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Dicke’s model is used to discuss amplitude-phase multistability in a coherently driven cavity for
the case of high Rabi frequencies and spontaneous decay rate that is low compared with the cavity
mode decay rate. Quantum and quasiclassical interpretations, based on the Tavis—Cummings
model, are presented and by regarding the system as a collection of damped harmonic oscillators
is considered. An analytical solution of the problem is obtained for N = 2. A possible
experimental arrangement for observing amplitude-phase multistability is examined.

1.INTRODUCTION

Collective effects in quantum optics, first studied by
Dicke in his pioneering work,' continue to be a central prob-
lem. The initial formulation of the problem' of the decay of
collectively radiating atoms contained in a volume small
compared with the cube of the wavelength (Dicke’s model)
has been extended to collective decay (superradiation, su-
perfluorescence) in extended systems (see, for example, Ref.
2).

Resonance fluorescence excited by strong optical radi-
ation was studied in Dicke’s model in Refs. 3-7. In particu-
lar, it was shown that for a certain value of the external field
intensity a nonequilibrium phase transition, analogous to a
second-order thermodynamic phase transition, can oc-
cur.>* When the interatomic interaction between the parti-
cles of the system is taken into account, this model can exhib-
it a first-order nonequilibrium phase transition, associated
with the fact that this system is equivalent to a quantum
anharmonic oscillator in an external field.’

On the other hand, as shown in Ref. 8, a system of inde-
pendently radiating atoms, placed in an optical cavity, mani-
fests optical bistability of the absorptive type, for which the
curve of the intracavity field versus the external pumping is
analogous to a van-der-Waals isotherm describing a first-
order liquid-vapor phase transition. It should be noted espe-
cially that optical bistability does not arise as a result of co-
operative effects produced when the atoms interact with the
cavity mode of the field, as was assumed in Ref. 8. This phe-
nomenon is determined by single-atom nonlinear effects
arising because the state of the atom depends on the intraca-
vity field, which consists of the external field and the field
reradiated by the atom and depends on the state of the atom.
Thus it has been shown recently®'! that when a single atom
is placed in a cavity and interacts strongly with the cavity
mode, such a system can manifest bistable properties. In ad-
dition, besides the well-known absorption bistability (or bis-
tability of the real part of the field amplitude),’ a new effect
appears: phase optical bistability.'>'! As indicated in Ref.
10, phase bistability has a simple interpretation based on the
representation of an atom interacting strongly with the in-
tracavity field as a single quantum system in an external
field.

In the present paper we investigate new effects pro-
duced by the combination of the collective character of the
emission of a system of atoms and the nonlinearity of the

573 JETP 76 (4), April 1993

1063-7761/93/040573-10$10.00

atoms interacting strongly with the intracavity field. For
this, we extend the single-atom model of quantum optics'®!!
to the case of a large number of two-level atoms in a volume
which is small compared with the resonance wavelength.

This collection of atoms is located in a coherently driv-
en high-Q optical cavity. The intracavity mode excited by
the external optical field interacts strongly with the collec-
tion of atoms and decays because the mirrors are partially
transmitting. The atomic states decay as a result of sponta-
neous emission into noncavity modes, which in this model
are treated as free-space modes.

It is demonstrated below that for this model amplitude-
phase multistability arises when the components of the reso-
nance-fluorescence spectrum are widely separated (the Rabi
frequencies are high)® and the rate of spontaneous transi-
tions of the atoms is low compared with the rate of decay of
the cavity mode. The number of stable points in the phase
space of the model is analyzed as a function of the ratio of the
numbers of the particles, and the spontaneous transition
rates of the atoms and the boundary conditions for the ap-
pearance of multistability in a multiparticle system are de-
termined.

2. THE MODEL

The system of two-level atoms with resonance frequen-
¢y o in a volume with linear dimensions much shorter than
the wavelength is described with the help of the Dicke collec-
tiveoperatorsJ , =2,0;,,,J_ =2,0,_,J, =20, (0,
and o, are single-atom operators), which satisfy the com-
mutation relations [J,,J_]=2J, and [/,,J,] =

+ J . . The action of the operators J , and J, on the collec-
tive states | j,m), where j is the maximum value of the “ener-
gy spin” of the system (j = N /2, where N is the number of
atoms, and m is the projection of the “‘energy spin” on the z
axis, — j<m<j),is determined by the well-known relations:

J+|j’m)=m+’n+l)(j—m)ljvm*'l)’ (1a)
J_limy=VG+mG-m+1)|jm=-1). (1b)

The collective states | j,m) are eigenstates of the opera-
tor J, and the total “‘energy spin” operator J *:

I i, m) = m|j, m),
J2\j, my = jG + 1)[}, m).

