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A general expression for the topological Novikov-Wess-Zumino (NWZ) term in the 
hydrodynamic action of Fermi superfluids is derived. It can be applied both to systems with 
gap nodes in momentum space, such as superfluid 3 ~ e - ~ ,  and to conventional 
superconductors with quantized+vortices. The action is expressed in terms of the volume of 
the 6-dimensional phase space k, 7 enclosed by the multidimensional vortex sheet 
swept by Green's function singularities. While in superfluid 3 ~ e - ~  this action describes the 
chiral anomaly in 3 + 1 dimensions, which results from the gap nodes, in the case of 
vortices the NWZ term results from the spectral flow along the anomalous branches of the 
fermions, localized in the vortex core. At low temperatures the flow of states through 
B=0 determines the parameter D' characterizing the reactive force between the vortex and 
the system of normal fermions (heat bath). This reversible momentum exchange 
between the coherent condensate motion in three dimensions and the 1-dimensional motion 
of localized fermions is equivalent to the Callan-Harvey process of anomaly 
cancellation. The number of the anomalous branches of fermionic zero modes on vortices is 
related to the vortex winding number. 

1. INTRODUCTION 

The hydrodynamic action for the bosonic collective 
(Goldstone) modes of ordered Fermi systems, such as su- 
perfluids and superconductors, is well defined only if there 
are no singularities in the fermionic Green's function, i.e., 
if the %rmionic spectrum has a gap everywhere in momen- 
tum (k) and coordinate (3 spaces. Some of the singular- 
ities in the Green's function are of topological origin, i.e., 
are described by the topological invari2nts in real space, in 
momentum space or in the extended k, r' space. These are 
(i) Fermi surfaces in normal metals and superconductors, 
which are stable topological defects in momentum space;' 
(ii) Fermi points or gap nodes as in the A-phase of 3 ~ e  
(see review 2); (iii) quantized vortices which are topolog- 
ically stable linear defects+in real space; and (iv) combined 
defects in the extended k, ; space, appearing, e.g. in the 
cores of 3 ~ e - ~  vortices (in a core with spontaneously bro- 
ken parity, the singularity on the vortex axis is smoothed 
by the formation of gap nodes in the vortex core; see review 
3). More exotic topologi+cal defects resulting from the to- 
pology in the extended k, ?space can be found in Ref. 4. 

As in the phenomenon of chiral anomaly in relativistic 
quantum field theory,5 in the presence of gap nodes there is 
a flow of the fermionic energy levels through the nodes, 
leading to anomalies in the hydrodynamics of superfluid 
2 ~ e - ~  at low temperature.@ In this case the effective hy- 
drodynamic action for the coherent (superfluid) subsystem 
becomes ill defined, since part of the action transfers 
through the gap nodes into the incoherent (normal) de- 
grees of freedom. The anomalous part of the action, which 
describes the superfluid-normal exchange, is the topologi- 
cal Novikov-Wess-Zumino (NWZ) action:-l3 

As was found earlier, the gap nodes in k space and the 
quantized vortices in ;space are particular cases of more- 

+ 
general multidimensional vortices in the extended k, r' 
space (phase space) .I4 Therefore one can expect that there 
is a general expression for the anomaly in the action which 
can be applied both to systems with gap nodes in momen- 
tum space and to systems with quantized vortices in real 
space. Here we derive such a generalization of the NWZ 
action, which comes from the Berry's phase.15 describing 
the feqionic spectrum in the classical approximation in 
which k and 7 are c2nsidered as independent parameters. 
In the case of the k-space vortices the NWZ action de- 
scribes the anomaly in the hydrodynamics of 'He-A dis- 
cussed earlier,"" while in the case of the ?-space vortices 
the NWZ action describes the anomaly related to the spec- 
tral flow along the anomalous branch of low-energy fermi- 
ons localized on vortices; this branch was found in Ref. 16. 
The number of such anomalous branches is related to the 
vortex winding number;" a similar (but not equivalent) 
relation occurs for the strings in relativistic quantum field 

The spectral flow along the anomalous branches of the 
fermions localized in the core of a quantized vortex in a 
Fermi supeduid determines at low temperature the pa- 
rameter D', characterizing the reactive force between the 
vortex and the system of normal (thermally activated) fer- 
mions and entering the force balance for the moving vor- 
tex: 

Here 2 is the circulation vector, given x=n?pdi/m, where 
n is the vortex winding number (number of circulation 
quanta) and m is the bare mass of the fermion. 

