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A theory of backscattering of particles inelastically colliding in a randomly inhomogeneous 
medium is formulated under the assumption the elastic and inelastic scatterings are 
sequential. Universal expressions obtained for the doubly differential backscattering spectra 
are valid for inelastic collisions of any physical nature. Manifestations of weak 
localization in the inelastic-scattering channel are considered. Coherent effects in the inelastic 
channel are shown to be manifested in the case q14 1 (q is the wave vector lost by the 
particle in an elastic collision, I is the particle mean free path in a disordered medium. 

1. INTRODUCTION 

The weak localization of light and of particles scat- 
tered in a disordered medium is known to be due to inter- 
ference effects that enhance strongly the backscattering 
near the "exactly backward" direction.'-7 Interest in this 
phenomenon has greatly increased of late, as attested by 
the large number of theoretical papers devoted to weak 
localization of waves of various types in randomly inho- 
mogeneous media.8-22 These papers report investigations of 
coherent effects in an elastic scattering channel; the weak 
localization was due there to multiple elastic scatterings of 
the scattered particle with randomly located elementary 
scatterers, which generally speaking cannot be regarded as 
being exactly in succession. In other words, under condi- 
tions of weak localization the next elastic collisions begins 
before the preceding one ends. For particles moving in a 
medium in which the scattering processes are symmetric 
with respect to time reversal, this corresponds to interfer- 
ence of waves passing through identical inhomogeneities in 
the forward and backward dire~tion. '~ '~ 

In addition to the study of the weak localization 
proper, it is no less of interest to gain an idea of the phys- 
ical processes that destroy coherent effects in disordered 
media. 

It was shown in Ref. 20 that the coherent effect will be 
suppressed if the system is subject to interactions that de- 
stroy the symmetry of the scattering processes with respect 
to time reversal. Such interactions are random motions of 
the inhomogeneities and gyrotropy of the 
spin-spin and spin-orbit interactions with the scattering 
centers,24125 and the presence of an external magnetic 
field.26,27 

Furthermore, as will be shown below, the coherent 
effects that lead to weak localization of scalar waves can be 
destroyed also in T-invariant systems. In the present paper 
we investigate the onset of classically weak localization of 
particles undergoing inelastic collisions in a disordered me- 
dium. Considering weak localization in an inelastic chan- 
nel, we assume that the elastic and inelastic collisions of a 
scattered particle succeed one another, therefore the new 
weak-localization type predicted in a recent paper28 will be 
disregarded. This approach is valid because the estimates 
in that paper demonstrate the existence of inelastic pro- 
cesses that can be regarded as fully consistent with elastic 

collisions of the scattered particle. One such process is col- 
lision of a charged particle with a "Cherenkov" bulk plas- 
mon, when the frequency of all the particle collisions is 
much lower than the plasma frequency. 

We begin with the Schrodinger equation of the wave 
function of a particle in a disordered medium, and consider 
on its basis the mutual-incoherence function of a particle 
wave function in an inelastic scattering channel. 

2. AVERAGE WAVE FIELD OF A PARTICLE IN AN INELASTIC 
SCATTERING CHANNEL 

The wave function Y,(r) of a particle scattered in a 
disordered medium with a random potential, subjected to a 
single inelastic collision, and located in the scattering 
n-channel, satisfies the Schrodinger equation 

in which m and En are the mass and energy of the particle, 
T(r,i-n) is a matrix element of the operator of the inelas- 
tic interaction between the particle and the medium, cal- 
culated from the wave functions of the aggregate of the 
medium particles in ground (i) and excited (n) states, 
while $i(r) is the wave function of a particle having in the 
elastic channel an energy Ej satisfying the equation 

We define also the Green's function Gn(r,rt) of Eq. 
(1): 

When solving (1)-(3) it must be borne in mind that 
the scattering medium occupies the half-space z)0, and 
take into account the boundary conditions at z= - co as 
well as the continuity of the corresponding solutions and of 
their normal derivatives at z=0. 

The solution of Eqs. (2) and ( 3 ) can be represented by 
infinite series suitable for finding subsequently the average 
wave field of a particle in an inelastic scattering channel. 
Before we do this, we define the integral operator 
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FIG. 1. Graphic representation of the coherent wave field of 

i i i 
a particle in an inelastic scattering channel. Diagrams of ze- 
roth (a), first (b), and second (c) orders in the incoherent 
elastic interaction operator SU. 

C 

in which the symbol SU corresponds to the fluctuating part 
of the random potential U(r): 

GkO is an integral operator corresponding to a Green's 
function of a particle having an energy Ek in a mean field 
Uau(r). The subscript a indicates that the operator SU is 
encountered in (4) a times. The action of the operator U: 
on certain functions is defined by the relation 

The solution of Eqs. (2) and (3) can now be repre- 
sented by the infinite series: 

m 

$i= $a + Ga Z U~JI~D. 
/3= 1 

(6) 

In Eq. (6) $a denotes a wave function of a particle of 
energy Ei in an average field. 