The single-mode intracavity field is represented by a har-

(2a)
(2b)
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monic oscillator with frequency @, and boson creation and
annihilation operators a* and a, respectively. The excita-
tion of a cavity mode by coherent pumping with amplitude E
is described by the Hamiltonian iiE(a * — a). The interac-
tion of the system of atoms and the field is represented by the
collective Jaynes—Cummings Hamiltonian in the rotating-
wave approximation, #ig(a*J_ +aJ ). Taking into ac-
count the decay of the field and the atoms, the corresponding
quantum-mechanical description of this model in terms of
the reduced density matrix in the interaction representation
has the form

p = Ela* - a,p] - ibw(J,, p) — igla*J_ + aJ,p]
+ kla, pa*] + lap, a*]) + @/2)([V_,pJ ) + U_p,J,]),
(3)

where Aw =  — w, is the detuning between the resonance
transition of a two-level atom and the field, g is the interac-
tion constant between the field and a separate atom, y is the
rate of spontaneous emission into field modes different from
the cavity mode, k = 7/ Fr, is the decay rate of the field in
the cavity, 7. = 2L /c is the round-trip passage time of the
radiation in the cavity, L is the cavity length, and F is the
sharpness of the cavity.

It is easy to show that for the model (3) the squared
total “energy spin” is conserved:

=@ I )+ D+ ) =jG+1). (4)

We note that in the absence of atoms (g =y =0) in the
cavity, the steady state of the intracavity field will be a coher-
ent state with amplitude E /k. It is convenient to separate
this state explicitly from the density matrix p by operating
with the amplitude displacement operator D(E /k)
=exp(E(a* —a)/k):

p = DY(E/k)pD(E/k). (5)

The resulting equation for the transformed matrix p assumes
the form

p=-20,p - iboll,,p] — igla*J_ + aJ,,p]
+ k(la, pa*] + lap, a*1) + /2)(V_,pI,] + U_p,J,]),
(6)

where the first term describes the change in p under the ac-
tion of the classical field E /k (4 = gE /k is the Rabi frequen-
cy), and the term E [a* — a,p], corresponding to excita-
tion of the intracavity field [see Eq. (3)], is absent.

We note that operators describing the system of atoms
and a single two-level system realize different irreducible
representations of the same group SU(2) and hence satisfy
the same commutation relations. Therefore, the same ca-
nonical transformations as in Ref. 8 can be applied to the
multiparticle model, and this yields transformations of the
operators and equations for the density matrix p which are
analogous to the single-particle model to within a substitu-
tion of the Pauli spin operators o,, o, for the Dicke collec-
tive operators J,, J , .

3.HIGH RABI FREQUENCIES

The equation (6) derived above can be solved approxi-
mately in the case when the generalized Rabi frequency
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Q =29 ? + (Aw)? is sufficiently high. In order to obtain
this solution we perform a rotation in the space of the vectors

(Jidyd2)

J; = exp(—ipJ ) exp(ipl ), i=x, ¥ 2 N

around the y axis through an angle @ such that
s =sin @ = 214 /Q and ¢ = cos ¢ = Aw/N. Then the eigen-
states | j,m') of the operator J, can be expressed as a linear
superposition of the old basis states | j,m):

J
omty =S d(p)|m), (8

m=-j

where d”,,. (p) = (m|exp( — ipJ,)|m') is the Wigner d-
function.'? Assuming Q ~'is the shortest characteristic time
of the problem—shorter than the collective decay time
(Ny) ~ ! of the atoms, the decay time k ~ ' of the field in the
cavity, and the period (N /2) (g?/k)) ~' of the Rabi oscilla-
tions induced by the reradiated field,

-1
O le (M)~ k7L, (g 5;;) , %
—we can transform to the “dressed state” representation for
the density matrix p’:
p = exp(—iQJ H)p'exp(i€J ;1) (10)
with the time dependence of the operators J, (¢) given by

1 +c¢ (11a)

' r l-c¢ 1 =i
T, () = sJ + —5= U, ¥ -~y i,

T =l - I - S e (11b)

and average the corresponding equation for the matrix p’
over the fast Rabi oscillations. Like Eq. (3) above, the equa-
tion obtained as a result of such averaging,

p' = —igsl(a* + I, p') + k(la, p'a*] + lap’, a*])
ysz ’ ’ r ’ !’ ’
+T([JZ,PJZ]+[JZP’JZ]
dia, 0,
+—2—([-’+,P-’_] + [J:..Plv',’_])

d
21 ’ ’ ’ ’ ’ ’
+’"2—([J_;PJ+] + [J_paJ+])1 (12)
where d,, = (1 — ¢)?/4, and d,, = y(1 + ¢)?%/4, satisfies
the particle number conservation law (4).
According to the equations for the diagonal elements of
the transformed and averaged density matrix p’ (10)

(plj'_j' = lgzﬁ la* + q, pLj'_j'] + k((G'PLj:_/:a+]
+lapy_p @) dyNplpyy iy = dipNeLp_
P = —igm'la* + a, Pyl + k(1@ p et
+ [ap . @*1)
y + dlz(j: + m')(j - rr.t’ + 1ot mi-1
+dyG+m' + 1)G = mpp iy sy
— @ G+m + 1)j—m')
+dy G+ mYG = M+ 1)
by = =B "+ apy) + Klapyp ')
+ lap;p, a¥1) + diNoj_y oy = do Ny,
. (13)
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the atoms in different eigenstates | j,m’') (8) interact with
the intracavity field independently if the spontaneous transi-
tion probabilities ¥ into noncavity modes are small (d; are
small). In addition, the equations for the diagonal elements
Py are equivalent to the equations for damped harmonic
oscillators excited by coherent radiation with amplitude
(~gm'), varying in intensity and phase for different states
| ;m'). Therefore, for d; =0, the cavity field will have
2j + 1 possible stationary values of the amplitude

ag = Elk + igm'[k  (m' = —j, ..., }). (14)

The representation of the “field + atoms’ quantum
system as a collection of weakly coupled harmonic oscilla-
tors can also be interpreted conveniently using the Tavis—
Cummings model.'? For this, we now consider the excitation
of eigenstates of such a model by external resonance radi-
ation.