The first term is the conventional Magnus force which 
arises when the velocity & of the vortex is different from 
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the velocity of the condensate ;, (superfluid velocity), and 
p, is the superfluid density far from the vortex, which is 
close to the total density p at low temperature T<T,. 
This force is due to the flux of the linear momentum from 
the vortex to infinity. 

The second term is the friction force acting on the 
vortex when it moves with respect to the normal compo- 
nent (heat bath), while the last term is the reactive force 
which also arises when & deviates from the normal veloc- 

+ 
ity u, . At low T the reactive force describes the reversible 
exchange of linear momentum between the coherent con- 
densate motion in three dimensions and the 1 -dimensional 
motion of localized fermions, this exchange being mediated 
by the spectral flow in the vortex core. This process is the 
realization of the Callan-Harvey phenomenon of anomaly 
cancellation20 applied to the vortex. 

The result for D' appears to be general; i.e., it does not 
depend on the vortex core structure or on the type of pair- 
ing. This corresponds to some modification of the Lut- 
tinger theorem2' for the Fermi surface or gap nodes exist- 
ing within the vortex core. The parameter D' equals the 
volume in momentum space confined by the singular sur- 
face. This is either the volume within the Fermi surface 
which appears on the vortex axis in conventional super- 
conductors or the volume of momentum space within the 
surface spanned by the gap nodes which appear in the core 
of vortices in superfluid 3 ~ e -  B. This result is in agreement 
with the earlier calculations made for vortices in s-wave 
superconductors,22 3 ~ e - ~ 2 3  and 3 ~ e - ~ . ' 3 , 2 4  

In all these cases the anomalous NWZ action for vor- 
tices with winding number n is 

1 V; 
s,,,= 2an -$ I dtda i -  d j x  a,, i, 

(277) 
(1.2) 

where ?(t,a) is the vortex line position in terms of the 
coordinate a along the line, and V; is the corresponding 
volume in momentum space. In the simplest case of spher- 
ical symmetry, 

where k, is the magnitude of the momentum for which 
zeroes in the spectrum take place. The variation of action 
SSNwz/S; gives the last reactive force in Eq. ( 1.1 ) with the 
parameter 

Equation ( 1.2) has the same form as the regular con- 
tribution to the action for the vortices [25]: 

which gives the Magnus force in Eq. (1.1). As distinct 
from this regular term which exists both in Bose and Fermi 
superfluids, the NWZ action is related to the spectral flow 
of fermionic levels and therefore exists only in Fermi su- 

In Secs. 3 and 4, using the gradient expansion of the 
fermionic Green's function, we derive the general NWZ 
term in the action from which the particular cases follow: 
the anomalous contribution to the hydrodynamics of 
3 ~ e - ~  with the gap nodes and the anomaly in the vortex 
motion in conventional superconductors and in 3 ~ e - ~ .  In 
Sec. 4 an analog of the Luttinger theorem is discussed, 
related to the volume of the 6-dimensional phase space 
inside the multidimensional vortex sheet spanned by the 
Berry's phase singularity during the vortex dynamics. In 
Sec. 5 the anomaly in the vortex motion is derived using 
the phenomenon of spectral flow along the anomalous 
branches of fermions in the vortex core. 

2. GRADIENT EXPANSION FOR THE HYDRODYNAMIC 
ACTION IN TERMS OF A GREEN'S FUNCTION 

The standard form of the hydrodynamic action is 

where Tr is the trace over all quantum states, and T is an 
extra variable introduced to avoid the logarithm, with T= 1 
corresponding to the real physical world. The gradient ex- 
pansion holds if the Bose fields are slow in time and/or in 
space. If they are slow in time, one has 

dtdw 
G~,G- '(G~,G- 'G~,G- '  

where G is a local function of time. 
If we also consider the texture which is slow in space, 

we can neglect the spacing between the local discrete levels 
of fermions in the field of the order parameter of the tex- 
ture. Then we have 

with tr denoting the trace over the spin, Bogoliubov spin, 
and band indices, and the action can be expre~ed in terms 
of the spatially local Green's function G(t,w,k,zr). 