Bearing expansions (5) and (6) in mind, we can r e p  
resent the solution of Eq. ( 1 ) in the symbolic form: 

The expansion (7) for a coherent wave field of a particle in 
an inelastic scattering channel (of first order in the opera- 
tor of inelastic interaction of a particle with a medium) 
takes into account multiple elastic incoherent scattering of 
a particle both before and after the inelastic collision of the 
scattered particle. The wave function rCl, accords with all 
possible elastic-collision combinations, in each of which 
the particle momentum changes noticeably, and with a col- 
lision that alters the internal state of the disordered me- 
dium. 

The expansion (7) (without the "factors" G, and $a) 
can be set in correspondence with an infinite set of dia- 
grams shown in Fig. l, where a thin solid line corresponds 
to the operator GkO (k=i,n), a cross to the operator SU of 

elastic incoherent scattering, and a light circle with an out- 
going wavy line to the operator T(i+n) that describes an 
inelastic collision of a particle with the medium whereby 
the particle and the disordered medium go over from the 
ground i-state to an excited n-state. 

A diagram formulation of the expansion (7) permits a 
clearer description of the scattering processes and a simple 
averaging of the coherent wave field Jt, over the random 
disposition of the scattering centers. 

We assume next that the random field 6U(r) is Gauss- 
ian. We assume furthermore, when we refer to excitation of 
any one of the internal states of a medium, that this me- 
dium is fully homogeneous. This means that the matrix 
element T ( i 4 n )  in Eq. (7) is not a random quantity. 

Bearing this in mind we find that a contribution to the 
average wave field is made only by diagrams with even 
numbers of crosses, joined pairwise in all possible 

(see Fig. 2). Not all the diagrams in this fig- 
ure make contributions of like order to the average wave 
field. 

Consider diagrams containing two crosses (see Fig. 
2a). Two diagrams of second order in the elastic 
interaction-the second and third in the figure-differ, to- 
pologically speaking, from the fourth diagram in which the 
dashed line encloses a vertex corresponding to an inelastic 
collision. Let us compare the contributions of these dia- 
grams to the average wave field. To this end we change to 
the impulse approximation (see Fig. 3), in which a thin 
solid line to the left of the inelastic-interaction vertex cor- 
responds to 

and a similar line on the right of the inelastic-scattering 
vertex 

corresponds to two crosses joined by a dashed line, 
n I Uo(Q) 1 2, and the vertex of the inelastic interaction cor 
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FIG. 2. Graphic representation of the average 
wave field of a particle in an inelastic scattering 
channel. Diagrams of zeroth, second (a) and 

L j  fourth (b) orders in the incoherent elastic inter- 
action operator SU. 
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responds to the Fourier transform T(q) of the matrix el- The contribution of the diagram shown in Fig. 3a is 
ement T (r,i+ n ) . In all the equations kZ = 2 m f i - 2 ~ i ,  where determined by the equation 
n is the number of scattering centers per unit volume, q and 
Q are the wave vectors lost by the particle in inelastic and A,,(p,p-q) 
elastic collisions, respectively, &, is the energy lost, 
Uo(Q) is the Fourier transform of the fluctuation part of = n  l ~ Q I  UO(Q) I ' G ~ ( P - Q ) G ~ ( P )  ~ ( c l ) .  (8) 
the potential of a single scatterer. The quantity v describes 
the particle wave field damping due to its motion in the Owing to the presence of Gn(p) in (8), we shall be inter- 
average field U,, . ested in the value of A,, near p z k .  The presence of the 

iq x p - ~ / : - Q - k  
FIG. 3. Diagrams of second order in the incoherent elastic in- 

P - Q  P  \ / teraction operator SU in the momentum representation. 
\ 
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function Ga(p-Q) in the integral causes the main contri- 
bution to the integral to be made by the values of Q in a 
small region 6p' close to p' = I p - Q I - k. Changing to in- 
tegration over p' =p - Q we find thus that contributions to 
the integral are made on by the values of p' from a thin 
spherical layer (k,k+6p1). Using the estimates 

(Ref. 3 1 ), where I is the mean free path of a particle in a 
medium with an average potential U,,, we obtain 

is the cross section for elastic scattering by a unit center in 
the Born approximation. 

The contribution to the average field of the diagram 
shown in Fig. 3b is determined by the integral 

(we have changed directly from integration over Q to in- 
tegration over p'). The simultaneous requirements p' - k 
and I p' -q I - (kZ - 2mw,#T1) -'I2 (owing to the presence 
of two Green's functions) limits the region of those solid 
angles 6Rpf in the momentum p' space which contribute 
substantially to A,. Let us estimate this region. Variation 
of the denominators Ga and Gno yields, respectively, 

1 6 ~ ~ '  (p'-q) I =fi2 l ~ ' 6 ~ ' - 6 ~ ' ~  cos y-p'q6 

X cos y I /m -#k/ml, (lib) 

where y is the angle between the vectors p' and q. We find 
from ( l l a )  and ( l l b )  that sin 6y sin y= cos y/kl, or 

SRpp = 2 ~ 6  sin y(2~/kl .  

We can now easily obtain the integral ( 10): 

It follows thus from the estimates (9) and (12) that 
the relative contribution of the second-order diagram in 
which the dashed line surrounds the vertex that corre- 
sponds to inelastic collision (see Fig. 3b) is a fraction 

of the contribution of a second-order diagram without such 
a topological singularity (see Fig. 3a). Under the weak 
localization conditions we have kl% 1, so that the contri- 
bution made to the mean field from diagrams of the type 
shown in Fig. 3b can be neglected. 