4.INTERPRETATION ON THE BASIS OF THE TAVIS-
CUMMINGS MODEL
The eigenstates of the Tavis—Cummings Hamiltonian
(see Appendix)
H = hwa*a + hol, + hga*J_ + al )

for the case of exact resonance can be represented in the form
(A2)

where the indices fand a denote the eigenstates of the intra-
cavity field and the system of atoms. The number 7 is the
number of the excitations in the “field + atoms” system
and the number r enumerates the eigenstates belonging to a
fixed number of excitations n. For n<2j the number
k =n —j and r varies from — n/2 to n/2 in steps of 1. For
n>2j the number k = j and r ranges from — j/2 toj/2. The
eigenvalues of the Hamiltonian H

Eqjny = h0(n = ) + Ey; (16)

where E,, ,, are the eigenvalues of the interaction Hamilto-
nian fig(a*J_ + aJ ), determine the energy spectrum of
the system. The spectrum consists of the levels of the nonin-
teracting atoms and the field, each level being split by the
interaction into n + 1 sublevels for n < 2j and 2j + 1 sublev-
els for n>2j (Fig. 1).

The external field, exciting the “atoms + intracavity
field” system (the interaction Hamiltonian is
—iE(a—a™)), induces transitions between the eigen-
states |2j,n,r). The different paths of excitation of the nu-
merically computed energy levels of the Tavis—Cummings
system are displayed in Fig. la (N=2) and Fig. 1b
(N = 3). The first two paths start from the ground state and
excite the states |2/,1,1/2) and |2j,1, — 1/2) with the same
probability (since the frequency mismatches
|fiwo — & 11,2 | and [fiw — &5y _ ), | are equal):

12, ) i n| . Y, |m) (15) 12/, 0 0><|2j,1,1/2)
Js Ny T) = a |n—j—m)|m), .0, .
ety ! 12,1, -1/2)
= 12,4,1) = 12,4,3/2)
¥ 24,0 g — 13,4,1/2)
¥ [2.4-1) == — 13.4,-1/2)
= |3,4,-3/2)
(25 S E— 13.3.3/2)
¥ 4 12,30 ¥ — !|3.3.|/2>
o i - 3,3,-1/2)
— 2,3,-1
| ) |3,3,-3/2)
== II;':") — 13,2,1)
po— 12,0) £ 13,2,0)
12.2.-1 X 13,2,-1)
12,1,1/2) 1500/
[2,1,-1/2) I3:1:—1/2)
|2,0,0) 13.0.0

b

FIG. 1. Formation of independent excitation paths in the system of energy levels of the Tavis-Cummings model'* under the action of external classical
resonance radiation. The numerical calculation was performed using the formulas from the appendix for even N =2 (a) and odd N = 3 (b).
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The excitation probability of the next states now depends on
the state from which the system starts. The most likely tran-
sitions (due to the small frequency detuning) are

12/, 1,1/2) = 24,2, 1),
12/, 1, =1/2) = |2/, 2, =1).

. |2]’ 1, 1/2) g l2]’ 2, 1) d ---Izj, n,J) - lzj, n + l,])
12,0, 0)<_ . . .
12/, 1, =1/2) » |2}, 2, =1) = ...|2j, n, =) = |2j,n + 1, =))

The next series starts from the state |2/,2,0) corresponding
to two excitations in the system (# = 2) and r = 0. One [for
2j =2 (Fig. 1a)] or two [for 2j> 2 (Fig. 1b) ] new excita-
tion paths starting from the state |2,2,0) are formed similar-
ly to the paths (17). Thus each state |2,2/,0), where /is an
integer and 2/ < 2j, gives rise to new excitation paths. The
total number of excitation paths distinguished in this man-
ner, is equal to the maximum number of split energy levels
with the same value of n and is equal to 2j + 1.

As shown in the appendix, for large numbers of excita-
tions 7> 2j the eigenstates of the Tavis—Cummings Hamilto-
nian can be represented in the factored form [see Egq.
(A1D]

12/, n, 7y = |n); 1)y (18)

where the states |r), =3/, _ _,d’, ( — 7/2)|m), areiden-
tical to the “dressed” states (8) with ¢ = — 7/2. In addi-
tion, according to Eqs. (16) and (A12), for n> 2j the energy

eigenvalues are
EZj_n,r = M(n - J) + zw’,

i.e., the detuning of the frequency of the transition

(19)

12/, n, 7y » {25, n + 1, 7)

for each separated rth excitation path decreases as » in-
creases.

