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We calculate the energy spectrum and tunneling relaxation of hole population in double 
quantum wells. We use an analytical approximation that describes the mixing of states of heavy 
(h) and light (1) holes in the case of a large difference in their effective masses (mh% ml). 
Not only do the effective masses corresponding to longitudinal motion made smaller 
by such mixing; the tunneling matrix element acquires a dependence on the 2 0  momentum p 
(the case of zero tunnel coupling could manifest itself here as p increases). The well-to- 
well relaxation rate for holes in the event of scattering on acoustic phonons is examined as a 
function of temperature and the splitting energy A for a pair of tunnel-coupled levels 
(the latter is determined by the parameters of the structure or the strength of the transverse 
electric field). The A-dependence of this rate is found to agree with the experimental 
data. 

1. INTRODUCTION 

Tunneling of electrons and holes has been observed in 
various types of heterostructures (through a single or dou- 
ble barrier, from a quantum well to a continuous spec- 
trum) and in double quantum wells. Tunneling of photo- 
excited electrons in tunnel-coupled quantum wells is 
studied by optical methods (see literature cited in Refs. 
1-3). Tunneling relaxation of holes has also been observed 
in such experiments,"' with this process considerably 
slower. 

In describing hole tunneling, as in the case of passage 
of holes through a barrier,9-" one must allow for the mix- 
ing of states of the h- and I-subbands, which noticeably 
alters the results of a numerical cal~ulation'~ that takes 
into account the process of well-to-well tunneling relax- 
ation of holes in which impurities participate. This paper 
studies analytically, in the ml<mh approximation, the pro- 
cess of well-to-well tunneling relaxation of holes in which 
acoustic phonons participate, a process predominant in un- 
alloyed structures at moderate excitation levels. Here the 
drastic transformation of the spectrum, the nature of tun- 
neling in double quantum wells, and the transition-matrix 
element (in view of the multicomponent nature of the hole 
wave functions) lead to a noticeable modification of the 
relaxation process. 

Describing quantum-size holes is an extremely cum- 
bersome procedure even in the case of a single quantum 
we11,13 owing to the mixing, at finite longitudinal 2 0  mo- 
menta p, of the wave-function components corresponding 
to the +: and ki  angular momenta. The mixing dramat- 
ically changes the dispersion law of the ground state in the 
low-momentum range p < JmJmh(fi/dL,R), where dL,R 
are the widths of the left (L) and right (R) quantum wells. 
This fact, noted earlier for quantum-size films,14 calls for 
numerical calculations to describe the energy spectrum, 
scattering, or optical transitions of 2D-holes. Building an 
analytical theory for such processes proves possible in the 
case of markedly different effective masses of h- and I-holes 

in narrow-gap double quantum wells. Here the contribu- 
tion of states with angular momenta is taken into ac- 
count by allowing for the low-energy asymptotic behavior 
of the Green function of I-holes. As a result the spin- 
degenerate wave function of the ground state of 1-holes can 
be found explicitly from a one-component Schrodinger 
equation in which the 1-contribution is described by an 
integral term. The energy spectrum ep in the low- 
momentum range is obtained from a simple transcendental 
equation describing the transition from the parabolic dis- 
~ersion law (with a mass of the order of mr) for u 
h ~ m J r n ~ ( & ~ , ~ )  to the spectrum with a heavy mass fdr 
p 2 JmJmh(fi /d~,~).  Subbarrier penetration by the 
h-component of the'wave function is determined by the 
characteristic length x;', where fix =v2mhUU, with U, the 
valence-band gap at the heterobarrier, and the 
I-component contribution decreases under the barrier over 
a distance of the scale x i ' ,  where fixl -- dmU. 

