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It is demonstrated that if two spin systems maintained at different temperatures and 
characterized by different magnetic splittings are placed in an electromagnetic cavity common 
to both systems, sustained oscillations can arise in the combined system at a frequency 
equal to half of the detuning of the spin systems. 

1. SCHEMATIC MASER DIAGRAM 

The aim of this paper is to describe a new maser 
scheme, that is, a way of obtaining population inversion 
and emission. The suggested maser is a classical heat en- 
gine with a heater and cooler and resembles in structure an 
ordinary thermocouple, a fact reflected in the title of the 
paper. 

Let us consider two spin systems S and I occupying 
regions of space that are spatially distinct. We assume that 
the spin of each is 1/2. Suppose that the spin system S ( I )  
contains Ns(NI) spins with a corresponding splitting 
ws(wI). The temperatures of the systems are also assumed 
different: Ts and TI, respectively. Since the systems are set 
far apart and there is no way in which they can exchange 
energy, the temperatures inequality can be maintained as 
long as desired. Next we introduce an interaction between 
the systems by placing them inside the coil of a common 
tank circuit, as depicted in Fig. 1. Spin flip in one spin 
system causes a current to appear in the circuit, and the 
induced magnetic field affects the spins of the other system. 
Obviously, an energy flux from the hot system to the cold 
sets in and tends to equalize the spin temperatures of S and 
I. The process can be interpreted as mutual spin flip in S 
and I; for instance, excitation of one of the spins in I is 
accompanied by the transition of one of the spins in S to 
the ground state. Let Ts > TI, that is, the spins of S are 
cooling off and those of I are heating up. Hence, there are 
more spin flips accompanied by excitation of a spin in I 
and transition of a spin in S to the ground state per unit 
time than there are inverse processes. If ws > wI, mutual 
spin flip with excitation of a spin in I and deactivation of a 
spin in S is accompanied by an energy release equal to 
us- w, . Since there are more such processes per unit time 
than there are inverse processes (i.e., processes in which 
energy us--wz is absorbed), the equalization of the tem- 
peratures of the two spin systems is accompanied by energy 
release. Each elementary mutual spin flip can be made res- 
onant (from the viewpoint of energy conservation) by tun- 
ing the tank circuit in such a way that it absorbs the excess 
energy resonantly. We will see below that only two-photon 
excitation of the circuit is effective; hence, quantitatively 
the resonance condition can be written as us--wI=2w, 
with w the natural frequency of the circuit. Thus, in our 
case equalization of the temperatures of S and I is accom- 

panied by excitation of the tank circuit used to ensure 
interaction between the two systems. 

The above process can be explained from another view- 
point. Let us assume, for the sake of simplicity, that 
Ns= Nz= N and assign to each spin in S a spin in I (in an 
arbitrary manner). Then our two spin systems can be 
thought of as an ensemble of N complex "particles" each of 
which consists of a spin from S and the corresponding spin 
from I. The system of energy levels for such a particle and 
the level populations are shown in Fig. 2. The energy levels 
of the spins from S and I forming such a "particle" and the 
respective notation of the level populations are also shown. 
Obviously, if S102 > S201, population inversion is present in 
the first two excited states of our particle. It  is easy to show 
that in the high-temperature approximation the population 
inversion condition has the form 

where P=?i/kT is the inverse energy temperature of the 
spins. However, initial transitions between the two levels 
are forbidden because our particle consists of spins that 
belong to spatially distant samples. The presence of an 
interaction via the tank circuit (Fig. 1) allows such tran- 
sitions to occur, and which creates conditions for maser 
emission. 

We emphasize that the above interpretation based on a 
complex "particle" is not quite correct from the viewpoint 
of calculating the probabilities of the transitions of interest 
to us, because it allows for the interaction of each spin of 
the S species with only one spin belonging to I. A theory of 
the described spin maser is given below. We estimate also 
the probabilities of maser transitions and losses in the tank 
circuit. These calculations suggest that it is quite possible 
to achieve such emission or at least to discover an increase 
in the Q-factor of the tank circuit coupling the spin sys- 
tems. 

2. THE HAMlLTONlAN 

To create a consistent theory of the spin maser de- 
scribed above we must quantize the tank circuit. In accor- 
dance with the general method of quantization, we must 
build the Hamiltonian function H(p,q) of the tank circuit, 
that is, express the circuit energy 1/2 ( LJ2 + C U ~ )  (here L 
is the inductance of the circuit, C its capacitance, J the 
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current in the circuit, and U the voltage) in terms of a equal parts (Fig. I) ,  the magnetic field of the current flow- 
generalized coordinate q and momentum p in such a way ing through one half is equal to that of the current flowing 
that the equations of motion for the circuit acquire the through the other and is determined by the formula 
Hamiltonian form A?= LJ/sm. Employing (4), we arrive at the following 

a H  aH 
expression (in frequency units) for the Hamiltonian of the 

-- a s - - ~ ,  -- ap - 9. interaction of the circuit with the spin system: 

Clearly, the above can easily be achieved if we take the g f l z  
generalized momentum and coordinate in the form  hi=^ (Sx+Ix) = y(a-a+) (Sx+Jx), ( 5 )  