Thus, according to Eq. (18), the eigenstates (8) of the
operator J, are dressed atomic states which determine the
quasiclassical (n>2j) eigenstates of the Tavis—-Cummings
Hamiltonian. Using these states as a basis for expansion, we
obtained the equations (13) which represent the excitation
of the “atoms -+ intracavity field” system as a motion of
2j + 1 weakly coupled oscillators; for large » this is equiva-
lent to separation of 2j + 1 independent excitation paths (of
the form (17)) in the Tavis—Cummings model.

Taking decay into account in this model will lead to
transitions from one distinct path to another. In Egs. (13)
these transitions are described by terms containing the spon-
taneous transition constants d,, and d,, and characterizing
random quantum jumps between states of neighboring har-
monic oscillators with probability proportional to
d,(+m)G—m+ 1)andd, (j+m+ 1)(j— m). Asthe
transition probabilities decrease, the intracavity field will
have for most of the time a definite amplitude (14) and the
system of atoms will be in the corresponding state |j,m’).
This makes it possible to talk about multistability of the sys-
tem under consideration.
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As n increases the situation repeats. For n>2j transitions
without a change in r are the most likely of these two paths:

12/, n, ) = |2y n + 1, ),
'zj, n, —]‘) - IZJ! n+ 1’ _J)'

As aresult, the first two excitation paths can be represented
as

(17)

5.NUMERICAL SOLUTION

In order to solve the system (13) we make use of the
definition of the characteristic matrix

D = SD(exp(Aa™Yexp(—A*a)D(E/K)p.,., D~ (E/K). (20)

Note that in the basis of dressed states |j,m’) (j,n’| the sys-
tem of equations for ¥ .., which is obtained on the basis of
Eq. (13), splits into two subsystems for the diagonal and off-
diagonal elements. The diagonal part of the system has the
form

9, -

9, =ign'(A + A9 e g
m'm'_lgm( + )m’m'— alt - oA

+EQ -9,

+dypG o+ mYG - m o+ 1O
+dy G+ m + 1) - m)D
—dy,G+m + )G - mY)

+dy G+ m)G—m + 1), .

m'+1,m'+1

(21

We have solved the system (21) numerically for four
and eleven particles and found the probability distribution
of the field Z(a)=2, 2, .(a), where Z,.  (a)
= (1/7)Sd?A exp(A *a — Aa*) F ., (A,t) is the proba-
bility density for finding the field in a coherent state with
amplitude @ and the atom in the superposition state |j,m’)
(8). Since in the case at hand & ,,.,,, as a function of the real
part of the amplitude of the field can be found explicitly in
theform Z ., (@) = Z ... (¥)8(x — E /k), wherea =x

+ iy, we investigated the distribution function as a function
of the imaginary part of the amplitude. The results of calcu-
lating this dependence for different values of the parameters
g’k and d /k are displayed in Fig. 2 (N =4) and Fig. 3
(N = 11). For fixed values of g/k and d /k the number of
peaks in the distribution function is equal to the number of
independent paths of excitation of the “molecule,” and the
positions of the peaks correspond to the amplitudes of the
fields that would be established in a cavity pumped by a
classical field with amplitudes E +igm": a=E/k
+ igm’/k. Since the imaginary part of the field amplitude
cannot exceed the value gN /2k, the distribution function is
confined to the segment [@n,,@ma]>» Where
a,.. =E—igN/2k and a,,,, = E + igN /2k. The qualita-
tive nature of the probability distribution is not changed by
increasing or decreasing the parameter g/k; the actual value
of g/k determines only the scale of the change in the imagi-
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0,8 T T T 0,4 T T T
a b
0,6} ~ 0,3 ~
0,4 ~ 0,2t -
0,2+ - 0,1+ -
0 | M 0 1 J_/L—L) .
-40 -20 0 20 40 -100 -50 0 50 100
.0,04 T Y T 0,04 T T T
c d
0,03 \ / . 0,03 .
0,02 -1 0,02~ -
0,01 - 0,01+ -
0 L 0 !
-40 -20 0 20 40 -40 -20 0 20 40

FIG. 2. Stationary distribution function 2 of the field inside the cavity for N = 4 witha) g/k = 10,d /k = 0.05, b) g/k =20,d /k =0.05,c) g/k = 10,

d/k=0.2,andd) g/k =10, d /k = 0.6.

nary part of the amplitude of the field (compare Figs. 2a and
2b).

The sharpness of the peaks in the distribution function
increases symmetrically from the center to the limits of the
segment (Fig. 2a and Fig. 3a), and for fixed d /k it increases
as the number of particles in the system decreases. As the

ratiod /k increases [Fig. 2a(3a) and Fig. 2b(3b) ] the distri-
bution of the peaks becomes more diffuse and above some
critical limit, which depends on N, the probability density
function assumes the form shown in Figs. 2d and 3d with a
single stable state at the center of the segment.

