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It is shown that a class of exact solutions of the Einstein equations found by Robinson and 
Trautman reduces to the generalized Liouville equation on the Lobachevsky plane, 
when the corresponding Weyl tensor is Petrov type 111. Particular solutions of this equation 
have a moving logarithmic branch point, i.e., the Kovalevskaya-Painlevt integrability 
test does not hold. The existence of solutions with complex topology is demonstrated. The 
solutions can be nonsingular only on one copy of the Lobachevsky plane, which does 
not cover the whole solution of the generalized Liouiville equation. 

The gravitational field equations of Einstein posses re- a = - P.@/2r, B= -a*, y = H.J2. 
markable properties of internal symmetry, which, in par- 
ticular, manifest themselves in two-dimensional reductions 
of these equations (the GRT solutions admitting the two- 
parameter Abelian group of motions on V,). The GRT 
system of equations, viewed as a distributed Hamiltonian 
system with constraints, is in a certain sense inte~rab1e.l.~ 
one of the empirical "tests" of integrability of distributed 
systems is the property that the one-dimensional reduc- 
tions of these systems have no moving singularities upon 
continuation of the independent variable in these reduc- 
tions from the real axis to the complex plane. Evidently the 
one-dimensional reductions of certain classical integrable 
systems posses this property. Kovalevskaya demonstrated 
a brilliant example of integration based precisely on this 
property, of the equations of a heavy top. Painleve and 
Gambier have given an exhaustive classification of ordi- 
nary differential equations of second order of the type 
wl'= f (w,wl,z) (where f is a function rational in w and w' 
and analytic in z), which have no moving branch point. 
However at the present time a direct proof of the validity 
of the Kovalevskaya-Painlevt test for integrable physical 
systems does not exist. This increases the interest in finding 
moving logarithmic branch points in one-dimensional re- 
ductions of Einstein equations with a Weyl tensor of 
Petrov type 111, which are particular cases in the class of 
Robinson-Trautman solutions. 

The general solution of Einstein's equations in vac- 
uum, for spaces admitting congruences of null geodesics 
that are shear-free and twist-free, is given by the 
Robinson-Trautman 

where the function 9 is independent of r. 
For this solution, using the standard notation of 

~ewman-penroses in optical frames 

it is easy to count up the nonvanishing spin coefficients 

.< 

In particular, the spin coefficients k and a vanish, and 
p = p*, which testifies to the geodesic and shear-free nature 
of the normal of the congruence of the coordinate lines r. 
For the nonzero tetrad components of the Ricci tensor we 
have the expressions 

From the equations in the vacuum Rik=O readily follow 
these consequences: the coefficient H in the metric (1) is 
given in terms of P: 

while the function P satisfies the equation 

In the special case when m(u) =O the calculation of the 
Newman-Penrose scalars gives 

i.e., such solutions have a Weyl tensor of Petrov type I11 or 
N. It follows from Eqs. (3) for m(u) =O that the function 
P satisfies the equation 

2P( ln  P),,p= -3(f +PI, 
(3') 

where f = f (f,u) is an arbitrary function of the complex f 
and real u arguments. Further, it follows from (2), that 

2H=-3( f + p ) - 2 r ( l n  P),,. 

In the general case the solution of Eq. (3) can be obtained 
from the equation 

p=-l/r,  p=-H/r-(lnP),,, Y = - P H , ~ / ~ ,  with the help of the obvious replacement 
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This replacement is not an admissible coordinate transfor- 
mation for f,,#O, since it "spoils" the form of the metric 
( 1) for f,,#O. In a particular case the function f in Eq. 
(3) depends only on u and is real. Then Eq. (3') is trans- 
formed into the Liouville equation, whose general solution 
has the form 

It follows from formula (4) that in that case Y3=0 and 
therefore the solution is of Petrov type N, and the function 
f (u)  in the metric ( 1) can be set equal to a constant in 
view of the transformation 

If the function cp in formula (6) is independent of u then 
the metric ( 1 ) reduces to the metric 

d? =2du (du +dr) - ?dcpdcp*/(cp + q*  12. 

( 6 ' )  
This is a co-moving metric for the two-dimensional cosmo- 
logical model in the SRT framework (Milne's solution) 
describing cylindrical homogeneous scatter about some 
axis. The coordinate r is interpreted as the cosmological 
time r. Therefore the solution (6) describes for q,,&O an 
outgoing gravitational wave, depending on the retarded 
time u=r-z  and the spatial Lagrange variables c, and 
propagating in the direction of the previously mentioned 
axis z. 

