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We show that the emission spectrum of electrons which oscillate in a superradiant laser and which 
collide elastically with ions has its first well-defined maximum at a frequency which is higher than 
the laser frequency by a factor which is the ratio ofthe amplitude of the oscillations to the electron 
mean free path. The harmonic which is generated with a very broad spectrum has an amplitude 
which is sufficient for recording and this makes it possible to use this effect as a direct method for 
diagnosing the medium and the laser field. 

1. Recent work on the propagation of superradiant laser 
radiation in a demonstrates the appearance of a 
self-channelling regime with an increasing field amplitude in 
the nonlinear channel. Such a field (and smaller ones; the 
necessary intensity is I >  5 X 1016 W/cm2) leads to an appre- 
ciable electron oscillation amplitude which, in turn, guaran- 
tees the rapid further ionization and excitation of the ions.374 
Apart from the inelastic ionization and excitation processes 
considerably more frequent elastic "collisions" between 
electrons and ions then also occur in which the energy of the 
scattered electron remains unchanged. This distortion of the 
straight-line motion of an electron in a linearly polarized 
laser field causes it to radiate (in addition to the emission 
caused by its oscillations in the laser field). One may expect 
that the intensity of such radiation will be rather large, since 
the number of elastic collisions is rather large in a dense 
plasma-at least two per electron in a period of the laser 
radiation.' Note that one can call this medium a plasma only 
for simplicity, since the ions in it remain cold during the 
whole of the laser pulse (7, < 10-12 s )  while it takes the 
electron component approximately the same (in a very 
dense plasma) or a longer time to acquire a Maxwell distri- 
bution. The amplitude and spectral characteristics of the 
emission by the elastically scattered electrons may give im- 
portant information about the state of the medium and of the 
laser field. In particular, if the average number of collisions 
per oscillation period is M we may expect that the center of 
the spectrum of the radiation considered will correspond to a 
value wM/21r, where w / 2 ~  is the frequency of the radiation 
of the laser pump. If the spectrum turns out to be rather 
narrow, the result of such a physical process can be inter- 
preted as a stochastic generation of harmonics. 

2. We consider an electron in a cold ionized medium 
into which external strong electromagnetic linearly polar- 
ized radiation is introduced. We assume that the stochastic 
component of the electron velocity is small and that their 
dominant motion will be oscillations in the external field 
(see Ref. 6 for a quantitative criterion). The electron will 
collide with ions while oscillating; we denote its acceleration 
in a single collision by W. 

What will be recorded by an appropriate apparatus as a 
result of this elementary process? Let the apparatus record- 
ing the radiation be at a distance R,  from the active region 
where the interaction of the superradiant field and the sub- 
stance takes place. Using present-day laser sources this field 

may be produced in a very small volume of the substance 
(even the pulse length in 1 ps is 0.3 mm) so that we assume 
that R,  is much larger than the linear dimensions of the ac- 
tive medium. Let the angle between the "ion-electron" di- 
pole moment and the line of observing the radiation be 9- in 
the elementary collision process; the field is then scattered 
into a solid angle d  0 with an intensity 

at a distance R,. Here we have 6' *Q/dt = e W, Q is the 
dipole moment, c is the velocity of light, and e is the electron 
charge. Since the change in the dipole moment is in a direc- 
tion at right angles to the direction of the oscillations, Q is 
completely determined by the Coulomb interaction between 
the ion and the electron. 

The average field in the point of observation is clearly 
equal to zero, so that one must measure the intensity ( 1 ) of 
the radiation and its spectrum. The temporal picture of the 
radiation intensity when a single electron undergoes colli- 
sions will then be a sequence of random pulses. What will be 
random? 

First of all, the amplitude of each pulse is random. In- 
deed, in a collision in a screened Coulomb potential we have 

where we have written d  = Ze2/mvi, Z is the ion charge 
state, m is the electron mass, re is the screening radius (de- 
fined below), v, is the initial (random) electron velocity in 
the collision, and D  is the impact parameter, which is also 
random. We note that for all intensities which are of interest 
to us we have D ) d  (the oscillation velocity remains nonrel- 
ativistic) for the elastic collision processes, and we also have 
D )  r, by virtue of the physical fact that there are many parti- 
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cles in the screening "sphere." Expression (2)  then reduces which corresponds to the cross-section of the inelastic pro- 
to a simpler one: cess (excitation of an ion) involving the least energy, 

We determine the distribution function of the random quan- 
tity (a 2 9 / a t  2)rna,. The velocity v, has a distribution func- 
tion which is the usual one for the given class of  problem^:^ 

where we have v,  = eErn,, /mw and Ern,, is the amplitude of 
the laser field. 