In this classical approximation the quantized vortices 
and gap nodes are described in the same manner. This can 
be seen from the simple BCS model in which the Hamil- 
tonian for fermionic quasiparticles is described by the 2 X 2 
Bogoliubov matrix: 

Here 

is the chemical potential, and A(& is the gap function. In 
the first case, of conventional s-wave pairing in the pres- 
ence of a quantized vortex with the winding number n of 
the phase @ ( a  around the vortex, the gap function is 

perfluids. It disappears if the spectral flow is suppressed. A(&,?) = I A ( ~  (exp i @ ( a  cc (x+iy)",  (2.5) 
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where the vortex axis is chosen along z. In the second case, 
of spatially homogeneous Cooper pairing into the state 
with n-fold gap node, the gap has the same structure as in 
Eq. (2.5), but in momentum space 

These two examples represent different orientations of 
the +same multidimension_al ~ortex~~singularity in phase 
@ ( k , a  in the extended k,; space. The real-space and 
momentum-space vortices thus can transform into each 
other; this takes place, e.g., in the core of the B-phase 
~ o r t e x . ~ " ~  The quasiparticle spectrum 

vanishes at k= kF , x =0, y =O in the case of the real-space 
vortices and at k= kF, kx=O, ky=O for the momentum- 
space gap nodes. These zeroes are the intersections of the 
vortices in the gap with the former Fermi surface k=kF 
and represent the diabolical points of the fermionic spec- 
trum where the quasiparticle branch touches the quasihole 
branch.26 

3. CONTRIBUTION OF THE GREEN'S FUNCTION 
SlNGULARlTlES TO THE EFFECTIVE ACTION 

Let us consider the contribution of the real-space vor- 
tices and the gap nodes representing vortices in momentum 
space to the hydrodynamic action. Equation (2.2) repre- 
sents the 3-form which also describes the topological de- 
fects of n3 homotopy group (or the n, group if we consider 
w=O). These poin: defects in 3 0  space, or 5D defects in 
the 8D space (r,t ,k,a, are the diabolical points of the fer- 
mionic spectrum where the quasiparticle branch touches 
the quasihole branch.26 

It is more convenient to represent the anomalous con- 
tribution to the integral over surface (5 r )  in terms of the 
singularities in the Berry's @(k,;,t,.r). The singu- 
larities in the Berry's phase @(k,Et,.r) occur at the cuts 
which terminate on the diabolical points. Just in the same 
manner the string terminates on the Dirac magnetic mono- 
pole, and the doubly quantized singular voitex in the 
A-phase terminates at the hedgehog in the 1 field (see 
review2). Around the a-th cut the phase changes by 2nn, 
n being the winding number of the defect. For the cross 
derivatives of the Berry's phase on the cuts, one has 

-GS(~)G-'GS(')G-~)G~,G-', 

(3.1) 

which means that according to Eq. (2.2) the anomalous 
part of the action is 

Let us apply this first to the gap nodes. We assume that at 
.r=0 there are no singularities, e.g., the chemical potential 
becomes negative, p(.r=O) < 0. Therefore no gap nodes in 

the fermionic spectrum exist until some critical value r, at 
which pairs of gap nodes with opposite topological charges 
appear. Since the cuts are absent at r=0 ,  at r > r ,  they 
should be chosen to connect the pairs of nodes. In this case 
all the cuts are inside the former Fermi surface of the 
normal system. In the simple model of Eq. (2.4) we may 
choose these cuts as the segments of the multidimensional 
vortices discussed in Ref. 14 ( 6 0  vortices in 8 0  space), 
which are situated within the former Fermi surface, i.e., at 
k<  kF . The different orientations of these vortices in the 
k,?-space correspond either to real-space vortices or to the 
cuts between the gap no+des. 