In this case the Hamiltonian of the circuit is 
H= 1/2 (p2 +s2w2), where w = 1/ ZC is the circuit's nat- 
ural frequency. In the quantum representation p and q are 
operators satisfying the commutation relation [p,q] = - ifi. 
By introducing the creation and annihilation operators for 
the excitation quanta in the circuit, 

we reduce the circuit Hamiltonian to the standard form 
H= 1/2%(aa+ +a+a).  To define the operator of the in- 
teraction of the circuit with the spin system we shall need 
below the current in the circuit expressed in terms of the 
creation and annihilation operators (3). Combining (2) 
and (3) we get 

Assume that the circuit coil encompasses an area equal 
to s and consists of m turns. If the coil is divided into two 

where y = -i(gfl/fism) d m ,  and Sx and I, are the 
operators of the projections of the magnetic moments of S 
and I on the x axis (we assume that the coil axis is parallel 
to the x axis). If we suppose that the magnetic fields caus- 
ing the initial splittings of the spin systems S and I are 
directed along the z axis, we get the following expression 
for the total Hamiltonian: 

Energy transfer between the spin systems is ensured 
by the interaction Hamiltonian ( 5 ) ,  which can be 
replaced by a simpler effective operator obtained by 
the following reasoning. Assume that wl< ws and 
us- wig 1/2(ws+wI) KG. We describe the state of the 
system by the wave function I n,I,S), where n is the num- 
ber of photons in the tank circuit, and S, and I, are the 
projections of the total magnetic moments of S and I on 
the z axis (we are not interested in the other quantum 
numbers). Then the probability of mutual spin flip accom- 
panied by circuit excitation, 

FIG. 2. 
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is determined in second-order perturbation theory by com- 
pound matrix elements for which, using the above inequal- 
ities, we can write the following approximate equality: 

Clearly, the operator - ( $ / 2 ~ ) ~ - 1 + a + a + ,  where 
S = Sx is, and I* =Ix iI,, , yields in first-order pertur- 
bation theory the same transition probability as the exact 
operator (5) does in second-order theory. Taking into ac- 
count also the inverse process, we get the effective interac- 
tion Hamiltonian in the form 

In Sec. 3 we will use this operator to derive a kinetic 
equation for the diagonal elements of the tank circuit den- 
sity matrix. 

3. THE KINETIC EQUATION 

Let us think of the tank circuit as a dynamic system 
connected to a complex thermostat, two spin systems 
maintained at different temperatures. The only kinetic co- 
efficients that remain finite under the action of the operator 
Heff [Eq. ( 6 ) ] ,  which reflects the dynamics of the circuit, 
are those corresponding to two-photon transitions. Hence, 
the equation for the diagonal elements of the density ma- 
trix (the populations of the oscillation states of the circuit) 
has the form 

where the kinetic coefficients are given by the following 
formula:' 

Here p is the density matrix of the thermostat, with f the 
set of quantum numbers characterizing the state of the 
thermostat. In our case the thermostat's density matrix is 
separable, p = pspI, where ps and pI are the equilibrium 
density matrices of the spin systems, which depend on the 
inverse temperatures ps and /3,, respectively. Substituting 
(6)  into (8)  and applying standard transformations,' we 
obtain 

where 

I* (t)  = exp( --ioIIzt)I* exp(iwIIzt), 

and the notation ( )pS( ( stands for averaging with 
the density matrix ps(pI). The correlation functions in Eq. 
(9)  are related to the EPR spectrum of the spin systems1 
and can be derived explicitly. For instance, we can calcu- 
late (S+S-(t))ps using the following chain of equalities: 

- - exp ( iwst N, exp ( - /3.+os/2 ) 
exp ( -P.+os/2 + exp (P.+os/2 

' 

Here the operators Sf and S T  refer to any spin (say, the 
first) of the S species. 

Now let us turn to the high-temperature approxima- 
tion and allow for the finite width of an EPR line, which is 
characterized by a phase relaxation time T2S (for spins 
belonging to the I species this time is denoted by T21). We 
obtain 

Calculating the other correlation functions in a similar 
manner and introducing the notation PpI-P.+os-A and 
T-1 2S + T-1- 2I - T;', we finally arrive at the following: 

We can easily show that the distribution of the density- 
matrix diagonal elements satisfying the equation 
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is time-independent for Eq. (7)  with the kinetic coefficients 
( 10). Clearly, these formulas can be used to express all the 
diagonal elements in terms of po and pl  as follows: 

The normalization condition for the diagonal elements 
yields 

and, hence, 

We see that for q < 1 there is a time-independent dis- 
tribution of the level populations in the oscillatory circuit 
in contact with two spin thermostats. For q < l  all level 
populations vanish, which corresponds to an unlimited in- 
crease in the amplitude of circuit oscillations, or excitation. 
Clearly, the condition q > 1 is equivalent to ( 1 ) . Nowhere 
in the above calculation have we allowed for the finiteness 
of the circuit's Q-factor, which must be done to estimate 
the possibility of the described effect. Section 4 is devoted 
to this aspect. 