Using these solutions as a basis in the L and R tunnel- 
coupled quantum wells makes it possible not only to find 
the energy spectrum and the wave functions in an approx- 
imation similar to the one used in Refs. 3 and 15 (here the 
tunneling matrix element proves to be p-dependent and can 
vanish) but also to write simple expressions for the matrix 
elements representing the interaction of holes with acoustic 
phonons (earlier in Ref. 16 only numerical results were 
obtained, and those pertained to a single quantum well). 
We write below concentration balance equations for pho- 
toexcited holes and obtain an expression for the time of 
well-to-well tunneling relaxation caused by DA interaction 
with acoustic phonons (for definiteness we assume that 
dL <dR,  with the hole going from the left well to the 
right). We restrict our discussion to the case of low hole 
concentrations, so that Coulomb relaxation is insignificant 
owing to interparticle scattering or scattering on acceptors. 
Since in what follows we allow only for the coupling of a 
pair of the lowest hole states of the left and right quantum 
wells, the parabolic approximation can be used to describe 
the energy spectra of these states. We consider the situation 
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FIG. 1. (a) The energy structure of a double quantum 
well. (b) The spectrum of holes in the lowest subbands of 
the L and R quantum wells, and well-to-well relaxation. 

in which processes involving optical phonons are forbidden 
(the conditions imposed on the level separation A and tem- 
perature T are similar to those discussed in Ref. 3 for the 
case of electron relaxation). Here the matrix elements rep- 
resenting the transition between hole states in double quan- 
tum wells differ from similar expressions for electrons be- 
cause of the contribution of the I-components of the wave 
function. This leads to a complex dependence of the rate of 
tunneling relaxation on the average hole energy and on the 
level energy gap A, whose variation is possible in structures 
placed in a transverse electric field. 

2. LOW-ENERGY HOLE STATES IN DOUBLE QUANTUM 
WELLS 

Hole states in tunnel-coupled double quantum wells 
are described in the (p,z)-representation by a four-row 
wave function 11::. It has also been found expedient to 
isolate in the Schrodinger equation the components $if 
and $:: describing, at p=O, the spin-degenerate states of 
the h- and 1-holes, respectively. For these components in 
the isotropic approximation we have the following system 
of equations: 

in which p, = (p, i= ip,) and bz= - ifi(d/dz) . The potential 
energy U(z) = UL(z) UR(z) is determined by the position 
of the extrema in the v-band and describes a barrier of 
width d between the L and R quantum wells of width d, 
and dR, with the band gap at heterojunctions equal to U, 
(see the energy diagram in Fig. 1). 

We exclude the I-component of the wave function from 
this system of equations by employing a Green function 
G5(z,z1) defined by the equation 

Considering the case of small 2 0  momenta, 
p (d /dL ,R ,  we discard in the right-hand sides of Eqs. ( 1 ) 
and (2) the off-diagonal matrix elements proportional top2 
and arrive at identical equations for the h-components 
$; and y9:z satisfying Eq. ( I ) ,  so that the spin-degenerate 
states are described by the following column matrices: 

with the wave function q~p"~ being the solution of the 
integro-differential equation 

I and qPz related to q ~ ; ~  by the formula 

It has proved expedient to transform the right-hand 
side of Eq. (5)  by isolating the integral term with the 
kernel [b&tG(z,zl)]. In the process the contribution pro- 

4 portional to p2 transforms into p2/2m1, in which m, z i m h  
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when mh)ml. Bearing in mind the low-energy asymptotic 
value of the Green function, G0(z,z1), we transform Eq. 
(5) to 

where 

The fact that here we use G0(z,z1) presupposes that 
f (?3i?/2mdi,R, which limits the energy interval consid- 
ered. 

