V8 near the circle boundary is then deter- 
mined by expression ( 5 ), where K is given by Eq. ( 15). Rec- 
ognizing that 1 ~ ,  = V, / R ,  we obtain the dependence of wR 
on R 

The angular velocity increases thus with decrease of the 
c ~ r ~ l e  radius Thc inversely proportional dependence ( 16) is 
confirmed by numerical simulation using the "reaction-dif- 
fusion" model (2 )  (see below) and by numerical solutions of 
the kinematics equations.' 

Substituting (16) in (12) we obtain the dependence of 
the front curvature on the arc length I. This linear depend- 
ence describes a Cornu spiral. 

Using (5),  ( 1 1 ), and ( 16) we can obtain also the de- 
pendence of the radius r of a spiral-wave core on the radius of 
the circle 

It follows from ( 17) that theradius of thecore increases 
linearly with the radius of the circle, In strongly excitable 
media ( 1 - p 4 1 ), however, a spiral wave has a very small 
core compared with the circle radius. On the other hand, the 
core dimension in a weakly excitable medium (p 4 1 ) practi- 
cally coincides with the radius of the circle, since the front 
length is very small. 

In fact, the front length L can be determined from ( 13 1 
alld (16) 

Another important feature of the shape of a spiral wave 
is an integral bend a of its front, equal to the difference be- 
tween the slope angles a, and a, of the tangent to the front 
on the core boundary and on the circle boundary, respective- 
ly. The value of the bend is determined by an integral of the 

local front curvaturz K. Wc have then from ( 12) 

Substituting ( 18) and ( 16) in ( 19) we obtain for a the final 
ex prsssion: 

Thus, the linear approximati011 K(1)  has enabled us to 
investigate completely the problem of circulation of spiral 
waves in round media of small size, In contrast to the case of 
an infinite medium, there is not need here for the inequality 
p 4 1, i,e., we need not confine ourselves to weakly excitable 
media, This extends substantially the applicability of the re- 
sultant expressions, ) 

3.8TA131Lll"Y OF CIRCULATION OF A SPIRAL WAVE 

Assume that the instantaneous center of rotation of a 
spiral wave does not coincide with the center of the circle at 
the initial instant of time. The shape of the spiral wave will 
then be altered in the course of the circulation. By virtue of 
these changes, its instantaneous angular velocity w will like- 
wise not be constant. 

It was shown in the preceding section that the angular 
velocity sf a spiral wave is connected with features of its 
front, such as its length L and its integral bend a. Using 
( 19), the angular velocity w can be expressed explicitly in 
terms of the following parameters: 

Using these expressions to describe the nonstationary 
spiral-wave motion, with the quantities L and a dependent 
on the time. 

The change of the length of the front arc for nonstation- 
ary circulation is defined as 

In the stationary case this quantity vanishes [see ( 9 )  J . In the 
nonstationary regime, using the linear approximation ( 12), 
we obtain 

The integral bend a of the front also changes in the 
nonstationary regime. The rate of change of the slope of the 
front at the point I = 0 will obviously be equal to the instan- 
taneous angular velocity w.  The linear velocity of the end 
point along a circle of radius R is given by Eqs. ( 5 ) and ( 12 
with I = L. Since the autowave front is always perpendicular 
to the boundary of the medium, its angular velocity at the 
point 1 = L will be equal to the angular velocity of the bound- 
ary point along the circle. The rate of change of the integral 
bend a is thus determined by the expression 

The system (21), (23), (24) describes the dynamics 
the change of the form and of the angular velocity of the end 
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point of the front. The end-point trajectory is then deter- 
mined by the system (4). If we consider the evolution of the 
perturbations due to violation of central symmetry, the rate 
of the tangential displacement of the end point C must be set 
equal to zero. 

We substitute (21) in (23) and (24) and linearize the 
resultant system near the equilibrium position. The linear- 
ized system is of the form a b 

where Lo and a, is the length of the front and its integral 
bend for the regime of stationary rotation of a spiral wave, 
while L,  and a, are the deviations from the equilibrium val- 
ues. Using ( 18) and (20) to determine Lo and a, it is easy to 
show that the system (25) is stable for all values of the pa- 
rameter p. This means that in a small circle, for which the 
linear premise ( 12) is valid, a spiral wave is always stable. 

