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A system of noninteracting two-dimensional electrons in a strong magnetic field and a 
smooth random potential is considered. The structure of delocalized electronic states 
concentrated near equipotential lines is examined. Low temperature estimates of the 
diffusion coefficient and ohmic conductivity of electrons are obtained and the activated 
conductivity at fractional filling factors is qualitatively discussed. 

The conductivity of electrons in strong magnetic fields 
has been the subject of many theoretical and experimental 
studies. Particular interest has been shown in the two- 
dimensional case in which the quantum Hall effect is 
exhibited.' Previous ohmic conductivity calculations either 
used the self-consistent Born approximation2 or were based 
on the renormalization group approach3 and involved a 
qualitative analysis of the integral lines of the RG equa- 
tions. Application of numerical methods should also be 
mentioned in this connection. 

It is of interest to derive a simple physical picture for 
ohmic conductivity in a strong magnetic field, which is 
based on considering smooth random potentials in the 
framework of the so-called percolation model.4 This ap- 
proach allows a qualitative explanation of the integral 
quantum Hall effect and demonstrates its relation to the 
localization problem. 

The density of states in a smooth random potential is 
determined by the statistical distribution of potential val- 
ues at a given point. States far above and far below the 
mean potential value appear localized in the purely classi- 
cal picture of an electron drifting along an equipotential 
lime. Only states near the mean potential value (the perco- 
lation threshold) are delocalized and contribute to the 
ohmic and the Hall conductivities. A pure classical analy- 
sis of the localization length increase may be found in Ref. 
5. Reference 6 estimates the mean value of the quasiclas- 
sical decay coefficient for an electronic wave function with 
energy close to the percolation threshold. Reference 7 gives 
a quasiclassical treatment of dissipative transport but is 
restricted to the pure drift approximation. In the present 
paper, in contrast, the structure of delocalized one-electron 
states is discussed for the case of a nonzero magnetic 
length-a situation when hopping between various compo- 
nents of a equipotential line is important. 

1. EQUIPOTENTIAL LINE RELIEF NEAR THE PERCOLATION 
LEVEL 

If a smooth static potential varies slowly on a scale of 
the magnetic length, it is readily shown that the wave func- 
tions of the first Landau level concentrate near the equipo- 
tential lines and are of the form 

where Ah is the vector potential of the applied magnetic 
field; fo(n) is the oscillator function; n is the distance 
along the normal from the equipotential line V(x,y) = E of 
the random potential; and s is the length along the equi- 
potential line. 

It thus follows that the properties of a one-electron 
system are entirely determined by the geometry of its equi- 
potential lines. Equation (1) shows that the electron 
moves freely along the closed components of the equipo- 
tential line and that it tunnels between the components if 
their separation is less than, or of the order of, the mag- 
netic length IH. We assume that the potential correlation 
radius satisfies il)l,, so that only tunneling in the vicinity 
of saddle points is possible. More precisely, the presence of 
a saddle point at ro, VV(ro) =0, V(ro) =E, has the effect 
that the separation between the components of the equipo- 
tential line 

is reduced to about 1 AEI /V" (ro). Estimating the second 
derivative of the potential as 

we see that tunneling between the components of the equi- 
potential line V(r) =E is possible only if there is a saddle 
point in the energy interval E ~ E ,  where 

The angular brackets indicate an average over all possible 
realizations of the random potential. 

It is easily established that the contribution to conduc- 
tivity comes only from states whose energies are close to 
the percolation threshold V, : 

To see this, define the set LZ! of points obeying 
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and consider two closed components of the equipotential 
line V(r) =E. Clearly an electron of energy E can get from 
one component to another only if both of them belong to 
the same connected part of d.  If a state of energy E is not 
localized, d must contain an infinite connected compo- 
nent in it, and hence 

Saddle points lying in the energy interval V , ~ E  will be 
called submergible. 