When describing a pair of adjacent tunnel-coupled lev- 
els corresponding to the ground states of holes in the L and 
R wells, we expand the solution to (7) in the basis of L- 
and R-orbitals: 

*Lflk)  +*WE) (9) 

The functions p;:) ( i s  L,R) satisfy the equations 

where Ui(z) is the potential of the ith single well. Note that 
the orbitals introduced in this manner do not coincide at 
p#O with the wave functions of single quantum wells, 
since the kernel @(z,zl) is linked [see Eq. (3)] to the Green 
function of a double-well structure. Substituting expansion 
(9) into Eq. (7), we arrive at an equation for the column 
of coefficients qLp and qR, : 

where the energy E is measured (this convention is also 
employed below) from the point in the middle of the gap 
between the L and R levels, whose separation A 
= ELp=o - ERpFO is calculated using the values ELp and 
ERp obtained from the dispersion laws for the L and R 
wells by solving Eq. ( 10). In ( 11) we also used the dis- 
persion laws for the L and R wells evaluated from the 

extrema of these states, E~=E~-E~=,-,. The matrix ele- 
ment Tp describing the tunnel mixing of the L- and 
R-orbitals is defined as 

and is found to depend on the 2 0  momentum. 
Equation ( 1 1 ) has been obtained on the basis of the 

usual assumptions of the smallness of A (in comparison to 
the distance to the next levels) and the tunneling exponen- 
tial exp( -x,,d). Its solutions, which describe the hybrid- 
ized states I + ) and I - ), are 

Here Ap and xp are the initial and renormalized (due to 
tunneling) separations between the levels. The fact that the 
dispersion laws are not parabolic is due not only to the 
kinetic energies E~ but also to the variation of ip with the 
2 0  momentum. Note that when A) Tp, the I + ) states are 
localized mainly in the left well and the I -) states in the 
right. 

Thus, to describe tunnel-coupled hole states in double 
quantum wells, we must find the kernel (8) @(z,z1) de- 
fined in by solving Eq. (3), solve the eigenvalue problem 
( lo), and calculate the tunneling matrix elements Tp ac- 
cording to ( 12). 

3. CALCULATING THE PARAMETERS OF THE TUNNELING 
HAMlLTONlAN 

We calculate the dispersion laws for E@ and the tun- 
neling matrix element Tp, which enter into the two-level 
problem ( 1 1 ), for the low-momentum region 

In this approximation the solutions to Eqs. (10) assume 
the form 

T 3p2 dd2 772; 
exp xh zi+- -- 

di 

- [ ( :)I 8m1UvJ-dd2 
dzj+(z,z')cos- if zi<--, 

xhdi di 2 
di di 

coskizi if --<zi<-, 
2 2 

77 rrzj di 
dzj+ (z,zl) cos - if zi > - , 

di 2 
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where zL=zL(z) =z+ ( d  +dL)/2, and zR=zR(z) 
=z-(d+dR)/2. In the subbarrier regions we have re- 
tained the contributions that are proportional to p2 and 
contain slowly decreasing exponentials. Such contributions 
determine the subbarrier penetration by the I-components 
of the wave function, which is described by the integral 
term in (10). The transverse wave number ki is deter- 
mined from the transcendental dispersion equation 
tan(kp'J2) =xh/ki (here the fact that xhdi>l implies that 
kl= r/d,). The dispersion laws can be found from ( 10) in 
the first order in the integral contribution (in this approx- 
imation they are found to be parabolic), 

3 p 2 2  dJ2 di/2 7TZi -- - - - 
8 ml di I- d/2 dzi di/2 

dz,' cos - @ (z,zf ) 
di 

372; p2 
XCOS -=-, 

di -2mjr 

and for the tunneling matrix element we obtain, by substi- 
tuting the orbitals ( 15) into ( 12), the following: 

Now we employ the fact that the kernel @(z,zf) re- 
quired to calculate ( 16) and ( 17) proves to be independent 
of z and z' both for values of z and z' in the same well (case 
I)  and for values in different wells (case 11): 

where the constants c,, CR, and Fare given in the Appen- 
dix. These constants become equal to unity when   id^,^> 1. 
The integrals in ( 16) and ( 17) can easily be evaluated. The 
effective mass mT is defined by the expression m:/ml 
= 2/6ci,  and for the tunneling matrix element we have 

The heavy-hole contribution defined by the first term on 
the right-hand side of (19) differs from the electron 
c o n t r i b u t i ~ n ~ ~ ' ~  in the substitution of mh for the electron 

effective mass.') The second term can dominate because in 
addition to a small factor (&fi12 it contains a large mass 
ratio and an exponential factor that decreases less rapidly 
as d grows. The difference in sign between these two con- 
tributions is determined by the fact that in the subbarrier 
regions the orbitals ( 15) consist of two terms with opposite 
signs (the kernel @(z,zf ) proves to be positive every- 
where). Hence, T p  vanishes at a certain value of the lon- 
gitudinal momentum. 