Similarly, not all diagrams of fourth order in the elastic 
interaction (see Fig. 2b) make contributions of the same 
order to the mean field. It follows from the analysis above, 

the contribution of the fourth diagram of the figure in 
question is small and of order 1/2kl compared with the 
first diagram, etc. The result means in fact that if a diagram 
contains crosses both to the left and to the right of the 
inelastic-interaction vertex, the averaging on the left and 
on the right must be carried out independently, i.e., 

It was furthermore shown in [3 11 that the contribution 
of diagrams with intersecting dashed lines is exactly of the 
same order of smallness (i.e., the contribution of the third 
diagram of Fig. 2b is much lower than that of the first, 
etc.). Taking this into account, we should retain only the 
first, second, seventh,thirteenth and fourteenth diagrams 
with four crosses. Exactly the same would be done with 
higher-order diagrams. 

It follows from the foregoing that a contribution to the 
inelastic-scattering average wave field is made by diagrams 
with even numbers of crosses (disregarding the first dia- 
gram of Fig. 2a), having neither non-intersecting dashed 
lines nor dashed lines that surround the inelastic-collision 
vertex. 

Taking the identity (13) and Eqs. (5)  and (6) into 
account when (7) is averaged, we get 

Here (qi) is the average wave number in the elastic scat- 
tering channel, and (G,) is the average Green's function of 
a particle in an inelastic scattering channel; both averages 
satisfy the equationsz9 

in which Mk is the mass operator connected with Uk is a 
mass operator connected with U! by the relation 

and determined by the sum of the strongly connective 
single-row 

3. WAVE-FIELD MUTUAL COHERENCE FUNCTION IN AN 
INELASTIC SCATTERING CHANNEL 

We define the mutual-coherence function (the density 
matrix) for a wave field of particles in the nth inelastic- 
scattering channel: 

pnn(r1,r2) =pyg= ($ ; (~Z)$J , (~ I ) ) ,  (18) 
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and the mutual-coherence function for a wave field of a where the function $,, is defined by the expansion ( 7 ) .  
particleinthesamescatteringchannel,butwithoutincoher- Bearing in mind the definitions ( 1 8 )  and ( 1 9 )  and the 
entscattering: expansion ( 7 ) ,  we calculate the difference between ( 18)  

nnO - 
~ : n ( r 1 ~ 2 ) = ~ 1 2  - ( $ : ( r 2 ) ) ( $ n ( r 1 ) ) 9  ( 1 9 )  and (19): 
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We simplify Eq. (20) by averaging under the assump- 
tion that the elastic and inelastic collisions follow one an- 
other in succession. By the same token, we discard effects 
connected with the new type of weak local i~at ion.~~ 

Equation (20) contains nine paired terms, each com- 
prising the difference between the averaged product of two 
brackets, labeled 1 and 2, and the product of the corre- 
sponding mean values. In virtue of this, if (20) is graphi- 
cally represented by two-row diagrams, some of them will 
correspond to non-connective ones (in the "elastic" sense), 
i.e., such that the upper and lower rows are not intercon- 
nected by even one dashed line, whereas such diagrams are 
present in a combination consisting of a wavy line and an 
inelastic-interaction. We shall henceforth call such dia- 
grams "unconnected," for short. 

Diagrams corresponding to the expansion (20) (with- 
out external Gno and $, lines), up to fourth order inclusive 
(relative to incoherent scattering) are shown in Fig. 4. We 

have left out here diagrams of two types. The first contain 
intersections of a wavy line with a dashed line joining two 
crosses, one of which is located in the upper row and the 
second in the lower. This type of diagram describes, as we 
have already mentioned, weak localization of particles of a 
new type in the inelastic channel. 

The second type consists of two-row diagrams in 
which at least one dashed line surrounds an inelastic- 
interaction vertex. Diagrams of this type, as follows from 
our analysis in Sec. 2, make under conditions of a negligi- 
bly weak interaction a small contribution to the mutual- 
coherence function. Note that in this approximation the 
second and third paired terms in (20) make no contribu- 
tion at all to the mutual-coherence function. 

Summing the diagrams of this type and taking rela- 
tions (6) and (19) into account, we obtain the following 
expression for the mutual-coherence function of the wave 
field of a particle in inelastic scattering channeling n: 

The function rkk describes the evolution of a coherent 
wave field in multiple scattering of a particle of energy Ek 
in a substance, and is determined by the sum of all the 
connected diagrams without external (G) lines, but with 
internal propagation (G) lines; any two neighboring verti- 
ces of one row cannot be interconnected by a dashed line. 
The function p:. is the function of mutual coherence of 
waves in the elastic channel, which underwent no incoher- 
ent scattering in the substance in the elastic channel. 

Equation (21 ) for the mutual-coherence function p,, 
can be represented in graphic form (see Fig. 5. The thick 
solid line corresponds to the averaged Green's function, 
the shaded rectangle to the matrix T, and the partial circle 
to the density matrix of a particle not experiencing inco- 
herent elastic scattering in the elastic channel. 

The first diagram corresponds to inelastic collision of a 
particle not experiencing incoherent elastic scattering in 
the substance [the term in (21)l. 