It is currently believed that percolation exponents are 
universal and do not depend on the particular problem 
being studied (a site or bond problem, a specific lattice 
type, or the continuous limit). Assuming that the proba- 
bility of a given potential value is symmetric, 

and that the correlation radius il is finite, the continuous 
problem of determining the statistics of regions V< E is 
made discrete by introducing a lattice with a constant a<il 
and discarding the sites with V> E (see Ref. 8). In this 
case the percolation level corresponds to the zero of en- 
ergy, and from this point on we set Vc=O. According to 
percolation theory,' for each value of E there exists a so- 
called critical cluster such that the number of larger clus- 
ters is exponentially small. The size LC of the critical clus- 
ter can only be estimated approximately and is 
proportional to a power of the energy as measured from 
the percolation threshold, i.e., LC-E". Here v is the per- 
colation theory exponent having the numerical value of 
v z  - 1.33. Critical clusters are dense in the sense that their 
number per unit area is 

Let us take a closer look at the behavior of equipoten- 
tial lines with energies I E 1 < E near the percolation thresh- 
old. Consider first the case E=E > 0. The set of points with 
potential values V(r) < E (let us paint them white) con- 
tains finite-size connected regions and an infinite connected 
region, this latter enabling "white percolation" through the 
system. Making E smaller diminishes both the finite re- 
gions and the infinite one, whereas the perimeters of the 
finite regions V(r) > E (we paint these black) will become 
increasingly larger. At E=O, the finite black regions start 
to coalesce into an infinite black-percolation region, and at 
E < 0 the infinite white cluster breaks up so that only finite 
white clusters will remain. (Note that the original finite 
white clusters have been continuously shrinking with de- 
creasing E.) On the other hand, noting that the random 
potential distribution is sign symmetric, we see that the 
critical white clusters with E= -E must be the same size as 
the original critical black clusters with E=E. 

It thus follows that at E= -E critical white regions 
may only result from breaks in the original infinite white 
region. This means that the boundaries of the white critical 

FIG. 1. Pattern of critical clusters. Solid and dashed lines show equipo- 
tential lines V(r) = * m(lH/iL)* enclosing critical clusters. 

regions with E= -E pass within the original white infinite 
cluster. The symmetric picture which results is shown in 
Fig. 1, where the dashed lines E=E and the solid lines 
E= -E show the boundaries of large clusters of critical 
size LC. Between these lines there are saddle points ensur- 
ing that the finite regions (of either color) close on one 
another. Needless to say, the infinite region between the 
solid and dashed lines also contains shorter equipotential 
lines, down to about the random-potential correlation 
length; it is mainly the dips between these lines which form 
the submergible saddle points. 

We can apply relevant percolation theory results to 
estimate the width of the submergible region between the 
critical white and black clusters. If the conductivity of the 
white clusters with V(r) < E, E >  0, is a constant and the 
black clusters are insulators, it has been shown numerically 
that the bulk conductivity has a power-law E dependence 
with exponent r z  1.15. This means that most of the infinite 
cluster is ineffective from the point of view of conductivity 
(i.e., is occupied by dead ends, see Ref. 8). The effective 
width of the conducting region can be estimated by invok- 
ing the concept of a current-carrying wire mesh of dimen- 
sion LC with wire thickness h -P+'4 LC. The quantity h 
must be of the same order of magnitude as the thickness of 
the submergible neck connecting critical-size regions of the 
same color. A schematic illustration of a such a "contact" 
is given in Fig. 2. 

Similar conclusions hold for the perimeters of the crit- 
ical clusters on the length scale 4 LC. Figure 3a shows a 
typical portion of such a perimeter as well as the variation 
of the potential along a normal to the perimeter. Any value 
of V will be assumed an odd number of times and the drift 
velocities of the electrons will alternate in conformity with 
the sign of aV/an. To elucidate the qualitative features of 
the electronic wave functions, in the next section we dis- 
cuss the motion of an electron in a model channel in which 
each V=E level is encountered no more than three times, 
as shown in Fig. 3b. 