Let us denote by k(')(zt,r,a) the time- and space- 
dependent positions of the cut which terminates at the a-th 
pair of boojums in momentum space, a being the coordi- 
nate along the cut. From the equation 

one obtains the anomalous action 

It has the meaning of the volume in momentum space. 
We apply this result first+to the A+-phase o c 3 ~ e ,  which 

contains two gap nodes at k= =t kFI, where 1 is the unit 
vector of the orbital momentum. The nodes have the topo- 
logical charges *2 (*  1 per each spin component). 
Choosing the cut with winding number n = 2 as the straight 
line between the nodes: 

where a changes from - kF to kF , one obtains the familia; 
result for the anomalous term in the dynamics of the I 
~ e c t o r : ~ " ~  

The same equation, (3.4), should be obtained if one 
considers the motion of real-space vortices with winding 
number n. In this case 

where ?")(i, t ,r ,a) is the position of the vortex line, and 
one has 
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We again assume that at 7=0 there are no singularities 
even inside the vortex core; e.g., the chemical potential is 
negative at r=0 ,  and no Fermi surface exists until some 
critical value T, , at which the Fermi su+$ace appears on the 
vortex axis. Therefore the cuts ?")(k,t,r,o) are concen- 
trated only within the Fermi sugace. In this region the 
variables y) do not depend on k, and therefore the inte- 
gral over k gives the volume V i  inside the Fermi surface, 
which is 4nk;/3 for the spherically symmetric case. The 
variation of Eq. (3.7) over ?")(t,r,a), 

gives the reactive force on the vortex from the normal 
component 

This is, in a sense, the Luttinger theorem applied to a 
vortex. At T  < T ,  the parameter D'equals the volume in- 
side the Fermi surface, which appears in the core of the 
vortex. To elucidate this theorem for the general case let us 
consider the change of the anomalous action in the adia- 
batic process during which the system finally returns to the 
initial state. Examples are as follows: (i) a closed vortex 
loop is virtually created from the vacuum and then van- 
ishes again; (ii) a vortex line moves along some path and 
returns to its initial position; (iii) gap nodes are created 
and annihilated, etc. We consider first the process (i). As 
follows from Eqs. (3.8) or (1.2) the change in action is 
expressed in terms of the volume V; inside the surface 
spanned by the vortex loop in real space: 

This expression can be easily modified for the general 
case of the dynamics of a multidimensional vortex, includ- 
ing the gap node motion. The change in action is propor- 
tional to the number N of quantum states within the vol- 
ume of the phase space Vi,; inside the singular surfaces 
spanned by vortex sheet in 6 0  space: 

This shows that in such a process a certain part of the 
superfluid action is transferred into the incoherent degrees 
of the fermionic system due to the flow of states through 
the vortex sheet in the phase space. Since N is even due to 
double degeneracy of states (two spin components), the 
quantity exp{iSNwz/fi} does not change in the process of 
virtual creation of a vortex loop in real space or of a mul- 
tidimensional vortex sheet in the phase space. The situation 
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is different for the system with one spin projection, such as 
the A,=phase of 3 ~ e .  In this case the number N can be 
odd and exp{iSNwz/fi) can change sign. 

This result is somewhat different from that obtained by 
Haldane and WU,~'  who stated that the phase change con- 
tains the mean number of superfEuid particles enclosed by 
the surface swept by the vortex loop. Their consideration is 
related to the regular term in action, Eq. ( 1.4), which gives 
the conventional Magnus force and is also valid for Bose 
superfluids (e.g., superfluid 4 ~ e ) .  We consider an addi- 
tional phase change coming from the chiral anomaly term 
related to the spectral flow in the vortex core. Such an 
anomaly exists only in Fermi superfluids, That is why it is 
the number of fermionic quantum states, which gives the 
anomalous (topological) contribution to the phase change. 
This number can be very different from the mean number 
of superfluid particles. 

Above we considered the classical spectrum of fermi- 
ons and neglected the quantum (discfete) character of the 
levels localized in the texture of the I vector in the case of 
the gap nodes or within the vortex core in the case of 
quantized vortices. Below we take into account the dis- 
creteness of levels and show explicitly how the process of 
spectral flow of quantum states in the vortex core results in 
the linear momentum anomaly described by the NWZ ac- 
tion. The linear momentum anomaly appears to exist only 
if the relevant energy scales are larger than the interlevel 
spacing of localized ferrnions, which is of order T ~ / E ~  in 
conventional vortices, while at the lower energy scale the 
process of level flow is suppressed and D' -0. 