Note that both the emergence of nodes at the tails of 
the ground-state wave functions and the dependence of the 
coefficients CL and CR on the widths of, respectively, the 
right and left wells (this dependence becomes essential 
when xl- 1) are due to the contribution of the mixing of 
I-states to the formation of the ground state described by 
the integral term in Eq. ( 10). 

4. WELL-TO-WELL TRANSITION PROBABILITIES 

When considering transitions between the I *) states 
defined in ( 13), we must know the transition matrix ele- 
ment reflecting the interaction of holes with acoustic pho- 
nons. In the deformation-potential approximation such an 
interaction is described by the product of the 4-by-4 
deformation-potential matrix Dij and the deformation ten- 
sor. Expanding this product in phonon modes yields'7 

where Q= (q,q,) is the phonon wave vector, A numbers the 
phonon modes, p is the density of the crystal, V the nor- 
malization volume, s~ the speed of sound of the Ath mode, 

the annihilation operator, and ehL the Ath mode po- 
larization vector. The expression for matrix Dl, can be 
found in Ref. 17. 

The probability of the transition between states ( +p) 
and 1 -p') due to the contribution of the Ath phonon 
mode to (20) is given by the following expression: 

where we have summed over the spin variables, ~ Q L  

= sAQ is the phonon frequency, Tph the phonon tempera- 
ture, and q= (p-pf)/fi due to conservation of the 2 0  mo- 
mentum. In Eq. (22) we used the elastic approximation in 
describing scattering, which is justified if the characteristic 
phonon energy 6sL/di is much lower than Lp. Here the 
characteristic wave number q, proves to be of the order of 
a-l. Since in absolute value the longitudinal wave vector 
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q= (p-p' )/fi is much smaller than d- I, calculation of the 
transition probability can be simplified if we assume that 
qgq, . Here the matrices (21 ) for one longitudinal mode 
(LA) and two transverse modes (TA1,,) are 

0 a + b  0 
gQ L A ~ i  

0 0 a + b  

0 0 0 a-b 

where the deformation constants describe the displacement 
of the valence-band extremum due to hydrostatic deforma- 
tion (a),  and its splitting under uniaxial compression along 
a cubic axis (6)  or along the cube's diagonal (d) .  The unit 
polarization vectors in (23) are selected as follows: 
~ L A ) I  Q, eTAll   LA 9 z, and ~ T A ~ ~    LA eT.4,. In the approx- 
imation adopted here, as (23) clearly shows, the LA-mode 
does not mix the I- and h-components of the hole states, 
and the TA-mode mixes the components q;, and ( ip ,/ ) q& 
of the column matrices (4). In this process the transition 
probabilities acquire additional small factors (pg/fi)2, and 
in the situation considered the transverse modes do not 
contribute much. (These modes can make a sizable contri- 
bution at pd/fi- 1, as they do in the case of a single quan- 
tum well. 18) 

The probability WLA( + p I - p' ) defined in (22) is ex- 
pressed in terms of the wave functions of the hybridized 
h-states obtained from (9)  in the following manner: 

FIG. 2. Graphs of K(x) and k(x,x;d/~?). curves I,?, 
3, and 4 correspond to _the function K(x,x;d/d) 
(magnified tenfold) at d/d=0.25, 0.5, 1.0, and 1.5, 
respectively. 