Our results rest on the assumption that a moving elec- 
tron does never go far away from the perimeter of a critical 

1056 JETP 76 (6), June 1993 S. V. lordanskii and B. A. Musykantskii 1056 



FIG. 2. Typical geometry of a contact between critical clusters. 

cluster. To prove this hypothesis, strictly requires a more 
detailed study of the equipotential line map of the system. 
For us here, it will suffice to refer to the special case of a 
long chain of low-lying islands with submergible saddles 
between them. In this case one-dimensional localization 
makes the wave function decay exponentially along the 
chain and so prevents the electron from going away. 

2. ELECTRONIC WAVE FUNCTION IN A NARROW CHANNEL 

While at a regular point of an equipotential line the 
wave function is given by Eq. ( I ) ,  near a submergible 
saddle the lines are strongly curved, the electron is scat- 
tered, and so a transition from one closed line to another 
may occur. In the vicinity of a saddle point the potential 
can be written accurate to second order as 

~ e c e n t l ~ , ~  scattering has been analyzed in such a potential 
in a strong magnetic field. The simplest way to solve this 
problem is to use the zero-Landau-level projection, in 
which case the kinetic energy of the electron becomes a 
constant fiwJ2, w, being the cyclotron frequency. The 

problem reduces to the study of the asymptotic behavior of 
parabolic cylinder functions with a single scattering pa- 
rameter 

Here we will only reproduce the final expression for the 
transfer matrix. Suppose to the left of a saddle point the 
asymptotic behavior is 

and to the right 

where f (i) is the quasiclassic asymptotic form ( 1 ) along 
the ray i and the rays are numbered as follows: 

The coefficients are related by the transfer matrix R, which 
is defined by 

and whose elements depend on Z alone: 

Here y = -F/2 ln 2+arg r( 1 +i&/2), where r (x) denotes 
the Euler gamma function. We assume Z> 0, which implies 
scattering from the left to the right equipotential line. For 
H<O the electron is scattered from the upper to the lower 
line, and we must replace i+ -i and E+ -Z in the matrix 
i. 

Qualitatively, the behavior of the wave function near 
the boundary of a critical cluster may be understood from 
a simplified model which permits the random potential to 
coincide with the given level three times at most (Fig. 3b). 
Since the use of the exact transfer matrix, Eq. (4), would 
be extremely cumbersome, we restrict ourselves to the 
weak-scattering case, as is customary in one-dimensional 
analyses. Thus we consider one-dimensional three-channel 
motion under the condition that in one of the channels the 
propagation direction of the electron is opposite to that in 
the other two in accordance with the sign of dV/dn. Even 
with this simplification the problem is quite a challenge if 

x x x FIG. 3. (a) Perimeter of a critical clus- 

A , ter and potential variation along the pe- 
rimeter normal. [b) Model for eluci- 

x x dating the behavior of the electronic 
A wave function at the perimeter of a crit- 

ical cluster. Crosses denote submergible 
saddle points. 
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we wish to take into account the real statistical properties 
of the quantity E which determines the permeability of the 
saddles and the discrete nature of their positions. Since we 
are only interested in qualitative results, we consider in- 
stead what may be called the Born case in which the scat- 
tering matrix defined at individual points is replaced by a 
continuously distributed quasiunitary transfer matrix (see, 
e.g., Ref. 10). The solution to the Schrodinger equation is 
a three-dimensional vector A = (Al ,A2 ,A,) whose compo- 
nents characterize the amplitudes of quasiclassical wave 
functions in each of the three channels considered (i.e., on 
each of the three equipotentials of Fig. 3b). The Schro- 
dinger equation itself transforms into a system of equations 
for the vector A, 

and the form of the transfer matrix over a small length 6x 
is 

where yo, yl,  y2, a l ,  and S2 are real functions of the coor- 
dinate x and it is assumed that scattering from the second 
channel into the third is impossible (in the second and 
third channels the electron propagates in the same direc- 
tion, opposite to that in the first channel). The wave func- 
tions are normalized so that each channel carries a unit 
current. The phases S1 and 62 are assumed to be indepen- 
dent, white-noise random quantities having identical dis- 
tribution: 