The second diagram of this figure describes a particle 
which it experiences first an inelastic collision, and as it 
continues to move it is subject to multiple elastic incoher- 
ent scattering. The third diagram corresponds to a process 
with a reversed sequence of events-first multiple incoher- 
ent elastic scattering, and then a single inelastic collision in 

the interval between the repeated incoherent elastic scat- 
tering. 

Thus, in contrast to multiple particle scattering in an 
elastic channel (see, e.g., Refs. 8 and 19), the mutual- 
coherence function in an inelastic channel contains also 
terms quadratic in the operator T. 

Note that our assumption that the field 6U is Gaussian 
is of no fundamental principal significance and served only 
to decrease the number of displayed diagrams. 

We shall be interested henceforth not in the mutual- 
coherence function for the wave field of a particle in the 
inelastic-scattering in the n-channel, but in one for a situ- 
ation in which the final situation of the medium is not 
recorded: 

Pinel = C n P n n  . 

We must thus sum (21) over all possible excited states of 
the medium. 
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FIG. 4. Graphic representation of the mutual-coherence function of the 
wave field in the inelastic scattering channel of second and fourth order in 
the operator 6U when (a)  the incoherent elastic scattering is preceded by 
an inelastic collision; (b) the inelastic collision occurs between elastic 
incoherent scattering acts. Scattering with the sequence (a) reversed cor- 
responds to diagrams obtained from (a) by reflection about the axis pass- 
ing through the inelastic-collision line. 

4. DENSITY MATRIX OF A PARTICLE NOT UNDERGOING 
INCOHERENT ELASTIC SCATTERING IN THE S- 
SCATTERING APPROXIMATION 

The Hamiltonian of the interaction of a particle with 
elementary scatterers in a randomly inhomogeneous me- 
dium takes in the smattering approximation the form 

Strictly speaking, U(r) is a pseudopotential in which f is 
the exact amplitude for particle scattering by a single scat- 
terer (Ref. 32, (j151), and ra is the radius vector of the 
elementary scatterer. 

The averaged value of the potential is 

and is fluctuating part is 

S U ( ~ )  = - 2 d m - I f  ~ ( r - r , )  -n]. (23b) [ a 

The particle's average wave field with energy En is 
determined by an equation such as ( 15). We shall use an 
approximation in which the average wave field is deter- 
mined by the particle motion in the averaged potential U,, . 
In this approach the average Green's function is 
Gk= GO(Ek- Uau), where Go(E) is the Green's function of 
the particle in free space; this simplifies the summation of 
the diagrams for the density matrix pnn . 

Neglecting coherence effects on the interface between 
the vacuum and the medium, the solution (15) can be 
written in the form: 

where p= (kn),/kn,kn is the wave vector of the particle, 
In= (na:,,)-1 is the mean free path of a particle of energy 
E n ,  and a;o,= 4rk;  ' Im f is the corresponding total cross 
section for scattering by a single center (it is assumed that 
the scattering amplitude is independent of the particle en- 
ergy En).  We have left out the index i that relates this wave 
function to a particle in an elastic channel. 

Let us calculate the density matrix of a particle not 
subjected to incoherent scattering: 

Bearing ( 14) in mind, we obtain 

We use the Lehmann expansion33 for the function 
D(r,rf,w), which is equal to the difference between the 
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FIG. 5. Graphic representation of the mutual-coherence 
function of a wave field in an inelastic scattering channel. 

d 

retarded [DR(r,rl,w)] and advanced [DA(r,r',w)] Green's 
functions of the electric field in the substance (here h is 
the energy of the internal excitation of the medium. With 
the aid of this expansion we obtain for the arbitrary func- 
tion F(En= E- E,) the following identity which will be 
frequently used below: 

In view of the identity (27), we obtain from (26) 

We have used in (28) (Gok,) = (G,) I to denote 
the Green's function of a particle having an energy E - h  
and a wave vector k,, where k2,=2mfi-2(~-fiw). The 
integration over o in (28) has the meaning of integration 
over the energy lost by the particle. This allows us to con- 
sider the spectral density matrix p~nel(w,r,r'): 

We represent the Green's function (GokW) as a Fourier 
integral 

in which q= (q,,q,,) is a vector parallel to the interface 
between the vacuum and the medium, while R and R' are 

the parallel components of the vectors r and r'. Similar 
representations are valid for the wave function ($(k,r)) 
and the function D(r,rl,w) : 

Here kll is the component of the wave vector k and is 
parallel to the interface. 

Substituting (29)-(31) in (28) and changing to the 
spectral density matrix we obtain for 

the expression 

Let us show that the quantity p&el(q,w,z,z') can be 
expressed in terms of the cross section for a single inelastic 
particle collision in the substance, calculated neglecting co- 
herence effects. We use to this end an integral representa- 
tion for the Green's 

in which E - #Q2/2m, while the function($&(r)) is de- 
Q 7 

fined by relation (31) with k = Q  and Q= k,. 
The last relation may be put in the form 

We now transform (33) with allowance for (34). 
Note, first of all, that when wave processes are considered 
the dimension of the near zone is of the order of R z A ,  
where ;l is the de Broglie wavelength of the scattered par- 
ticles. At the same time, the average distance between in- 
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dividual scattering centers is of the order of dzn-ll3. If 
the density of the elementary scatterers in a randomly in- 
homogeneous medium is low, i.e., nil3< 1, we have d S  R. 
The latter circumstance allows us to take Gok,(q,z,zl) in 
(33) to mean its asymptotic value as z- CO. A similar 
statement holds aIso for ~ k , ( ~ , ~ 1 , ~ 2 )  (with zf - m ). 