The metric of this exact solution is expressed in terms 
of an arbitrary holomorphic function q(c,u), therefore by 
studying the function q(5,u) with multi-sheeted Riemann 
surfaces we can study solutions with a complex topology of 
two-dimensional space, in particular with the topology of a 
compact sphere with n handles for algebraic curves. As for 
as the general case (5), to this time2 only one exact solu- 
tion of this equation, found by Robinson, is known 

We show here that: 
1) Equation (3) can be reduced to the generalized 

Liouville equation in two-dimensional Lobachevsky space 
(space of constant negative curvature). 

2) One-dimensional reductions of Eq. (3') in the Lo- 
bachevsky plane can be found in semi-geodesic systems of 
coordinates. 

3) The one-dimensional reductions of Eq. (3') con- 
tain, generally speaking, a moving logarithmic singularity, 
i.e., upon continuation of the canonical parameter in geo- 
desics to the complex plane they contain a moving loga- 
rithmic branch point. Therefore these equations do not 
belong to any of the 50 types discovered by PainlevC and 
 amb bier.^ 

4) For one of the three types of the one-dimensional 
reductions that were found for Eq. (3'), this equation can 
be reduced to Emden's equation. 

The Robinson solution (4) turns out to be unstable: it 
coincides with a saddle-type singular point in the phase 
plane. A subclass of certain asymptotic solutions admits 
after coordinate transformations an interesting interpreta- 
tion. The solution of the generalized Liouville equation can 
be nonsingular on only one copy of the Lobachevsky plane. 
Thus the solution is not covered by a "single leaf" of Lo- 
bachevsky and the two-dimensional cross section of the 
space-time manifold for fixed u and r can have varied to- 
pology (in the compact case-diffeomorphic sphere with n 
handles). 

1. Following the substitution P= ((+c*)3/2@, Eq. (5) 
becomes 

This equation can be written in the form 

where A is the Laplace operator in the Lobachevsky plane, 
realized in the upper half-plane c+5* > 0 with the metric 

The lower half-plane S+g* < 0 constitutes with the metric 
(10) another copy of the Lobachevsky plane. With the 
help of the obvious substitution cp = - 2 In @ Eq. (9) goes 
over into the generalized Liouville equation in the Lo- 
bachevsky plane: 

Aq+3 exp q=3. (11) 

2. To find the one-dimensional reductions of Eq. (6) 
[or (11)] we make use of the semi-geodesic orthogonal co- 
ordinate systems 

It follows from the condition of constancy of the neg- 
ative Gaussian curvature of the surface with internal met- 
ric (12) that these metrics can be of one of three types: 

du2+ch2 ~ d u ~ = s i n - ~ ( w )  (dv2+dw2), sin w= l/ch u. 
(15) 

The system of coordinates ( 14) can be interpreted as being 
polar, where the geodesic lines diverge from a finite point. 
In the system of coordinates ( 13) the geodesics diverge 
from an infinitely distant point. 

The system of coordinates (15) is constructed from 
nonintersecting divergent in both directions geodesic con- 
gruences. The family of lines u is constructed orthogonal to 
the geodesics u. The Laplace operator in the Lobachevsky 
plane takes the following form in the coordinate systems 
(13)-(15): 

where a ( u ) r d l n p / d u  and for the metrics (13)-(15) the 
function p is respectively equal to 

15 JETP 77 (I), July 1993 Garcia et a/. 15 



FIG. 1. FIG. 2. 

- 1, cth u, th u. (17) 

3. The ordinary differential equations for a function @ 
that depends only on the variable u have the form: 

Let u = uo be an arbitrary point where a (  u ) is analytic [i.e. 
uo# 0 in the case that a ( u )  =cth u] and admits the expan- 

2 sion u=uo+al (u-uo) +u2(u - uo) + ... . Then the solu- 
tion of Eq. (18) with the additional condition @(uo) =O is 
not analytic: 

(Here uo and A are arbitrary constants). 
The existence of a moving logarithmic branch point for 

Eqs. (18) means that they do not belong to any of the 50 
canonical types of Painlevt and p am bier^ of second order 
equations of the form 

with the function f analytic (locally) in z and rational in 
w and w', which have no moving branch points. Evidently 
this circumstance provides indirect evidence that Eq. (9) is 
not integrable, since all known one-dimensional reductions 
of integrable systems have no moving branch points (Ref. 
71.') 

In the case a (u )  = - 1 Eq. ( 18) reduces to the Emden 
equation that arises in the theory of equilibrium of poly- 
tropic gas spheres.9 In that case we obtain from Eq. (18) 
for @=y=y(@) 

The point A is a node, near which the integral curves 
have the asymptotes (19) [near a (u )  = - 11. The point B 
is a saddle, and the solution @= 1 corresponds to Robin- 
son's solution. Thus Robinson's solution is unstable and an 
arbitrary small deviation from it leads to a solution given 
by one of the integral curves in Fig. 1, which passes 
through the neighborhood of the point B. 