The diagonal elements of the matrix incorporate the 
systematic change of the phase of the wave function in the 
absence of scattering. It is assumed that the phase q, of the 
wave function ( 1 ) depends in a prescribed manner on the 
coordinate and the channel number. It is important that 
the phase varies rapidly, 

where o is a white-noise random quantity, and kj-Vqi is 
large (k$) 1 ) in accordance with the considerable change 
of the phase of the quasiclassical function ( 1 ) from saddle 
to saddle. 

As we shall see, the one-dimensional three-channel 
problem (5) differs significantly from the standard two- 
channel problem arising for a one-dimetdonal Schrodinger 
equation with a random potential. 

It is easy to see that the matrix ?preserves the mag- 
nitude of the current in each of the three channels. With 
the normalization condition adopted the total current is 

It is natural to introduce the scalar product 

The conservation of current under the transformation 
A= TA is equivalent to the invariance of the form (AB) 
under this transformation and may be written as 

? * g L g ,  g?*g= f-1, 

showing that the eigenvalues of the matrices f'* and f ' - I  

are the same. Each matrix has three eigenvalues: A T  ' , AT ' , 
A:', and A:, Af , A:, respectively. The case A?' = A: is a 
degenerate version of the more general situation in which 
A,' = A,* and A;' = AT hold (the choice of numbering is 
immaterial). Thus we have three eigenvalues whose abso- 
lute values are greater than unity, less than unity, and 
equal to unity, respectively. The above argument uses no 
other assumptions than the oddness of the number of chan- 
nels and the conservation of current, so it applies equally 
well to a transfer matrix for any finite length. The fact that 
the transfer matrix has an eigenvalue unit distinguishes the 
problem with an odd number of channels from the stan- 
dard two-channel model in which all the wave functions 
turn out to be lo~alized.'~ 

In what follows we present arguments demonstrating 
the absence of localization in the three-channel problem or, 
more precisely, we show that at any intermediate point of 
a disordered segment of length L, the average value of the 
wave function is bounded and L independent. The simplest 
way to show this is by assuming boundary conditions of 
the form 

where t and u are arbitrary complex numbers and the real 
number 8 is determined from the condition that Eq. (5) 
have a solution(s). We believe that our proof is quite gen- 
eral because at large values of L the dependence on the 
particular form of boundary conditions has to disappear. 

Using the definition (7) the boundary conditions (8) 
may be written as 

where 

Because the scalar product (7) is conserved, the conditions 
(9) may be transferred to any inner point of the disordered 
region 
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and averaged over the quadratic expressions where g+ (x) and 5- (x) solve (5) with the boundary con- 
ditions 

The conditions ( 1 1 ) yield A(x) to within the phase factor 
if g+ (x) and g- (x) are linearly independent-as indeed 
they are for the general matrix U(x). 

Now since 

it is natural to set 6 

where {2f. and {f are complex numbers such that 

16;12+I~f12=1. 

Thus the direction of the vector g+(g-) is determined 
by a point on a three-dimensional sphere s3. Using the 
conditions ( 11 ) it is straightforward to obtain an expres- 
sion for the square of the wave function: 

A=G{i- -m;- 
Now g+ and 6- are statistically independent (they are 

determined by the matrix C(x) on nonintersecting line 
segments), so that the equations for the corresponding 
functions may be considered separately. Setting 

8: = eia2 cos 4, {: = eia3 sin 4, 

the equation of motion for g+-which, we recall, is exactly 
Eq. (5)-transforms to the equations 

da2 -- 1 +c0s2 4 
dx - f2+S1 cos a2 cos 4 + S2 sin 4 cos a3,  

da3 -- 
1 +sin2 4 

dx -Y3+S2 cos a3 sin 4 + 6 1 c o s ~ c o s a 2 ,  (14) 

d4 -= - 
dx 

61 sin a2 sin 4 + a2 sin a3 cos 4, 

f 2 = ~ 2 - ~ 1 ,  Y 3 = ~ 3 - ~ 1 .  