In order to find the critical value of d /k let us assume

0'5 L) T T 0|3 L} T T
a b
0,2 -
0,1~ -
0 l l W\ l l R i)sa————.——_A—&L
-100 =50 . 0 50 100 ~100 ~50 0 50 100
0,06 T T T 0,015 T . T
c d
0,04~ -1 0,010 -1
0,02- . 0.005 - ~
0 1 1 1 0 1 1 1
=100 =50 0 50 100 =100 =50 0 50 100

FIG. 3. Stationary distribution function Z of the field inside the cavity with N = 11, g/k = 10, and d /k = 0.01 (a), 0.05 (b), 0.1 (¢), and 0.15 (d).
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that as the transition probabilities between neighboring
functional states of the ‘““molecule” increase, all stable states
in the system vanish except two states corresponding to the
extreme excitation paths. In this case the system (21) can be
averaged over the fast intermediate motions and we arrive at
equations for the probability densities similar to the single-
atom variant:'°

Pt o 2 (s - )

[+ 56; [(ky + 52’!) @_j._j.] + Ay NPy, = dpNP_, .,
FSfL = aix [(kx = E)Pyy] +

+ aiy[ ky + 52—"’)93,,],] ~ dy NPy, + dNP_,_ .

(22)

Then the condition for the appearance at least two stable
states in the system (21) is given by the inequality

y/4k < 1/N. (23)

Compared with the single-atom phase optical bistability
(y/4k < 1) the collective interaction of the particles weak-
ens the phase stability of the states in proportion to the num-
ber of atoms. The corresponding solution of Eq. (22) for the
function Z is, to within the substitution k— k /N, the beta
distribution,'® and it describes a curve averaged over all in-
termediate states.

6. ANALYTICALSOLUTION FORN=2

We have solved the problem (21) analytically for a
three-level Dicke system, corresponding to two atoms inter-
acting with the field in a cavity. In this case the stationary
system of equations for the probability densities &
wherem =0and + 1is

mm'»

3
o (B0 = 9P_ ] + 2P — 24P _,_, =0,

3
a3y 0P0) + 2(P_1_y + Pyy) — 4dPy = 0, (24)

3
2y [ + 9Py + 2Py, = 2P, = 0.

In solving this system, it is convenient to normalize the
imaginary part of the field amplitude to the ratio
8/k :z=y/(g/k). This change of variables ““cleans up” the
explicit dependence on the constant g/k in the system (24).
The role of the parameter g/k as a scale factor of the imagi-
nary part of the field amplitude can also be demonstrated in
the case of an arbitrary number of particles [see Eq. (28) in
Sec. 7]. The numerical solution given in Sec. 5 confirms that
the form of the distribution function does not depend on the
ratio g/k.

In order to derive the equation satisfied by the distribu-
tion function it is necessary to take into consideration the
relation

(ky = g)@_l_l + k)g)()o + (ky + g)@” =0,

which follows directly from the system (21) for the charac-
teristic functions . ; (4,¢). Then the normalized distribu-
tion function of the two-particle problem is found from the
hypergeometric equation
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d%P

u(l — u) 2

+c—(a+d+ l)u]%@;—ab@=0,
u=z
and can be expressed as follows:
P(x, 2) = Pyl (x - %) 6(1 — 22)z2(1-9)
X(1 - 22 bF(l-al-bc-—a-b+1,1-2?,

(25)

where the constants a, b, ¢, and & ; are given by the relations

=3 d
a=3 (1 2k), (26a)
-1-4 (26b)
b=1-7,
=1 a
c=1 (3-4k), (26¢)
Po=LBc-a-b+1,32
0= 2% (c—a ,2—c)2
XF (1 -a,l —b,%—a—b, 1). (26d)

Here ,F), is the hypergeometric function, @ is the Heaviside
step function, and B is the beta function.

The distribution function (25) is quite easy to analyze
qualitatively, since the behavior of the function £ (x,y) is
determined mainly by the poles z =0, + 1 and not by the
hypergeometric function ,F,. For this reason, the critical
point of the transition for the extreme poles from unstable
to stable states is d/k =1/2, which corresponds to
c—a—b=0. The relation 1 —c=0 or the value
d /k = 1/4 gives the critical ratio of the parameters d and k&
for the appearance of an interior stability pole. For
d /k < 1/4 the distribution has three pronounced peaks at
points with amplitude @ = E /k + ig/k and a = E /k (Fig.
4a).

The solution in the form (25) contains the hypergeo-
metric series, which converges well only for d /k < 1/4 (for
d /k>1/4 it converges conditionally). For d /k > 1/4 the
distribution function can be represented in the following
form equivalent to Eq. (25):

P(x, 2) = P58 (x - %)0(1 _—

X(1 =224 bF(c—ac—bc—a-b+1,1-22),
(27)
whence it follows directly that ford /k > 1/N [see Eq. (23)]
the function & (x,z) has a stable distribution with a maxi-
mum at the center of the segment [ — 1,1] and vanishing at
the ends of the segment.
Figure 4 displays for different values of d /k the form of

the function & (y) computed numerically from the formu-
las (25)-(27).