The impact parameter D has a uniform distribution. Its 
limits can be determined from the following considerations. 
From a classical point of view the more "exactly" an elec- 
tron is incident upon an ion, the larger the energy it transfers 
to the ion and the higher the energy involved in the (inelas- 
tic) process it can trigger. For elastic processes the impact 
distance can thus not be less than some magnitude Dmi, 

The upper limit for the distribution function of the im- 
pact parameter D will be the radius for the screening of an 
ion by the electrons. One can deduce this radius re easily 
from the same considerations about the distribution of 
charges in a plasma as the Debye radius ( n  is the ion den- 
sity): 

where the averaging is carried out with the distribution func- 
tion f ( v )  of (3).  Taking into account the above physical 
restrictions, we can write the distribution function of the 
dimensionless random quantity (2a) in the form 

arcsin x1I2 - arcsin(ax)ll2 + (ax - a2x2)112 + (x - x2)ll2, x 5 1 

arnin(1 - ax)'I2 + (ax - a2x2)lI2, X Z I  

Here, as we noted, a is determined by the first inelastic pro- 
cess, a = (urn,, /r) 'I2/re. Since we have a < 1, it follows 
that C-2/r(1 - a ) .  We have thus completely determined 
the random quantity (2a). 

Second, the field at the point of observation is deter- 
mined not only by the amplitude of the random pulse, but 
also by its temporal shape (for a two-particle Coulomb colli- 
sion the length of the pulse is infinite). In dense gases the 
Coulomb potential is screened, so that it will be very reason- 
able to assume that the electron collides only with the near- 
est ions and after that undergoes the next collision, and so 
on. For such an approach we must choose a model shape of 
the pulse which should correspond well to the physics of the 
problem. The simplest and most natural approximation here 
would be a rectangular pulse. Indeed, there are many colli- 
sions per period, while an analysis shows that the velocity 
and the impact parameter cannot change strongly during a 
single collision and that the electron goes straight from one 
collision into another one. The length of the pulse is then a 
random quantity in exactly the same way as the magnitude 
of the time interval between pulses. 

In the two-particle model of the collisions considered 
the length of the pulses and the time interval between them 
are thus independent random quantities which are identical 
in the sense of distribution functions. These quantities are 
determined by the relation T = (nuu) -', where in principle 
we must take into account the v dependence of the cross- 
section u for elastic scattering. The reciprocal quantity-the 
collision frequency (this is a physically exact definition for 
the quantity which is the reciprocal of the time interval) thus 
has a distribution which is close to ( 3 ) .  It turns out that 
when we calculate experimentally measurable quantities we 
need know only the first and the second moments of the 
quantities r or T -  = Y. The mean collision frequency deter- 
mines the amplitude of the spectrum and the spread in time 
of the intervals between them determines its width. 

3. Rytov7 solved the analogous problem of calculating 
the spectrum of self-oscillations with pulses of random shape 
and length, and also with random intervals between them. 
The spectrum of the signal (in our case the spectrum of the 
intensity of the emission by the electrons) can be written in 
the form: 

with Y,, the average number of pulses per unit time which 
under our conditions is the same as the average number of 
collisions of a single electron: 

where the averaging is carried out with the function (3); 

is the mathematical expectation value of the pulse amplitude 
[this is a dimensional normalization of a dimensionless ran- 
dom quantity using the distribution function (4)  ], and Z is 
the dispersion of the pulse amplitude. One finds easily that 
a2 $ Z2, which we shall use everywhere in what follows. The 
functions K(w ) and H(w ) are7 the averages of the square of 
the Fourier transform of the pulse shape and of the Fourier 
transform of the pulse shape (we bear in mind that the pulse 
intensities are always positive). Under our assumptions 
their evaluation gives (v,, = 2v, /T) : 
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where Jo and Yo are zero-order Bessel and Neumann func- 
tions and 9 ( w )  is the characteristic function of the interval 
between the pulses. 

It is easy to show that for the physically interesting gap 
in the spectrum o=:2mm the first term in the curly brackets 
in (5) is much smaller than the second one, i.e., 

g(w) = 4maVa2 ( ~ ( a )  1 * Re(@(w)/ [l - @(@)I). (5a) 

In Ref. 7 it is shown that when the dispersion of the time 
intervals between the pulses is not too large the function 
@(w) can be written as an expansion in a Taylor series: 

@(a) = 1 - w2qr)/2. 