The Langevin equations (14) can be solved by rapid- 
variable averaging1' assuming y2, T2%S1, a2 and treating 
the first two equations perturbationally. The distribution 
over 4 takes longest to establish. The corresponding 
Langevin equation is of the form 

where we have introduced 

From Eq. ( 15) we deduce the Fokker-Planck equation 
for the probability P(4) : 

One readily sees that the stationary distribution 

sin 24 
Pco (#,a2 ,a3 = T 

corresponds to a uniform distribution over the surface of a 
three-dimensional sphere. It can be shown that this distri- 
bution is a stable one with exponent e-4X''. Thus the dis- 
tribution P(4,al,a2;x) must rapidly--over a distance of 
order the mean free path-go over to a uniform distribu- 
tion over s3. 

In a similar way, it is shown that the direction 6- is 
also distributed uniformly over s3. At point x far enough 
from the ends of the interval, the average values of the 
squared wave function components I A1 1 ', I A2 1 2, and 
( A3 1 are found by averaging expressions of the form ( 13 ) 
over the independent distributions g+ and 5-. This yields 
identical values ( (Ai ( 2, = 1, thus showing the absence of 
an exponential growth in the wave function A(x). 

In the conductivity problem we will need the time in- 
terval r required for an electron to pass the disordered line 
segment of length L. This may be defined, for example, as 
a current for a normalized wave function, 

Generally speaking, to make use of Eq. (17) requires first 
to obtain the distribution of the wave function normaliza- 
tion integral Ji 1 A I2dx. Since we cannot prove that this 
quantity is ergodic, it is not legitimate to interchange the 
averaging and integration in the denominator in Eq. ( 17), 
but if we do interchange them we find approximately that 
the drift velocity is reduced by a factor of about three. 

There is an alternative method to calculate the time it 
takes an electron to pass the disordered segment. Consider 
a wave packet made up of states with close energies 

where E is the energy and 8 the phase introduced in (8). 
Then it takes a time r=dO/d~ for a spatially narrow 
packet to pass the disordered segment. We may obtain 
dynamic equations for dB/d~ and then construct the cor- 
responding Fokker-Planck equations, but this requires a 
knowledge of the simultaneous probability of g+, dgP/de, 
and d8/de and is therefore extremely cumbersome. The 
results give further evidence for the absence of localization 
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and show an insignificant (in order-of-magnitude) renor- 
malization of the propagation time with respect to the one- 
channel case. 

3. DIFFUSION AND CONDUCTIVITY ESTIMATES 

We have shown that close to the percolation threshold 
the electron propagates with a certain finite velocity v and 
that within the time interval rz  LJv it may be scattered to 
an equipotential of the same energy around another critical 
cluster. It is important that scattering by small-size clusters 
causes the smearing of the electronic wave function along 
the boundary of a critical cluster: the preceding section 
illustrates this for the three-channel case. We will assume 
that the smearing is by an amount h on the order of the 
thickness of the effective conducting "wire." Thus, refer- 
ring to the mesh introduced in Section 1, at those sites 
where critical clusters come close to one another, the elec- 
tronic wave functions have a significant overlap and the 
probability w for a transition between critical clusters is of 
order unity. 