A criterion for the applicability of the linear approxi- 
mation can be easily obtained from ( 18). In fact, it is easy to 
verify that the consequence of ( 18) is the inequality 

Equation ( 18 ) , however, is a direct consequence of ( 12). 
The linear approximation ( 12) describes thus only spiral 
waves in which the front length is smaller than the radius of 
the circle. 

The inequality (26) is of course violated in a circle with 
a sufficiently large radius. Strictly speaking, the treatment 
above cannot be used in this case. One can only see that when 
the ratio L,/R increases, the stability reserve of the system 
(25) decreases. Consequently, a spiral wave can become un- 
stable in a large circle. 

It is of interest to compare the foregoing analysis with 
the results of numerical integration of Eqs. ( 3 )  and of the 
system (4),  i.e., when the complete kinematic model is con- 
sidered without the simplifying assumption ( 12). 

Figure 2 shows the trajectories X, ( t )  and Y,(t)  of the 
end point of a spiral wave in round media with different 
radii. Clearly, in a circle with a small enough radius (Fig. 
2a) the trajectory of the end point approaches the circle as- 
ymptotically. This corresponds to a stable spiral wave, i.e., 
agrees with the results of the kinematic analysis employed. 

FIG. 2. Trajectory of end point of spiral wave in a circle of radius R = 1.5 
(a), R =2.0 (b), R = 2.5 (c) ,  R = 4.0 (d). 

An increase of the circle radius (Fig. 2b) leads to loss of 
stability in the complete kinematic model of a spiral wave. 
Modeling of the wave-motion kinematics in a circle of still 
larger radius (Figs. 2c,d) shows that the regime observed in 
this case is quite far from stationary rotation of a spiral wave 
around a center of a circle. This is in essence a drift of the 
core of a spiral wave along the boundary of the excited medi- 
um, similar to the drift, described in Ref. 1 1, along a straight- 
line boundary. 

Is there a regime of stationary rotation of a spiral wave 
for media of large enough radius, which are shown in Figs. 
2c and 2d? Yes, such regimes are observed in the kinematic 
model but they are unstable to shifts of the position of the 
spiral wave relative to the center of the circle. These regimes 
are therefore observed in very short time intervals, and the 
ensuing fluctuations lead then to motion of the core of the 
wave towards the circle boundary, and to a drift along this 
boundary. Thus the regime of spiral-wave drift along a 
boundary, shown in Figs. 2c and 2d, is stable, in contrast to 
the unstable central-symmetry regime. 

In a small-radius circle (Fig. 2a) the situation is re- 
versed: stationary rotation of a spiral wave around the center 
of the circle is a stable regime, in full accord with the above 
kinematic treatment, and a regime with drift along the 
boundary is impossible. 

FIG. 3. Spiral wave in a round medium of radius 
R = 30. A region of the medium with E z 0 . 6  is 
hatched: a) centrosymmetric regime, b) two-period 
regime. 
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4. SPIRAL WAVE IN THE REACTION-DIFFUSION MODEL periments with a model of the "reaction-diffusion" type with 

We consider now the results of computation experi- case when the dimension of the medium exceeds substan- 

ments performed by us for a rather typical model of an excit- tially the radius of the trajectory of the end point of the spiral 

ed medium of type (2). In this model the function P(E,g) is wave. By special choice of the initial conditions we can ob- 

defined as tain the conetrosymmetric solution shown in Fig. 3a. This 
regime, however, turns out to be unstable. To demonstrate 

F(E, g) = f (E)  + g, (27) this it suffices to change slightly the initial conditions by 

where 

-Ek, ,  E < a, 
( E -  a)kf, u s  E s  1 - 0 ,  
(I - E)kZI 1 - u < E, 

a - u  
k, = ,kf 9 

The function of G(E,g) is specified here as follows: 

In all the computer experiments whose results follow, the 
values of the model coefficients were: kJ = 1.7, kg = 2.0, 
a=O. l , a=0 .01 ,~=0 .3 ,k ,  =6.0,DE = l ,Dg =O. 

We begin the exposition of the results of computer ex- 

FIG. 5. Dependence of the angular velocity of a spiral wave on the dimen- 
sion of a round excitable medium. 