4. CALLAN-HARVEY EFFECT FOR VORTICES 

In axially symmetric quantized vortices in Fermi su- 
perfluids the energy levels E(n, ,nl ,k,) of the fermionic 
quasiparticles localized in the vicinity of the vortex core 
are characterized by the quantum numbers appropriate for 
the axial symmetry, namely, linear momentum along the 
vortex axis, k,, orbital angular momentum nl and radial 
quantum number n, The distance between levels with dif- 
ferent n, and that between levels with different nl at given 
n, are characterized by two energy scales, w, and wl corre- 
spondingly. In the singular vortex a, is of order of the gap 
parameter A - T, , while or- A ~ / E ~ ( A .  l6 The vortex dy- 
namics and thermodynamics are essentially different in the 
two regions of low temperatures A>T>wl and T < wl . 

We show here that the results of the previous sections 
are valid only in the region A> T %  qI .  On this scale there 
exist one or several anomalous (chiral) branches of local- 
ized fermions, corresponding to n,=O. The spectrum 
E(n,=O,nl ,k,) forms the a with nearly equidistant levels 
E(nr=O,nl ,kz) zwl(k,)nl, which as a function of (dis- 
crete) nl "crosses" zero energy and thus produces a finite 
density of states N(w) if w>wI . I6  Due to the discrete na- 
ture of levels there is no real crossing of zero energy, but 
this is unimportant if one considers an energy scale larger 
than wl . [Whether the spectrum E(n, ,nl ,k,) really crosses 
zero as a function of k, depends on the vortex core 
s t r ~ c t u r e . ~ ~ ]  So we assume that either o or the energy level 
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width 7- ' is larger than the interlevel distance ol between 
the nl levels, and in this case the energy spectrum can be 
considered as a continuous function of nl . 

Since the result does not depend on details and is com- 
pletely determined by topology, we consider here the sim- 
plest (and well-known) case of an axisymmetric singular 
vortex with a single circulation quantum n = 1 in a super- 
fluid or superconductor with s-wave pairing. The orbital 
quantum number nl is considered here as a continuous 
variable, so one can use the quasiclassical approximation 
for the fermions localized in the vortex core. The fermions 
with the given spin projection are described by the 
Bogoliubov-Nambu+Hamiltyian obtained from Eq. (2.4) 
by the substitution k=q'-iV with ?= @ 

where the gap function in the axisymmetric vortex with 
winding number n is given by Eq. (2.5). 

In this description we shall use instead of k, the mag- 
nitude of the transverse momentum of a quasiparticle 

41 =Id1 I = J R ,  

and instead of the orbital quantum number nl the contin- 
uous impact parameter 

which is related to the orbital angular momentum by 
iinl=ql y . Introducing the coordinate X= r'. 6 /ql along 
ql such that 6 =y+? and assuming that in the impor- 
tant regions one has 4 I XI, one obtains the dependence 
of the gap function in the singly quantized vortex (n = 1 )  
on X and 5 

and the Hamiltonian: 

The Hamiltonian H(O) is supersymmetric and has zero 
eigenvalue corresponding to nT=O with the eigenfunction 

Using the first order in perturbation, H('), one obtains 
the lowest energy levels: 

This is the anomalous branch of the low-energy local- 
ized fermions obtained in Ref. 16. If the energy spectrum is 
considered as a continuous function of n, , this anomalous 
branch crosses zero at nl=O (for more complicated vorti- 
ces the crossing occurs at finite nl ; this takes place for the 
3 ~ e - ~  vortices with broken parity and broken axial 
symmetry1) and in the 3 ~ e - ~  vortices with broken 
parity24). If one takes into account the spin degrees of 
freedom, there are two anomalous branches or fermionic 
zero modes corresponding to two spin projections. It is 
shown below that the number of such branches, N,, , is 
completely determined by the number n of circulation 
quanta, i.e., Nzm=2n. A similar relation, NZm=n, between 
the number of fermionic zero modes in the core of the 
string and the string winding number n holds in the rela- 
tivistic quantum field theories.18'19 The difference is that in 
the core of the string the spectrum of the chiral fermionic 
modes resulted from the nontrivial topological number n of 
the string exactly crosses zero as a function of continuous 
parameter k,. In condensed matter vortices the corre- 
sponding anomalous branches of topological origin are 
functions of discrete orbital quantum number nl. They look 
continuous only on the scale w& w,. (Branches of the lo- 
calized fermions which cross zero as a function of k, can 
also exist in condensed matter vortices, but the number of 
such branches is not connected with the topology of vortex 
line; it depends on the detailed structure of the vortex core, 
such as the core radius and the symmetry of the order 
parameter field within the core.28 These branches are not 
important here, since they are not of topological origin and 
do not contribute to the NWZ action.) 