7.DISCUSSION

In order to determine the conditions under which the
internal states of the “molecule” are stable, we consider the
system of equations for the probability densities & .. in the
case of exact resonance Aw = 0:
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a b
2 - 0,21 .
- -1 0,1+ -
0! L JL 0 A
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FIG. 4. Analytically computed stationary distribution function 2 of the field in the cavity for N = 2,¢g/k = 10,andd /k = 0.1 (a), 0.4 (b),0.5 (¢),and 4

(d).
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(28)

The phase space of the model is represented by a collection of
N + 1 phase planes, corresponding to “dressed” states of the
“molecule” (Fig. 5). The system (28) describes a discrete-
continuous Markov stochastic process, consisting of phase-
plane motion along the trajectories y + gm'/k = const
(x — E /k) (for the m'th phase plane) in the direction to-
ward the pole with the coordinates x,, = E/k,
Yom = gm'/k and random hops from one phase plane to an-
other in accordance with the transition probabilities. The
continuous part of the Markov process is determined by the
terms of Eq. (28) which contain partial derivatives of the
probability densities and the discrete part is determined by
terms with the constant probability & of a spontaneous tran-
sition.

The conditional probability density ¢, .. (¢ + 7|t) of
a transition at the time ¢ + 7 into the state m’ can be calculat-
ed by means of the theory of semi-Markov processes, using
the Kolmogorov-Feller equations under the assumption
that at time ¢ the system was in the state n:

Cormn(t + T = €, (7) = d,, exp(~=7,,7). (29)

Hered,,,, is the probability of a transition from the plane n
into the plane m’, and in our case it is different from zero
onlyform'=n+ 1:
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Pyia) \ /
pan

.:ZI/J:-J“'/
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FIG. 5. Possible motion of the system in phase space for N = 2. a) Motion
in a definite plane m’ corresponds to the choice of the state of the system of
atoms | j,m’) (and the choice of the mth excitation path in Fig. 1). The
amplitude of the intracavity field is determined by fixing a point in the
plane. b) Stochastic character of the variation of the intracavity field.
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The quantity y,,, determines the probability of leaving the
plane n (y,, = 2,d,,;) and is equal to 2d(j + j* — n?) be-
cause the balance of the populations in this system is closed.
The inverse of 7, is the average time between transitions of
the system from one phase plane into another.

If at time ¢, the system passed into the state m’, then the
amplitude of the field on the given plane evolves toward its
stationary value at the pole according to the law

a(t) = gy = eXD(—K(t = )(@(t,) = o),

(30)

(31)

where a,,, = E /k + igm'/k and k ~ ' establishes the time
scale for reaching the stationary point a,,, . If

k' < At < dG+ R - m?y)T! (32)
the system will be found in one of the stationary states during
the time At. It is obvious from the inequalities (32) that for
m’' = j the condition for the appearance of stable states on
the limiting plane is Eq. (23) (maximally stable states). As
m' decreases, the states become less stable, and states with
m' = 4 1/2 for odd number of particles and m’ = 0 for an
even number of particles in the system are least stable. The
inequality (32) indicates the ratio of the decay rates of a
separate atom ¥ and the field & for which stable states can be
observed. At the critical value, as Q of the cavity decreases
continuously the successive appearance of 1 to NV + 1 stable
states in the collective model of N + 1 particles will be ob-
served experimentally. The single-particle problem solved
analytically in Ref. 10 (critical pointd /k = 1) and the prob-
lem for two particles interacting with the radiation inside the
cavity solved in Sec. 6 (critical points d/k =1/2 for
m'= 41 and d /k = 1/4 for m’ = 0), make it possible to
indicate exactly, by comparing with the condition (21), the

KRe a

|t

value of the ratio of the parameters y and k from which the
next stable state will arise as the ratio y/k decreases:

Qd/IkG + 2 - m?) = 1. (32a)

The phase trajectory of the motion after the first few
transitions, as one can see from Eq. (31), will be limited to
the segment [ &, ;@ pmayx | (see Fig. 6). In the stationary limit
of unstable states the system moves rapidly between the
poles lying closest to the center of the segment [ 0@ max |»
so that it can be observed mainly at the central point of the
trajectory. In the case of multistability, however, the system
spends most of its time near one of the poles. The difference
in the values of the amplitude of the field at the transition
from one pole to another is displayed in Fig. 6. On all points
of the phase trajectory the real part of the field amplitude
E /k is the same and the imaginary part increases in an arith-
metic progression with the difference g/k, starting with the
minimum value mg/k. Besides the phase difference between
the field at the entrance and a value of the field at the exit

P = arctg(gm'/E), (33)

a difference in the absolute values of the amplitudes also
appears:

Ala,,| = (E/RI( + (m'g/E)H'? - 11, (34)

which makes it possible to interpret the effect observed in the
system as amplitude-phase multistability. In the case when
the number of particles increases without bound, the maxi-
mum phase difference approaches 7/2, and the maximum
difference of the amplitudes increases as N.