To complete the picture we consider the behavior of 
the integral curves for @- rn. For this purpose we make 
the substitution 2y= - Y@ and denote X =  I /@~.  We then 
obtain from Eq. ( 16) 

XYdY/dX=3X+ Y-3. (21) 

The qualitative picture of the integral curves for this equa- 
tion is shown in Fig. 2. 

The integral curves have near the point C, i.e. as u- 
- rn, the following asymptote 

@-ae-3U/2(l - +peU+fi2e2"+ (p3/6- 1/4a2)e3'+ ...). 
(22) 

For u- + rn it follows from the asymptotes of the curves 
that have the Y axis as the asymptote when Y- - rn that: 

The integral curves satisfying ao=rnin @ > 1 do not pass 
through the node A. (see Fig. 1). Such curves have the 
asymptotes (22) for u+ - co and (23) for u- + rn. If, in 
addition Qo) 1, then formula (23) gives an approximate 
solution for all u, and min @ = a o  a (2pe/3 ) 3/2, which is 
reached for uo=ln 3/2p. 

For a (u )  =tanh u the approximate solution for the 
curves satisfying min @ = Qo) 1 has for all u the form 

@ydy/d@ = 3/2 (a2 - 1 ) +J? +yQ. (20) @ -- a ch3I2 u exp (fl arctg eU) . (24) 

The qualitative picture of the integral curves for this The minimum of @ is reached for u = uo, where uo satisfies 
equation is shown in Fig. 1. the equation 3 sinh uo+P=O. 
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Solutions similar to the solutions with the global as- 
ymptotic behavior ( 23 )  and ( 24 )  admit of an interesting 
physical interpretation. Let us consider the approximate 
solution of Eq. ( 5 )  for large P 

where the arbitrary holomorphic function f  does not de- 
pend on u. In the metric ( 1 ) it is convenient to pass to new 
independent variables f and f* in place of f and f* and to 
represent the arbitrary function f (  f )  [inverse to the func- 
tion f ( f ) ]  in the form of a derivative 

3 f ( f  ) = d q / d f ,  q=q ( f  ). 

Then the metric ( 1 ) takes the form 

At this point it is appropriate to recall Liouville's the- 
orem according to which every holomorphic function 
f '  ( f )  bounded in the extended complex plane can only be 
a constant and therefore the approximate solution ( 25 )  is 
not global in the f plane. However, in terms of the coor- 
dinates c( 10) variation in the complex plane results in two 
copies of the Lobachevsky plane and to select just one it is 
necessary to demand that f + f *  be either larger than, or 
less than, zero. In terms of the coordinates f  this leads to 
the requirement q' + q'* > 0.  In this way the metric ( 26 )  
gives the asymptote of the Robinson-Trautman solution if 
in the region - H= q' + q'* > 0  the function qf* + q* f is 
sufficiently small. We emphasize that there are no con- 
straints on the coefficient H here. 

For example, in the case of the solution ( 23 )  we have 
2 H = - 3 ( f + f * ) = - q ' - q ' * = 2 ~  In1 f 1 ,  where E>O. 
From the requirement f + f* > 0  follows that I f  1 < 1 .  In 
that region q f * + q * f = 2 ~ l  f21 (lnl f 2 1  - 1 )  is a small 
quantity. If one removes from the unit disc If  1 < 1 a small 
neighborhood of the origin I f  1 < E ,  such that I E In E ,  I 4 1 ,  
then in the remaining annular region E, < f < 1 the coeffi- 
cient H is bounded and the metric ( 26 )  represents a small 
perturbation of Minkowski space. Indeed, the unperturbed 
metric 

into the standard metric of Minkowski space in cartesian 
coordinates x,y,z,t. 

The coefficients of the metric ( 26 )  depend on f  and 
f*, which are respectively equal to the projective variables 
( x & i y ) / ( z + c t ) .  Here the Poincarh model of the Lo- 
bachevsky plane f  < 1 is represented in Minkowski space 
inside the cone h x + < I z + ct I, which moves with the 
speed of light progressively along the z axis. Therefore the 
Robinson-Trautman solution in the form ( 26 )  for the so- 
lution ( 23 )  takes place for any given instant of time only 
inside this cone. 

Physical explanation of the accumulated theoretical 
models of GRT is a necessary condition for their practical 
utilization. lo 

The authors view this research as one attempt at a 
study of the topology and physical meaning of one of the 
most beautiful solutions of Einstein's equations-the exact 
Robinson-Trautman solution. 

The authors are grateful to A. A. Starobinski; for stim- 
ulating discussion of the article. 

 his property of Eq. (9) distinguishes it radically from the equations 
obtained from the Einstein equations (as well as from the neutrino 
electrovacuum equationss) with two commuting Killing vectors (see 
citations in Ref. 8).  
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