Neglecting two-dimensional localization effects, the 
diffusion coefficient is estimated as 

where the quantity r has been introduced in the preceding 
section and denotes the drift time through L- LC. This 
gives tD=r/w for the diffusive transition time. On the 
other hand, the average level separation in the vicinity of a 
critical cluster is -fi/r. In order for localization effects to 
be absent, the Thouless criterion requires that the energy 
uncertainty WT due to the electron diffusing away be larger 
than the level separation. In the case discussed, the Thou- 
less number (the ratio of these two quantities) is estimated 
as F-W. We will assume that as the electron energy 
vanishes, E+O, the Thouless criterion is satisfied at a cer- 
tain Ec such that w(Ec) - 1/2. An alternative possibility 
arises from inelastic processes occurring at finite tempera- 
tures. Since the level separation satisfies Wr- 0 as E+ 0, it 
will eventually be overlapped by the level broadening due 
to these processes. In either case, we will observe finite 
diffusion and finite conductivity over states close to the 
percolation threshold. Remembering that the ohmic con- 
ductivity and diffusion are related by the Einstein relation, 
we obtain 

2 
"==i Wy 

where we have taken into account that the density of states 
near the percolation threshold is (1 /~:)  (Wr) .  The con- 
ductivity a, is nonzero only if 7 is sufficiently large that 
the quantity w(E) is of order unity (in which case the 
chemical potential p of the electrons should be close to the 
percolation threshold). 

If the chemical potential is far away from the percola- 
tion threshold (the localization region) then activated pro- 
cesses must be considered. Since wave functions at the 
chemical-potential level have an extremely small overlap 

with those at the percolation level, it follows that if an 
electron has occupied a level close to the threshold value, it 
is very long-lived (matrix elements are small) and so has 
enough time to be scattered by the random potential. It is 
these activated electrons which control the conductivity of 
the material. 

To estimate the ohmic conductivity in this case we 
write the total diffusion current over all the levels of the 
system: 

where f is the Boltzmann electron distribution function. 
Using the Einstein relation this gives 

the integration being limited to a very narrow interval near 
the percolation threshold in which electron diffusion takes 
place. 

Exactly similar arguments apply to the activated 
fractional-quantum-Hall conductivity. At filling factors 
close to a fraction of vc an incompressible Laughlin liquid 
forms and a small number of quasiparticles of charge e* 
appear. In the absence of a random potential, quasiparticle 
states are degenerate because translations fail to commute, 
and hence the quasiparticle velocity is zero. A random 
potential lifts this degeneracy and thereby enables the qua- 
siparticles to drift. The theory of the "boundary" states of 
such quasiparticles in a uniform field has been developed 
intensely in recent years. " Recently, activated conductivity 
with fractional filling factors has also been discussed. l2 The 
following qualitative description immediately follows from 
the existence of a quasiparticle gas. We note that in the 
system of quasiparticles there also exists a percolation level 
close to which the Thouless number reaches a certain crit- 
ical value, thus enabling diffusion to occur. Because of the 
dilute-Boltzmann-gas nature of the quasiparticles they can 
be treated very much like electrons and we find 

where p is the quasiparticle chemical potential and Vc the 
percolation threshold. Note that the integral in (22) is 
independent of the quasiparticle charge: while the energy 
range of the delocalized states is proportional to the qua- 
siparticle charge 

phenomenological arguments suggest that, in full analogy 
with electrons, the quasiparticle magnetic length is esti- 
mated by 

We assume that the incompressible Laughlin liquid has no 
screening effect on the random potential, with the conse- 
quence that the correlation length A is also independent of 
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v,. This agrees with the vied3 that there exists a direct 
relation between the quasiparticle charge and the preexpo- 
nential of the activated fractional-quantum-Hall conduc- 
tivity. 

In conclusion, the notion of a narrow interval of local- 
ized states near the percolation threshold enables one both 
to explain the qualitative features and to derive a correct 
order-of-magnitude estimate of the ohmic conductivity. 
The physical picture we have developed can provide a basis 
for a simple numerical simulation model for elucidating the 
nature of a singularity that occurs when the critical Thou- 
less number is approached. Attempts to derive the local- 
ization length increase either from purely classical 
considerations5 or from the average decay between critical 
clusters6 produce very rough estimates of seemingly no 
relevance to the true mobility-edge singularity. Finally, our 
discussion gives a clear illustration of the universal char- 
acter of activated conductivity at fractional filling factors. 
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