Bearing this in mind, we can transform (34) in the 
above approximation into 

with the vector kq(w) = (q,(k; - q2)'l2). Substituting 
(35) in (33) we get: 

X D(q-kll ,w,zl9z2)$~(z2)h(z1). (36) 

We separate in (36) the doubly differential inelastic- 
collision cross section. To this end we calculate the ampli- 
tude of an inelastic collision of a particle located in the 
scattering n-channel: 

Defining the inelastic-scattering cross section differentiated 
with respect to the angle as1) 

where k and Q are the wave vectors of the particle in the 
initial and final states, summing over all the excited states 
with use of the identity (27), we obtain for the doubly 
differential inelastic-collision integral the equation 

Here S is the area of the interface. Comparing (36) 
with (38) we get 

Here z,zf > 0. Note that the function p&el(q,w,z,z) is 
the distribution function, in the substance, of particles 
which have not been incoherently scattered, with respect to 

the energy loss & and the longitudinal momentum trans- 
fer fiq, and which move in the medium at a distance z from 
the surface. 

The distribution of these particles with respect to en- 
ergy loss at a distance z from the surface in the medium is 
given by the function 

5. GENERAL EQUATION FOR ANGLE SPECTRUM OF 
BACKSCATTERED PARTICLES 

To determine the angle spectrum of particles that are 
backscattered in a medium and have lost an energy %.I, it 
suffices to know the distribution of the emitted particles 
over the components of the wave vector q parallel to the 
surface, for z= - 0. 

Here q=k,(l - P ~ )  po is the cosine of the angle be- 
tween the inward normal to the vacuum-medium interface 
and the direction of particle incidence on the surface, and 
p is the cosine of the angle of particle escape from the 
medium (p<O) for backward scattering), and (k:)ll is the 
wave-vector component parallel to the surface of the par- 
ticle in the final state. 

Let us calculate the contribution made to the back- 
scattering angle spectrum from each of the four diagrams 
of Fig. 5. 

The diagram 5a describes the contribution made to the 
backscattering spectrum by particles that underwent no 
incoherent elastic scattering in the substance. Clearly, the 
contribution of this term will be significant only if the in- 
elastic collision in the bulk of the substance is accompanied 
by a large change of the momentum of the particle moving 
in the medium, so that the particle motion changes direc- 
tion following an inelastic collision. 

To use Eq. (41) in this case, we must know the distri- 
bution ( 39) in the region z < 0. To this end we must repeat 
the reasoning of the preceding section, using in lieu of (35) 
the equation 

which, in contrast to (5), is exact; k; (w) = [q, - ( k i  
- q2) '/'I. We ultimately obtain 

895 JETP 76 (5), May 1993 E. A. Kantsyper 895 



With (41) taken into account, the contribution of this 
diagram to the spectrum is determined by the doubly dif- 
ferential cross section for inelastic collision of the particle 
in the medium, calculated neglecting incoherent elastic 
scattering: 

The contribution of the three remaining diagrams can 
be expressed in terms of the doubly differential cross sec- 
tion for an inelastic collision and in terms of the elastic- 
scattering angle spectrum. To demonstrate this, we obtain 
the connection between the angle spectrum Jel(po+ 1 p 1 ) 
for backscattering in an elastic channel, with a matrix 
rkk(r l  ,ri;r2,r;), describing the multiple scattering of a par- 
ticle with energy Ek in a randomly inhomogeneous me- 
dium. 

The density matrix of incoherently scattered particles 
of energy Ek in an elastic channel is determined by the 
integrallg 

The backscattering spectrum in an elastic channel is 
determined by an equation such as (41 ), with k replacing 
k, and a density matrix p$C instead of pinel. From (44) 
and from analogs of (31), (34), and (42) one obtains 

where 

while ki is the longitudinal component of the particle's 
wave vector in the final state. The matrix rkk in (45) is 
defined in the momentum representation as 

x exp (iq2R2 + iK2z2) exp ( - iq;R; - iK;z; ) . (47) 

Here R and z are, respectively, the components or the 
radius vector r parallel and perpendicular to the surface. 

Consider now the contribution made by the remaining 
diagrams to the angle spectrum by the inelastically scat- 
tered particles. 

The diagram of Fig. 5b describes the contribution 
made to the angle spectrum by backscattering particles 
undergoing first inelastic collision and then multiple elastic 
incoherent scattering. The corresponding density matrix 
for a particle in the inelastic-scattering n-channel is given 
by 

After summing over n (the procedure is fully analo- 
gous to that considered in Sec. 4), we change over to a 
spectral density matrix and use Eqs. (35), (42), and (47). 
The result is 

where 

The subscript w in these equations labels quantities corre- 
sponding to a particle energy E, = E- fio. 