with S the normalization area. Substituting the wave func- 
tions defined in (9), ( lo),  and ( 13) into (24) and restrict- 
ing our discussion to the approximation ( T , J A ) ~ ~  1, we 
arrive at an expression for WLA in the form 

yhere ~ ; = + i ~ ~ ~ / d ; ,  and the functions K(x)  and 
K(xI,x2;d/2) after integration over z, z', and q, by the 
residue method can be represented in the form of rapidly 
converging series. For X,X,,~< 1 (high temperatures, when 
t&e phonons are uniformly distributed), K(x)  -- 1 and 
K(xl  ,x2;d/2) ~ 0 .  For x,xI,,> 1 ( zero-point oscillations) 
these functions exhibit a linear asymptotic_ behavior, with 
K(x)  -- 1.47~.  The graphs of K(x)  and ~ ( x , , x , ; d / J )  at 
x l=x2=x (the approximation of quantum wells with 
%early equal widths) are depicted in Fig. 2. The function 
K(x,x;~/J)  decreases as the ratio d / J  increases. 

Note that since the final-state momentum p' is of the 
order of a (as the law of energy conservation 
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E+,= E-,I implies), the second term in the expression for 
Tp [see Eqs. (19) and (AS)] proves to be of the order of 
Aexp( - x,d). Hence, in conditions of elastic scattering the 
strong inequality ( T J A ) ~ < ~ ,  which is used here and be- 
low and means that the overlap of the wave functions of 
the states 1 + ) and 1 - ) is small, can be satisfied only if 
exp ( - x,d) ( 1, that is, when the tunnel coupling is weak 
not only with respect to heavy holes but also with respect 
to light holes. 

5. TUNNELING RELAXATION TIMES 

When the overlap of the states in the left and right 
quantum wells is small, quasiequilibrium intrawell distri- 
butions f ,,(t) rapidly set in the wells. These distributions 
depend on the hole temperature Th (which we assume to 
be the same for both wells) and the Fermi quasilevels of 
the wells determined by the concentrations n, ( t ) .  The 
slow relaxation of the populations n, ( t )  is determined by 
the well-to-well transition rate 

in terms of which we can write the concentration balance 
equation 

with the total hole concentration n =n+ ( t )  +n- ( t )  con- 
stant. Assuming that the hole gas is nondegenerate, we 
introduce instead of (26) the well-to-well tunneling relax- 
ation rate v according to the relation 

where p - , and p + , are the Fermi quasilevels of the wells in 
the right and left quantum wells, and obtain an explicit 
expression for v. Here we bear in mind that the hole spec- 
tra for ( T / A ) ~ ( ~  and exp( --x,d) (1 (see above) are 

Summing over p and p' yields 

where to appeared because of the dimensional factor in the 
tunneling matrix element ( 19), and the factors qh  , ql, and 
qhl describe the heavy ( h ) ,  light (I), and "mixed" (hl) 
contributions to tunneling and are given by the following 
expressions: 

For small values of A the main contribution to the 
right-hand side of (30) is provided by the first term inside 
the braces. In this case the tunneling relaxation rate is 
determined by the tunneling exponential exp( - 2xhd) and 
has a ~ - ~ - d e ~ e n d e n c e .  For 

the predominant term is the last, which results from the 
mixing of the heavy and light components of the hole wave 
function. The tunneling relaxation rate is determined by 
the exponential exp( -2x,d) and for A$Th is independent 
of A. 

6. CONCLUSION 

Generally, the problem of the nature of hole relaxation 
in double quantum wells is extremely cumbersome due to 
the necessity of allowing for the tunnel mixing of the states 
of the left and right quantum wells, the mixing of heavy 
and light components of a four-row wave function, and the 
interaction of holes with acoustic phonons (and in the gen- 
eral case with other scatterers). Solving it requires numer- 
ical calculations for specific parameters of the structure 
(which is done in Refs. 4 and 12). Using an analytical 
procedure in which for mJmh(l the I-components &; are 
excluded makes it possible not only to obtain simple ana- 
lytical expressions suitable for making order-of-magnitude 
estimates but also to demonstrate the features of tunneling 
related to the large subbarrier contribution due to I-states. 
These features distinguish the current situation from the 
electron case. 