It is rather complicated to calculate the dispersion D ( r )  di- 
rectly, since one must construct the distribution function of 
a random quantity, the reciprocal of which has the distribu- 
tion function (3). We proceed as follows: the dispersion of 
the quantity 

For a sufficiently narrow distribution we can in this expres- 
sion replace v by vav , and according to the formula for the 
dispersion of a random quantity we then have 

Therefore it follows that 

Then we have 

The minimum of this function is approximately - 1 and its 
maximum approximately 4/nI2D (7) t& for 2vv/ 
vav = n' = 1,2,3, ... . In actual fact because of the effect of the 
function K(w) the spectrum is equal to zero at the origin, its 
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first maximum is expression (9) ,  and (5a) has the value 
zz 17.2. Hence the spectrum is resolved. Its half-width at half 
maximum in the vicinity of the first maximum is equal to 

At the zero level the half-width has the magnitude 
8 2  = D(r)y2,, and the spectrum is to a large extent smeared 
out. 

Thus, if M z  8, for 
\ 

the seventh and tenth harmonics of the laser radiation will be 
observed in the wings of the spectrum and the emission con- 
sidered here can then again be called the stochastic genera- 
tion of harmonics of the laser pump. For larger M neighbor- 
ing harmonics enter the spectrum, and it is therefore clearly 
no longer possible to call this emission, but for diagnostics 
the spectrum is useful (see figure) -the number M, vav , and, 
hence, the amplitude of the exciting laser radiation can be 
determined. 

4. We give a few estimates. The explicit expression of 
the spectrum obtained at the point of observation is a combi- 
nation of the spectra from all the electrons in the volume of 
the active medium. We bear in mind that the point of obser- 
vation is situated in the far zone. We shall assume the laser 
pulse to have the shape of a cylinder in space (the space-time 
shape of the pulse does not give a contribution to the spec- 
trum comparable to the ones considered). The total spec- 
trum G(o)  is 

Here Vis the volume occupied by the pulse and n ,  = Z n  is 
the electron density. For Z = 5, a pulse cylinder with radius 

cm and length 0.3 cm, n = 2.67 x 1019 cmP3, v, zO. lc 
(which for a KrF laser corresponds to an amplitude of 
1.24X 101° W/cm), a,,, z 10- l6 cm2, and Ro- 10 cm, we 
have G,,, ~ 0 . 3  g/s2. To find the maximum intensity which 
corresponds to that quantity we make the simple estimate 
G(w) Aw -I,,,,, , and it is reasonable in the light of what has 
been said before to estimate that Aw-a. We then have 
I,,, zz lo9 W/cm2, which is experimentally well observable. 

The maximum in the intensity of the spectrum is deter- 
mined by the relation vav/(w/2v) = I,,, /I where I,,, is the 
amplitude of the electron oscillations and I their mean free 
path with respect to elastic collisions. The cross-section for 
elastic collisions in a Yukawa potential with a screening 
length re is always of order 6.  In a plasma of moderate den- 
sity with an ion density less than 10'' cmP3 the mean free 
path turns out to be less than the mean distance between 
ions, which is physically impossible. In such cases we must 
therefore take for the mean free path the quantity n-'I3 and 
then we have vav = 2vm n113/aand ~ ~ 4 . 7 2 ,  i.e., one should 
see a distinguishable maximum in the region of the fifth har- 
monic (see figure). 

We make a few remarks about the angular spectrum of 
the scattered radiation. Since the original laser radiation is 
linearly polarized the "electron-ion" dipole shows maxi- 
mum emission in the plane at right angles to the direction of 
motion of the electron. The directivity diagram of the emis- 
sion will therefore have a toroidal shape -sin2 9 ,  where 9 is 
the angle between the polarization vector of the laser radi- 
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FIG. 1. Emission spectrum of electrons which are scattered elastically by 
ions in a strong field (see text for the physical parameters of the problem). 

ation and the direction of observation. Further analysis is 
needed to show whether an exact angular spectrum will give 
information about the medium and about the propagation 
process of the laser radiation. 

The frequency spectrum of the emission occurring 
when electrons which oscillate in a strong field collide elasti- 
cally with ions is thus rather well resolved (i.e., it changes by 
approximately a factor 20 from its minimum to its maxi- 

mum) and has a limited width, of the order of the frequency 
of the laser radiation. The maximum of the spectrum deter- 
mines the average frequency of the collisions of an electron 
with the ions and the amplitude of the laser field in the medi- 
um. Apparently, the proposed method is the first direct 
means of measuring the amplitude of such a strong field. 
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