We take into account expression (45) for the angular 
spectrum of backscattering in an elastic channel and 
change from integration over q' to integration over p l ,  
where 

The corresponding part of the spectrum is then determined 
by the formula (accurate to fio/E 4 1 ) : 

Similar treatment of the contribution of the diagram of 
Fig. 5c and corresponding to a reverse sequence of the 
events in Fig. 5b leads, as is easily verified by applying the 
arguments above, to the following contribution to the den- 
sity matrix 
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and to the spectrum (we omit the detailed calculations) 

Consider, finally, the contribution of the last diagram, 
Fig. 5d, to the backscattering angle spectrum. The diagram 
considered describes the contribution made to the spec- 
trum by particles that underwent multiple elastic incoher- 
ent scattering both before and after an inelastic collision in 
a disordered medium. 

The contribution of such particles to the density ma- 
trix is [see (21 ) and (52)] 

We proceed now to a the spectral density matrix, using 
Eqs. (35), (42) and (47) and recognizing that in the far- 
field approximation we have 

We then obtain for the quantity p!,"dl(q,z= --O;q,z= -O;w) 
that determines the corresponding angular-spectrum com- 
ponent: 

KO and Kq in (56) are defined by Eqs. (46) and (50), 
respectively, and 

The corresponding part of the backscattering angle spec- 
trum is determined with the aid of (41) and (45): 

In the derivation of (58) we changed to integration 
over the variables p1 and p2 [a similar procedure was used 
earlier, see (51)], and neglected quantities of order h / E .  

We have thus solved the problem of finding the back- 
scattering angle spectrum of particles following a single 
inelastic collision and a multiple incoherent elastic scatter- 
ing in a disordered medium. The angle spectrum of such a 
particle, which has lost an energy tiw by inelastic collision, 
is 

It is seen from (59) that this angle spectrum is ex- 
pressed in terms of the doubly differential cross section for 
a particle subject to inelastic collisions the medium without 
undergoing incoherent elastic scattering, and in terms of 
the exact angle spectrum of the particle backscattering in 
an elastic channel. Note that the angle spectrum (59) sat- 
isfies the reciprocity theorem (symmetry with respect to 
interchange of po and 1 p 1 ). At the same time the spectrum 
components J,  and Iei, resulting from scattering pro- 
cesses with opposite sequence of the inelastic collision and 
the multiple incoherent elastic scattering, do not satisfy 
separately the reciprocity theorem. 
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6. BACKSCATTERING ANGLE SPECTRUM IN THE CASE OF 
AN ISOTROPIC INELASTIC COLLISION IN THE BULK 
OF A SUBSTANCE 

Consider the case when the cross section for inelastic 
collisions in the bulk of a substance is independent of the 
scattering angle (isotropic inelastic scattering in the bulk). 

The doubly differential cross section in Eq. (59) 
should in principle take into account the influence of the 
surface on the inelastic-scattering process. This influence 
can be manifested in two ways-firstly, via the influence of 
the interface between the vacuum and the medium on the 
wave function of the particle in the substance (boundary 
conditions in the Schrodinger equation), and secondly, via 
the influence of the surface on the inelastic-scattering chan- 
nel in the bulk. 

The role of the second factor can, generally speaking, 
be extraordinarily great (see, e.g., Ref. 36), so that at 
glancing incidence of the particle on the surface the angle 
picture of the inelastic picture can be unusually greatly 
altered. It is therefore meaningless to consider, making the 
most general assumptions concerning the character and 
nature of the inelastic collision, the coherent effects due to 
the presence of an abrupt vacuum-medium boundary, sim- 
ilar to the effects of elastic incoherent scattering.37 This is 
precisely why coherent effects that occur at glancing entry 
and exit angles, were disregarded above. 

Nonetheless, the effect of the surface on the wave func- 
tion at not too inclined incidence angles can be taken into 
account. In the absence of absorption, the cross section for 
isotropic inelastic collision corresponds to a D-function 
whose Fourier transform with respect to the spatial vari- 
ables does not depend on the momentum loss (38) in the 
collision: 

where acol(o) is the cross section, integral over the angles 
and differential with respect to the energy loss tiw, of an 
isolated inelastic collision in the bulk of the substance in 
the absence of absorption, and V is the volume of the me- 
dium. 

We find now the double differential inelastic-collision 
cross section with allowance for the influence of the surface 
on the wave field of the scattered particle (at not too graz- 
ing an incidence); we shall assume here that at such inci- 
dence angles the surface does not influence the collision 
process in the bulk, and that the processes that attenuate 
the wave field of the particle moving in the medium do not 
affect greatly the properties of the material subsystem 
which is associated with the inelastic-scattering channel 
singled out by us. Consequently, the doubly differential 
cross section can be calculated by using Eq. (60). From 
(38) we obtain (with accuracy tiw/E( 1 ): 

We have assumed here that utot depends little on the en- 
ergy lost in the elastic collision, and have changed from an 
angle- integrated cross section for inelastic collision in the 
bulk to an angle-integrated probability Wcol = uucol/ V of 
such a collision per unit time; v is the fast-particle velocity. 