Now let us consider a vortex moving with the velocity 
& relative to the heat bath. In this case the coordinate ;, 
is replaced by (il --ZLt); as a result the parameter yen- 
tering the quasiparticle energy in Eq. (4.5) is also shifted 
with time: 

where ~ ( g ' )  =z^.  (& X $) acts on fermions localized in the 
core in the way that electric field acts on fermions localized 
on a string in relativistic quantum field theory. Under this 
field there is a steady flow of levels across E=O, and the 
number of the fermionic levels crossing zero per unit time 
is 

+ 
The net linear momentum P transferred per unit time from 
the vacuum (from the levels below zero) along the anom- 
alous branch to the heat bath is thus 
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The factor 1/2 compensates for the double counting of 
particles and holes. This gives the D' parameter in the 
force acting from the normal component if the vortex 
moves with respect to the normal heat bath: 

Here it is implied that all the quasiparticles, created 
from the negative levels of the vacuum state, immediately 
become part of the normal component, i.e., there is a 
nearly reversible transfer of linear momentum from fermi- 
ons to the heat bath. This should be valid in the limit of 
large scattering rate: 1 / ~ %  wl. The small retardation in this 
process leads to the effective friction force D a wfrD' (see 
Refs. 22-24). In the opposite limit, when the characteristic 
energy scale is less than the interlevel spacing, the transi- 
tion between the discrete levels vanishes, and D' -0.22-24 

Note also that the parameter D', though being very 
close to the Fermi liquid density p, nevertheless is not 
exactly equal to p. The mass density equals m(ki/3?) 
only in the normal Fermi liquid where the Luttinger the- 
orem is valid, while in superfluids p is not equal to 
m(k;/3&) but is close to this value in the limit of small 
gap, A <Ep For a singular vortex in s-paired superfluids 
and superconductors the parameter D' corresponds to the 
density at the vortex axis, where the gap is zero and thus 
the Luttinger theorem does hold: 

It is is important however that, as follows from the general 
arguments of previous sections, kF here is the Fermi mo- 
mentum of the Fermi surface that exists on the vortex axis; 
therefore this kF coincides with the Fermi momentum of 
bulk Fermi liquid above T ,  only within our BCS model. 

The general relation between the number of fermionic 
zero modes, N,,, and the winding number n can be repro- 
duced using our simplified model. The number of the 
anomalous branches of the spectrum E ( 3  which cross 
zero as a function of Y, coincides with the number of to- 
pological zeroes of the classical energy E(Y, ?, p?). The 
classical limit of Hamiltonian (4.1 ) is expressed in terms of 
the vector function $ ( a  in the 3 0  space of parameters 
s'= (Y, 2, pj7) : 

&la,s(?) =;. $ ( a .  (4.10) 

The components of $ ( 3  are 

The number of zeroes of this vector function [points & 
where 6 ( & )  = O  and therefore E(&) =0] and thus the 
number of anomalous branches is given by the topological 
invariant [2] : 

aii a!$ 
9 (4.12) 

where the integral is taken over the closed surface a about 
zeroes. For the gap function 

in the vortex with winding number n one obtains Nzm=n, 
which should be multiplied by two if one takes into ac- 
count two spin projections. Thus the general relation, 
which does not depend on the detailed structure of the 
vortex, is 

Note that the quantity N,, changes sign for vortices 
with negative winding number. This is because the quan- 
tity Nzm is an algebraic quantity, since it also shows 
whether E(n,) increases or decreases when crossing zero 
energy is crossed. 