4. DAMPING IN THE QUANTIZED OSCILLATORY CIRCUIT 

All along we have assumed that the circuit interacts 
only with the two spin thermostats but, obviously, the cir- 
cuit also interacts with "its own" thermostat, the thermal 
vibrations in the metal from which the coil and capacitor 
are made. This latter interaction leads to damping of nat- 
ural oscillations in the circuit. All macroscopic properties 
of the circuit can be correctly described if we take the 
operator of the interaction of the circuit with the circuit 
thermostat proper in the form 

Here the operator 4 depends on the degrees of freedom of 
the circuit thermostat proper. The structure of ( I  1)  sug- 
gests that H, leads only to single-photon transitions, with 
the result that the kinetic equation for the density-matrix 
diagonal elements is 

+~n-lVn-l-n, (12) 

with the kinetic coefficients given by the following 
formulas:' 

Vn+n+1=(44(~)) , (n+ I ) ,  Vn-n-i=(44(~))-,n. 

Here (@(T)), is the spectral density of the correlation 
function of 4 at the transition frequency, that is, at the 
frequency of circuit oscillations. Averaging is done with 
the equilibrium matrix density of the circuit thermostat 
proper, whose inverse temperature is denoted by P. The 
spectral density must obey the detailed-balance principle 

This leads to the following expressions for the kinetic co- 
efficients: 

Here K =  (+$(T)),. 
Combining these relations with Eq. (12), we arrive at 

the following equation for the average number of photons 
in the circuit: 

where (n)eq= (@,- I)- '  is the Bose-Einstein function. 
We see that the average number of photons tends to an 
equilibrium value with a characteristic relaxation time 
T = (n) /K, which is simply the time of energy decay in "? 
the circuit and is related to the circuit's Q-factor by the 
well-known formula 

Q=wT. 

Thus, the kinetic coefficients can be expressed in terms 
of easily observable circuit characteristics: 

In the next section we compare these probabilities of tran- 
sitions leading to damping with ( 10). 

5. ESTIMATES 

Let us now consider that part of the kinetic coefficients 
(10) that is independent of the photon number, 

(we assume that the circuit is in resonance, that is, 
us- a,= 2w), and the similar part for ( 15), 

Let us fix the parameters entering into these quantities 
at the following (quite realistic) values: the circuit fre- 
quency w= 3 X lo8 s-', the circuit temperature 100 K (the 
corresponding value of (n),,), the Q-factor Q= 100, the 
inductance of the circuit coil L= H, the coil's cross- 
sectional area s= m2, the number of turns in the coil 
m=10, the spin numbers in the two systems 

9 -1 NI= Ns= loz0, the average splitting i;i = 3 X 10 s , and 
the phase relaxation time T2= S. Calculations yield 
W=1o8 s-' and V=.lOll s-', that is, the losses are one 
thousand times greater than the gain. It is clear, however, 
that loss factors increase like the first power of the number 
of photons and gain factors like the second, which means 
that at sufficiently high excitation the gain exceeds the 
losses. For instance, at 100 K the average number of pho- 
tons in the circuit is roughly lo5. With such photon num- 
bers the gain factors considerably exceed the loss factors. 

Note that the loss factors increase like the first power 
of the number of photons in the circuit because the adopted 
operator for the interaction of the circuit with the circuit 

463 JETP 77 (3), September 1993 G. G. Kozlov 463 



thermostat proper contains only the first powers of the 
operators a and a+ (in other words, the interaction oper- 
ator is single-photon). Clearly, the operator representing 
the total interaction of the circuit with its thermostat can 
contain higher degrees of a and a+ and describe higher- 
order processes. The respective kinetic coefficients will in- 
crease like higher powers of the excitation number. But is 
it sufficient to allow only for single-photon processes? The 
author believes that such an assumption is valid as long as 
the level of circuit excitation is so low that the circuit can 
be described fairly accurately by a linear differential equa- 
tion (i.e., using the classical language) and free oscillations 
decay according to an exponential law. If we allow for 
multiphoton processes, it becomes impossible to obtain a 
closed equation for (n),  and the kinetics of relaxation of 
the circuit to an equilibrium state becomes nonexponential. 
On the other hand, experience has shown that for real 
excitation levels the kinetics of decay of free oscillations in 

a circuit proves to be exponential with a high degree of 
accuracy. This suggests that at real excitation levels, allow- 
ing only for single-photon relaxation processes is justified. 

The above ideas make it possible to hope that, if not 
masing, at least an increase in the Q-factor of the coupling 
circuit can be expected to manifest itself in experiments. A 
possible way to achieve this is to apply the ordinary tech- 
nique used in observing NMR (EPR), which allows spot- 
ting extremely minute changes in the Q-factor of the tank 
circuits (cavities). 

' I. V. Aleksandrov, The Theory of Magnetic Relaxation, Nauka, Moscow 
(1975), p. 33 [in Russian]. 

Translated by Eugene Yankovsky 

This article was translated in Russia, and it is reproduced here the way it 
was submitted by the translator, except for the stylistic changes by the 
Translation Editor. 

464 JETP 77 (3), September 1993 G. G. Kozlov 464 