Bearing in mind (61) and the elastic-channel back- 
scattering angle spectra, expressions for which were ob- 
tained in Ref. 19 by summing ladder and fan diagrams in 
the expansion for the matrix r [see (44)] and are of the 
form 

( 6 2 ~ )  
one can obtain an analytic expression for the angle spectra 
of inelastically scattered particles in a randomly inhomo- 
geneous medium. Note that (62b) describes the contribu- 
tion of ladder diagrams to the angle spectrum of elastically 
scattered particles, and describes weak localization in the 
elastic channel; wo is the single-scattering albedo, 
H(p,wolG) is a generalization of the Chandrasekhar 
function,19 H(p,wo) =H(p,w0 I G=O), and 

The contribution made to Jinel by particles not sub- 
jected to incoherent elastic scattering is determined by the 
quantity (61): 

We calculate now the contribution of the second term in 
(59), assuming that tiwgE and taking into account for the 
time being only the contribution of the ladder diagrams to 
the elastic-scattering angle spectrum. 

The integral I(po,  I p 1 ) can be calculated by using the 
integral equation for the Chandrasekhar function:38 

so that 
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(64) 

The third term of (59) can be written in the form: 

We point out that the spectra (64) and (65) taken 
separately do not satisfy the reciprocity theorem. At the 
same time, their sum is symmetric with respect to inter- 
change of p0 and 1 p 1 .  

Let us calculate the contribution of the last (fourth) 
term of (59): 

We use the results of integrating Ji-e . Then 

The remaining integral can be taken by using the identity 
(75) of Ref. 38. We obtain ultimately 

Thus, in the case of an isotropic inelastic collision the 
backscattering angle spectrum is determined by the for- 
mula 

Strictly speaking, in the derivation of (67) we have used 
only the "ladder" component of the angle spectrum of 
backscattering in an elastic channel. It is easy to show that 
the contribution to Jinel of the "fan" component of the 
spectrum in the inelastic channel, a component due to 
weak localization, has an order of smallness ( kl) - ' ( 1, so 
that at the indicated accuracy Eq. (67) is an analytic so- 
lution of the problem of backscattering in an inelastic 
channel. 

7. ANGLE SPECTRUM OF BACKSCATTERING IN THE CASE 
OF A SMALL-ANGLE INELASTIC COLLISION IN THE 
BULKOFTHESUBSTANCE 

To determine the backscattering angle spectrum in this 
case, we must also obtain some expression for the doubly 
differential cross section for small-angle inelastic collision 
of a particle that has not undergone an incoherent elastic 
scattering. To do this, we examine the physical meaning of 
the analogous equation (61) in the case of isotropic inelas- 
tic collision. 

The factor ) ,u ) ,uFLO/( 1 p 1 +pO) is due to the presence of 
a surface separating the vacuum from the substance. The 
remaining multiplicative quantity is none other than the 
cross section for inelastic collision in an unbounded ab- 
sorbing medium. In fact, in a medium without absorption 
qnel is proportional to the volume V occupied by the me- 
dium. When the absorption is turned, damping of the wave 
field causes the particle to penetrate into the medium to a 
depth de,+l, where I is the mean free path. In a medium 
with damping the corresponding scattering cross section 
can therefore be estimated at ainelSdeff/V. 

This estimate corresponds to the results of Ref. 39 and 
permits the use of Eq. (61 ) in which the inelastic-collision 
probability per unit time must be replaced by the doubly 
differential inelastic collision probability Wcol(~,pO+p) 
multiplied by 4r: 

The differential probability of inelastic collision is different 
from zero in this case in a narrow range of scattering an- 
gles, 1 8- 8 1 <hes, where A8, is the characteristic region 
of scattering angles; p = cos 0, and po= cos 80. The inte- 
gral probability of inelastic collision of a particle in the 
bulk of the substance per unit time is 
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7.1. The case AO14 AOs42n 

Let us carry out the integration in the case of small- 
angle inelastic scattering, in which the characteristic scat- 
tering angle exceeds the angle range AOIz (kl)-' in which 
weak localization appears. 

The first term of (59), due to inelastically scattered 
particles not subjected to incoherent elastic scattering, does 
not contribute to the backscattering angle spectrum, since 
Wml(~,po+P <O) =o. 

Integration of the second term of (59) with allowance 
only for the ladder contribution to the elastic-scattering 
angle spectrum can be readily seen to yield 

In the integration over pl we took it into account that in 
the region of nonzero Wml (w,po+pl ), the angle spectrum 
in the elastic channel, calculated neglecting the weak lo- 
calization effect, is a slowly varying quantity and can there- 
fore be moved outside the integral sign. Furthermore, the 
integration region in (69) can be narrowed down to 
p E [O, 11 for small-angle inelastic scattering. 

Integration of the remaining terms in (59) yields: 

Elementary estimates show that the contribution of fan 
diagrams does not exceed in this case the value 
max(A8 JAOs ,her) 4 1. 

FIG. 6. Angle spectrum of backscattering in an inelastic channel. 
Case of isotropic inelastic collision: I- -o ,=O,  2--0,=0.25, 
3--00=0.50, 4--wo=0.75; Wc,l(o)/nvoI,I=O.l; po=l. 

7.2. The case AOs4AB1 

In this limiting case the contribution of the ladder di- 
agrams to the angle spectrum of the backscattering in the 
inelastic channel is determined by Eq. (70). The contribu- 
tion of the fan diagrams, however, is substantially altered. 