Let us recall the approximations used in this paper. 
Proceeding from the Luttinger equations (1) and (2) for 
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the isotropic spectrum model to the approximate equations 
(6) (with (=0) and (7) requires the validity of the strong 
inequalities mJmh( 1 and pdL,,/fi( 1. In proceeding to Eq. 
(1 I ) ,  which describes the tunneling hybridization of only 
the two lowest states of the left and right quantum wells, 
we needed even stronger conditions,14 and h(&F1), where 
EF') is the energy difference between the second and first 
levels of the dimensional quantization of heavy holes in the 
right quantum well. In principle, calculation is possible 
without the last two conditions, but the formulas describ- 
ing tunneling become much more cumbersome. Finally, in 
calculating the well-to-well tunneling rate (Secs. 4 and 5) 
we assumed that the levels in the right and left wells are far 
from being in tunneling resonance: A> T,, , Th . If this is not 
so, the well-to-well relaxation rate proves comparable to 
the intrawell relaxation rate, quasiequilibrium intrawell 
distributions have no time to set in, and introducing v loses 
all meaning. 

In this paper we have shown that when inequality (32) 
holds true in double quantum wells, the tunneling relax- 
ation rate is determined by an exponential function con- 
taining the light-hole mass and is independent on the level 
separation A. This property is the main qualitative result of 
our study and enables explaining the results of 

in which the method of measuring the pho- 
toluminescence decay time was used to establish the well- 
to-well tunneling relaxation rates for holes in GaAs/ 
AlGaAs/GaAs in double quantum wells as functions of 
the transverse electric field (which fixes the value of A). 
These rates proved practically independent of A within a 
broad range of values A (up to the point where higher hole 
levels begin to participate in tunneling relaxation or where 
processes involving optical phonon emission manifest 
themselves). However, the estimates done via Eqs. (30) 
and (31) using the parameters established in the experi- 
ments have yielded results smaller than those obtained in 
the experiments by a factor greater than ten. This suggests 
that scattering on impurities and other effects ignored here 
played a more prominent role in the e ~ ~ e r i m e n t s . ~ > ~  Nev- 
ertheless, it is clear from the above that the well-to-well 
relaxation rate for holes interacting elastically via any 
short-range potential V(rl ,z) whose Fourier transform 
V(q,q,) can be assumed independent of q= (p-p1)/Ci in 
conditions of the given problem (this refers to, say, point 
defects and the heteroboundary roughness described by a 
correlation length I,,, < 2 JMh/mI) and also independent of 
A in conditions (32). Note that these conditions do not 
depend explicitly on the characteristics of the short-range 
scattering mechanism because a transition to v(A) =const 
is provoked by the dependence ( 19) on the square of the 
final momentum 2mEA. The experimental data7 can be 
used to obtain the value of A corresponding to such a 
transition, with the value (of the order of 8 meV) agreeing 
well with the value A. estimated according to (32) for the 
parameters of the experiment.' 

The authors would like to express their gratitude to the 
Foundation of Fundamental Studies of the Ukrainian 
Academy of Sciences for financing this work. 

APPENDIX 

The kernel of the integro-differential equations (7)  and 
( 1) is related to the low-energy asymptotic Green function 
Go(z,zl) through Eq. (8). The function Go(z,zl) is speci- 
fied by the equations 

and satisfies the following boundary conditions: 

d 
GO (z,zl and - dz Go (z,z) 

are continuous at the heteroboundaries, 

We write the function @(z,zl) required in calculating (16) 
and (17) explicitly for intervals of variation of z and z' 
lying inside the left and right quantum wells: 

with 

and 

with 

We also give the expression for G0(z,z1) in this region: 
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For 

the functions @(z,z') and Go(z,z') are expressed by (A8) 
and (A9) with z replaced by z' and vice versa. 
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