- - - 

displacing the position of the center of the spiral-wave core 
towards the boundary of the circle (Fig. 3b). The trajectory 
of the end point of the spiral wave is then no longer a circle. It 
is open. The center of the core is displaced in the course of 
the circulation towards the boundary and begins along it. 

A stationary regime of the spiral wave sets in gradually, 
with the core center displaced along the boundary but re- 
maining at a fixed distance from it. 

Thus, in full accord with the kinematic analysis, the 
stationary rotation of a spiral wave in a large-radius circle is 
unstable. Of course, the smaller the ratio of the core radius of 
the spiral wave to the circle radius the longer the time during 
which the controsymmetric solution is violated. It is there- 
fore very difficult to observe the instability of the centrosym- 
metric solution in large-radius circle. The influence on the 
motion of a spiral wave becomes discernible only at a dis- 
tance comparable with the radius of the core. In the remain- 
ing cases the situation is practically indistinguishable from 
an "indifferent" equilibrium. 

The instability of a centrosymmetric solution is particu- 
larly clearly pronouned in simulation of an excited medium 
comparable in size with radius of the spiral-wave core. To 
obtain a centrosymmetric solution it is necessary to select 
very carefully the initial conditions (Fig. 4a). The smallest 
deviations leads to a two-period regime (Fig. 4b). 

The dependence of the angular velocity of a spiral wave 
on the reciprocal of the circle radius is shown in Fig. 5 by a 
solid line. It can be seen that at small circle radii the depend- 
ence is practically linear in full accord with ( 16). 

Figure 6a shows examples of the calculation for an ex- 
citable medium with a relatively small radius. The trajectory 
of the end point is seen in this case to differ significantly from 
the cycloid shown in Fig. 4b. 

Comparison of Figs. 6a and 6b shows that when the 
radius of the medium is decreased the trajectory of the end 
point comes ever closer to the circle. Calculations show that 
a two-time regime becomes impossible with further decrease 
of the radius of the medium (Fig. 6c). All that takes place in 

41 8 JETP 76 (3), March 1993 V. A. Davydov and V. S. Zykov 41 8 



the medium in that case is centrosymmetric rotation of a 
spiral wave. Moreover, a centrosymmetric solution becomes 
in this case stable: sizable variations of the initial conditions 
lead to the appearance of an autowave that has central sym- 
metry. 

Further decrease of the size of the medium makes it 
impossible to obtain also a centrosymmetric solution. Thus, 
if the dimension of the medium is smaller than a certain 
cirtical value, no undamped autowave process can be in- 
duced in it. 

Comparison of Figs. 6 and 2 shows that within the 
framework of the kinematic approach it is possible to ac- 
count for all the qualitative two-period regime features ob- 
served when a system of the "reaction-diffusion" type is sim- 
ulated. 

5. CONCLUSION 

The analysis in the present paper of the dynamics of a 
spiral autowave in a circular excitable medium has shown 
that the effect of the boundary is not limited to quantitative 
changes, but leads to appreciable qualitative actions on the 
spiral-wave circulation regimes. The kinematic approach 
has made possible appreciable progress in the study of these 
regimes. In particular, analytic estimates were obtained for 
the first time ever for the most important characteristics of 
the regime of stationary rotation of a spiral autowave, such 
as the angular velocity and radius of the rotation, the length 
of the front, and its integral bend. The previously obtained7 
numerical estimate of the angular velocity is redetermined 
much more accurately in the region p 4 1. 

Very promising is also the use of the kinematic ap- 
proach to investigate the oberved two-period circulation re- 
gime of a spiral wave. It is important to note that complex 
trajectories of the end point of a spiral wave were observed at 
excitable-medium model parameters such that in an un- 
bounded medium there exists only a stationary rotation re- 
gime.I7 The influence of the boundary conditions on the cy- 

FIG. 6. Spiral line in a round medium of radius a )  
R = 12.0, b) R = 9.6, C )  R = 8.4. 

cloidal regimes of the circulation of spiral waves, described 
for example in Refs. 9 and 17, is the subject of further re- 
search. 

It would undoubtedly be interesting and important to 
obtain in experiment and investigate the observed effects, for 
example in the Belusov-Zhabotinskii reaction. 
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