In fact, when integrating the second term of (59) it is 
now necessary to recognize that in the p region with non- 
zero differential probability WcO, ( w,pO -'p) the angle spec- 
trum ~2 due the weak localization, is by virtue of the con- 
dition AOs<A81 a slowly varying function and should be 
moved outside the integral sign, so that the corresponding 
correction is 

A similar contribution is made to the spectrum by a cor- 
rection stemming from the third term of (59). The contri- 
bution of the fourth term does not exceed the fraction 
(k1)-' of the contribution of the second and third terms. 

Thus, the correction to the spectrum (70) under the 
condition A8s<A81 is given by 

8. DISCUSSION OF RESULTS 

The backscattering angle spectrum in the inelastic 
channel, for an isotropic inelastic collision in the substance, 
is shown in Fig. 6 [Eq. (67)]. The calculations show that 
the contribution Jei-, to the angle spectrum of scattering 
processes in which the inelastic collision occurs in an in- 
terval between elastic incoherent scattering events is of the 
same order as the contributions J ,  and Jei of the scatter- 
ing processes that start or end with an inelastic collision. A 
characteristic feature of the backscattering in this case is 
that it is preserved even when the cross section uel of elastic 
scattering by a single scattering center is zero. The reason, 
as can be readily seen, is that even in the absence of back- 
scattering of the particle by scattering centers the back- 
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FIG. 7 .  Angle spectrum of backscattering in an inelastic channel. 
Case of small-angle inelastic collision, AO,>AO,. I--wo=0.25, 

10 - 2+0=0.50, 3-a0=0.75; wzi(o)/nuot,=O.l; po= 1 .  

scattering of the particles is preserved on account of scat- 
tering by the inelastic-interaction potential of the type 
considered. 

The angle spectrum for the case of small-angle inelastic 
collision at AOs%AOl is shown in Fig. 7 [Eq. (70)]. In this 
case the contribution J,, of scattering processes in which 
the inelastic collision takes place between elastic incoher- 
ent scattering events amounts to not more than 20% of the 
contribution of processes following the i+e  and e + i  
schemes. In contrast to isotropic inelastic collision, back- 
scattering vanishes completely at %, = 0. 

Greatest interest attaches, of course, to small-angle in- 
elastic scattering in which the characteristic scattering an- 
gle AOs is much smaller than the angle region AOl in which 
classical weak localization appears. Under these conditions 
the general picture of the angle spectrum remains the same 
as in the case of the small-angle inelastic collision at 
AOs)AOI, except for a narrow angle region close to the 
"strictly backward" scattering direction [Eqs. (70) and 
(71)l. The gain 

of backscattering is shown for this case in Fig. 8. 
Let us examine the scattering picture of this case in 

greater detail. It is known that the drastic enhancement of 
the backscattering in the elastic channel is due to interfer- 
ence of waves that pass through identical inhomogeneities 
in the forward and backward  direction^.^.^^ The situation 
differs substantially for backscattering of particles sub- 
jected to inelastic collisions in a randomly inhomogeneous 
medium. An inelastic collision disrupts the coherence of 
the waves, which pass in the absence of this collision 
through one and the same inhomogeneity. Obviously, the 
coherence of the waves considered is restored in the case of 
extreme small-angle scattering as q-0 (q is the wave vec- 
tor lost in the inelastic collision). 

A criterion of the violation of the coherence of the 
interfering waves is the relation between the angle AOs of 
the inelastic scattering and the region of angles A91 where 
weak localization occurs. The wave-vector transfer in 
small-angle inelastic scattering can be estimated at 
q=: kAOs. Weak localization in the inelastic channel is pre- 
served here if 

FIG. 8. Gain q of backscattering in an inelastic channel. Case of 
small-angle inelastic collision, AOs(AO,. 1+0=0.25, 
2+=0.50, 3--00=0.75; kl= 800, b= 1.  

-. 
-0.6" -0,4" - 0.2" 0 0.2" 0,4" 0,6O 8 
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Thus, the condition ql4 1 is the main criterion of the onset 
of classically weak localization in an inelastic scattering 
channel. 

Strictly speaking, for inelastic scattering in a semi- 
infinite medium one must take inelastic polarization pro- 
cesses into account.39 It can be shown that allowance for 
them amounts only to a redefinition of the single-scattering 
albedo, which should be taken to mean 

where acol(o) is the cross section, integrated over the an- 
gles and differentiated with respect to the lost energy, of 
the selected inelastic collision in the bulk of the substance 
[Eq. (60)], and N is the total number of scattering centers. 
The particle mean free path 1 of the particle in the sub- 
stance should be redefined similarly. 

In conclusion, we call attention once more that the 
analytic theory above was developed for a three- 
dimensional randomly inhomogeneous medium2) in an ap- 
proximation in which elastic and inelastic collisions are 
regarded as fully consecutive. Generally speaking, such a 
picture may not be obtained.28940 This more complicated 
case is beyond the scope of the present paper. 

" ~ t r i c t l ~  speaking, the squared scattering amplitude should be preceded 
by a factor k,Jk (Ref. 32, $144), which will be neglected throughout 
under the assumption that h < E .  

2'~eneralization to the case of two-dimensional disordered media entails 
no difficulty. 
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