Thus multistability of the states can be observed expe-
rimentally by comparing the amplitude and phase of the
incident field and the field exiting the cavity, for example,
by investigating their interference. It should be kept in

FIG. 6. Diagram of stationary values of
the complex amplitude of the intracavity
field for an even number of particles.
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mind, however, that in order to obtain all possible amplitude
shifts the system must be observed not over the time interval
At but rather over the interval AT~3, _ _;
X[2dG+/—m? ]~ "

8.POSSIBLE EXPERIMENT

The amplitude-phase multistability is more easily ob-
served experimentally than single-atom phase bistability.'’
The cavity Q in the multiparticle experiment can be made N
times smaller than in the single-atom case without destabi-
lizing the extreme states if the pump power is high and the
interaction is strong in order to satisfy the conditions (9).
The observed phase difference will be tan~'(gN/2E)/
tan ~ ' (g/2E) times greater than the difference Ag for the
single-particle problem.

The multistability effect predicted here can be observed
under conditions achievable in existing experimental facili-
ties. Thus in Ref. 14 bistability of the absorption type was
investigated for the case of strong interaction of a beam of
Cs atoms (A = 852 nm) with the field in a high-Q cavity
with  transmission coefficient 7,=4:10"° and
k=cTy/2L =27 (0.9 + 0.1) MHz, where L = 1 mm is the
cavity length. The interaction constant g, was of the same
order of magnitude as the spontaneous emission probability
y: [8o¥] = [27(3.2 + 0.2),5 + 0.4] MHz. The normalized
input pumping intensity ¥ =1,/ ([, To~10* (titanium-
sapphire laser with beam waist w, = 50 um), where I, =1
MW/cm?, I,./T, = (chiw/4rwiL) (E /k)?, makes it possi-
ble to estimate the Rabi frequency of atomic oscillations in
the experiment of Rempe et al.'* as ) ~ 10°g, for which the
conditions (9) are satisfied. In this experiment, however, the
relation (32) does not hold because of the large value of the
ratio 7/k. As the coefficient k increases with 2 ~ ' remaining
the shortest characteristic time in the problem, it becomes
possible to observe the multistability effect in the system of
atoms in the cavity.

In conclusion it should be noted that the predicted mul-
tistability of a system of two-level atoms in a cavity reflects
the quantum nature of the interaction of the atoms and the
radiation to a greater degree than the phase bistability of a
single atom in a cavity studied in Refs. 10 and 11. The phase
bistability effect can be explained by means of the quasiclas-
sical approach, treating the formation of two stable states as
a manifestation of stationary points on the Bloch sphere,'°
whereas such a quasiclassical approach, based on equations
for the averages (J,), cannot be used to explain the presence
of stable internal states in the case of a system of atoms. The
quasiclassical approach can only be used to explain the exis-
tence of two extreme stable states. A systematic quantum
approach, not limited only by the lowest-order averages
(J,), is required in order to explain the appearance of stable
internal states.
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APPENDIX

In this section we study the structure of the energy lev-
els of the many-body analog of the Jaynes—Cummings Ham-
iltonian'? for the case of exact resonance o = w:
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H = hwa*a + twl, + hga*i_ + al ), (A1)
for which there exists a system of eigenvectors constructed
from a superposition of eigenstates of the free Hamiltonian
(A1) withg = 0: |n — j — m) ;|m), (where the indices fand
a designate the eigenstates of the intracavity field and the
system of atoms) with a vacuum state corresponding to no
field quanta n =0 and the lowest Dicke state m = —:
|0) ;| —j) .. As shown in Ref. 13, the eigenstates of the inter-
action Hamiltonian #ig(a*J_ +aJ, ) are
k
12, n,7) = Y alln = j = m) |m), (A2)

m=-j

where the number n =0, 1, 2, ... corresponds to the number
of excitations in the “field + atoms” system,

J» for
k= .
n-—j, for

n =2,
n <2j,

and the number 7, ranging from — n/2to n/2 forn <2jand
from — jtojfor n>2j, labels the eigenstates of the Hamilto-
nian fig(a*J_ + aJ, ) which belong to a fixed number of
excitations n. The states |2j,n,r) are eigenstates of the Ham-
iltonian H with energy eigenvalues

=tw(n =) + Ey , po (A3)

ng.n,r
where E,; . are the eigenvalues of the interaction Hamilto-
nian

hg(a*T_ + al ,)|2), n, 1) = Ey |2, m, 7). (A4)

According to Egs. (A2) and (A4), the coefficients a, satis-
fy the recurrence relation

ap Sy — Ean +an St =0 (A5a)
with the boundary conditions
al, = aj,; =0, nz 2j, (A5b)
al; y=ap =0, n< 2j,
and the energies £, are found from the equation
-E s, O . 0 0 o
s", -E S, .. 0 0 0
det?, = o s, -E .. 0 0 0 | =0,
0 o0 0 S}, -E S
0 0 0 0 S; -E
(A6)
where S =#igy(n—j—m)(G+m+1)(j—m) and