The general NWZ action in Eq. (3.2) describes the 
process of the transfer of linear momentum from the vac- 
uum of Fermi superfluids to the normal motion of fermi- 
ons. At low temperatures this process corresponds to the 
Callan-Harvey phenomenon of anomaly can~el la t ion .~~ 
The anomaly in 3 + 1 dimensions-nonconservation of the 
linear momentum of 3-dimensional superfluid Bose- 
condensate-is cancelled by the opposite anomaly in the 
1 + 1 dimensional world of the normal chiral fermions 
which exist in the vicinity of the topological singularity of 
the fermionic Green's function. In the case of the hydro- 
dynamics of 3 ~ e - ~  these low-energy chiral fermions are 
concentrated in the vicinity of the gap nodes. The 
1-dimensional character of these fermions was employed in 
Ref. 7 to introduce this analogy with the Callan-Harvey 
effect. 

In the case of the vortex motion it is a 1 + 1 dimen- 
sional anomaly in the dynamics of the 1 D fermions in the 
vortex core which compensates for the 3+ 1 dimensional 
anomaly. This superfluid-normal exchange gives rise to re- 
active force between the vortex and the heat bath. This 
force looks very similar to the Magnus force but is essen- 
tially different. The Magnus force exerted on a vortex by 
the superfluid motion results from the reversible flux of 
linear momentum from the vortex to infinity. On the con- 
trary the reactive force related to the Callan-Harvey effect 
is a consequence of the reversible flux of momentum from 
the vortex into the region near the vortex axis, i.e., into the 
core region. Within the core the linear momentum of the 
vortex transforms to the linear momentum of 1 D fermions 
when the fermionic levels on anomalous branches cross the 
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chemical potential. Due to the quasiparticle scattering, this 
momentum is further transferred to the heat bath of ther- 
mal fermions or to the walls of the container, thus produc- 
ing the reactive force between the vortex and the normal 
component of the liquid. 

This version of the Callan-Harvey effect does not de- 
pend on the detailed structure of the vortex core or even on 
the type of pairing, provided the important energy scales 
are larger than the interlevel spacing of the fermions local- 
ized in the vortex core. The effect is the same for the sin- 
gular and continuous vortices and depends only on the 
number of fermionic zero modes, as expressed through the 
topological winding number n of the vortex according to 
Eq. (4.13). The topological result (4.13) for the number of 
anomalous branches which as functions of the impact pa- 
rameter y cross zero energy remains valid for any super- 
fluids, in particular, for vortices in the p-wave superfluids 
of 3 ~ e - ~  and 3 ~ e - ~ .  In the case of singly quantized vor- 
tices in 3 ~ e -  B two anomalous branches have been obtained 
by Schopohl (see footnote1)). While for the most symmet- 
ric vortex they cross zero at y=O as in Eq. (4.5), for the 
vortex with the broken symmetry in the core the crossing 
occurs at finite This however does not change the (4.7) 
for the spectral flow or (4.9) for D'. 

The similarity of the anomaly in the vortex dynamics 
and the anomaly in the dynamics of the gap nodes in su- 
perfluid 3 ~ e - ~  is a consequence of the topology in the 
extended space (phase space). The same kind of intercou- 
pling of the real-space and momentum-space topologies 
has been found in 2-dimensional films of superfluid 3 ~ e - ~ ,  
where the effective Chern-Simons action determining the 
quantum statistics of solitons was obtained. This term con- 
tains topological invariants in both real and momentum 
spaces.29 This is just the conventional reduction of the 
Wess-Zumino term to lower dimensions. Since a homoge- 
neous film of 3 ~ e - ~  and a vortex in a Zdimensional film of 
a conventional superconductor are just different particular 
cases of multidimensional vortices in the phase space, one 
can expect that the reduced NWZ action should also de- 
termine the quantum statistics of 2 0  vortices. The possi- 
bility of different quantum statistics for 2 0  vortices was 
discussed in Refs. 30 and 27. However, Ref. 30 and 27 took 
the phenomenological approach using the conventional dy- 
namics of vortices based on the Magnus force, which is 
insensitive to the fermionic degrees of freedom in the vor- 
tex core. It seems that only the microscopic phenomena of 
the chiral anomaly occurring in the core vortices in Fermi 
superfluids should be responsible for the quantum statistics 
of vortices. 
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