E=E,,,,. The dimension of the matrix (A6) fixes the num-
ber of separate sublevels into which the energy level of the
free Hamiltonian E,, = #iw(n — j) is split for fixed values
of n and . Starting with the state n = 0, which corresponds
to the unsplit energy level of the single “intracavity fiel-
d + atoms” system with E,;,o = 0, as the number of exci-
tations increases, the number of sublevels corresponding to
the level E,, increases as n (Fig. 1). The maximum amount
of splitting is limited by the maximum dimension of the ma-
trix (A6) and is equal to 2j + 1. As the number of excita-
tions increases further, only the splitting of the sublevels in-
creases.
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From the recurrence relation for det” ;, obtained by
expanding the determinate (A6) with respect to the ele-

ments in first row,

det?, = Edet” ;| — (S2)%det? ,, (A7)
where the lower index coincides with the index of the coeffi-
cient §"_; in the first row of the determinant, it follows that
in the case when the dimension of the matrix (A6) is even
the splitting into sublevels E, is symmetric with respect to
E,,, and in the case of odd dimension, besides the symmetric
sublevels, there is also the level with E,;, , = 0. The corre-
sponding energy level diagrams for an even (2j=N = 2) or
odd (2j=N = 3) number of particles are displayed in Fig. 1a
(1b).

In the case of a large number of excitations in the
“atoms + intracavity field” system (for example, for a
large number of field quanta), such that

n > 2j, (A8)

the equations (AS) and (A6) can be solved approximately.
Indeed, setting in  Egs. (A5a) S, ~fig\n
Xy (j+ m +1)(j — m), we find that in this approximation
the equations (A5a) are equivalent to the following eigen-
value problem:

hen'/2 + I )y = Elyp), (A9)
where
J
Al0
lvp = 3 at|m),, (A10)

m=-j
and |m), are the eigenstates of the operator J,. The solution
of Eq. (A9) is obvious: applying the rotation transformation
(All)

T
J; = exp(—i % Jy)Jxexp(l b Jy),

we find that in this approximation the eigenvalues E are, to
within a factor, the same as the eigenvalues of the angular
momentum operator J ;:

= 1/2
Ezj'n" = .2hgn r,

and the eigenvectors |i;) are related to the eigenvectors
|r) =|m’) of the operator J ; by the relation

r=—jl2,..,jl2, (A12)

exp(-i5 I ) g = |7 (A13)

According to the last relation the coefficients a7, are deter-
mined by the Wigner d-functions and do not depend (for

n>2j) on the number # of excitations:
ot = dl (-7/2). (Al4)

Therefore the approximate eigenstates of the interaction
Hamiltonian with a large number of excitations have the
form
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/
12, n, 1y = 3, dl, (~x/2)|n = j - m), |m), -

m=—j

(A15)

Under the action of the external field with interaction Ham-
iltonian iE(a* — a) the “atoms + intracavity field” sys-
tem can make transitions between the states |2j,n,r). The
transition matrix elements are

2, n', r'|a|2j, n, 1)

J
= @Qj,n', 7Y &, (-x/2)

==/

X(n—j=m"Y2n—j—m—1)|m),

(A16)
= nl/zén',n- lér.f'

i.e., transitions between states with the same quantum num-
ber r are allowed for n>2j, and this is what explains the
existence of 2j + 1 independent paths of excitation of the
‘“‘atoms + intracavity field” system by an external field.
Moreover, since the approximate matrix elements (A16)
can be used to calculate averages of field operators for n> 2j,
the eigenstates (A15) can be represented in the factor form

lzh n, I'> = ln)/‘r>av (A17)

where the states ", =2 _ _.d%, (—m/2)|m), areiden-
tical to the “dressed” states (8) with ¢ = — 7/2.

'R. H. Dicke, Phys. Rev. 93, 99 (1954).

2M.S. Feld and J. C. McGillivray in Coherent Nonlinear Optics, edited by
M. S. Feld and V. S. Letokhov, Springer-Verlag, New York, 1980, p. 7.

3S. Ya. Kilin, Zh. Eksp. Teor. Fiz. 78,2157 (1980) [Sov. Phys. JETP 51,
1081 (1980)].

“R.R. Puriand S. V. Lawande, Phys. Lett. 72, 200 (1979).

*S. Ya. Kilin, J. Phys. B 13, 2653 (1980).

°G.S. Agarwal, L. M. Narducci, and E. Apostolidis, Opt. Commun. 36,
285 (1981).

’S. Ya. Kilin, Zh. Eksp. Teor. Fiz. 82, 63 (1982) [Sov. Phys. JETP 55, 38
(1982)].

8R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).

9C. M. Savage and H. J. Carmichael, IEEE J. Quantum Electron. 24,
1495 (1988).

'S, Ya. Kilin and T. B. Krinitskaya, JOSA B 8, 2289 (1991).

"'P. Alsing and H. J. Carmichael in Optical Society of America Proceed-
ings on Nonlinear Dynamics in Optical Systems, edited by N. B. Abra-
ham, E. M. Garmire, and P. Mandel, Optical Society of America, Wash-
ington, 1990, Vol. 7, p. 600.

2D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskif, Quantum
Theory of Angular Momentum, World Scientific, Singapore (1987).

'¥M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 (1968).

'*J. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble,
Phys. Rev. Lett. 67, 1727 (1991).

Translated by M. E. Alferieff

S. Ya. Kilin and T. V. Krinitskaya 582



