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A general expression is derived for the radiation-pressure force for an atom which is moving 
perpendicular to a static magnetic field H. This field is collinear with the propagation 
direction of two counterpropagating light waves with a linear, circular, or elliptical 
polarization. The derivation is carried out by perturbation theory in the resonance 
approximation. The behavior of the radiation-pressure force as a function of the frequency 
and polarization of the counterpropagating waves is analyzed in the case of slight 
saturation and for an arbitrary value of H. In a strong magnetic field, the vector properties 
and quantitative characteristics of the radiation-pressure force change substantially 
upon a switch from the resonance at the central frequency of the transition to resonances at 
frequencies of transitions between Zeeman sublevels. 

The radiation-pressure force (RPF) has been the sub- 
ject of tens of experimental and theoretical studies, which 
are cited in some The theoretical papers 
have essentially been restricted to a scalar model of a two- 
level atom, with the degeneracy of the quantum states 
ignored.k6 This circumstance has made it possible to study 
the behavior of the RPF for an arbitrary intensity of the 
resonant light waves. As was shown in Refs. 7 and 8, at- 
tempts to incorporate a degeneracy of levels in a calcula- 
tion of the RPF in studies of the radiative cooling of atoms 
and the trapping of atoms in an optical field run into seri- 
ous mathematical difficulties in the case of arbitrary angu- 
lar momenta and intense light waves. These difficulties 
worsen considerably when there is a magnetic field H. 

In some recent e ~ ~ e r i m e n t s ~ " ~  the vector properties of 
the RPF have been studied along with other topics. Grimm 
et al. " observed a new magnetooptic force with some novel 
vector properties. They gave a clear description of the phe- 
nomenon they observed without going into detail on the 
degeneracy of the resonance levels of the atom at H=O or 
their splitting into Zeeman sublevels in the presence of a 
magnetic field. In this connection, the intensities of the 
light waves should be kept low in order to find a clear 
physical interpretation of the vector properties of the RPF. 
This approach makes it possible to incorporate an arbitrary 
degeneracy of the resonance levels with respect to angular- 
momentum projections in a study of the RPF, regardless of 
whether there is a magnetic field. 

In the present paper we examine the vector properties 
and quantitative characteristics of the RPF for an atom in 
a weak electric field of two counterpropagating light waves. 
The waves have an identical frequency w but arbitrary 
amplitudes and polarizations. The waves are propagating 
collinear with a static magnetic field H. The atom of inter- 
est is moving along a direction perpendicular to H and can 
be in resonance states with arbitrary angular momenta al- 
lowed by the selection rules for a dipole interaction with 
the counterpropagating waves. 

In this problem, the symmetry for the atom in the 
given external fields can be taken into account fully in 

solving the equation for the density matrix incorporating 
the degeneracy of the levels with respect to angular- 
momentum projections. As a result we obtain a general 
formula which gives a unified description of the RPF for 
an arbitrary frequency w and for all possible amplitudes 
and polarizations of the waves. 

We find that in a magnetic field, near the resonance at 
the central frequency of the transition, w=wba, the Zee- 
man sublevels with positive and negative angular- 
momentum projections participate on an equal basis in the 
interaction of the atom with the counterpropagating waves. 
This is a fundamental point, determining the vector prop- 
erties of the RPF. In this case the RPF breaks up into 
terms which are even and odd with respect to H or with 
respect to the detuning from resonance, w-wba. The di- 
rection of the terms of the RPF which are even with re- 
spect to H is determined by the given wave vectors; in 
some cases it is also determined by the sign of the detuning 
from resonance, w -wba . The direction of the terms which 
are odd with respect to H depends on the magnetic field. If 
we interchange the waves, the terms which are even in H 
are conserved, while those which are odd change sign. If 
counterpropagating waves with w=oba and equal ampli- 
tudes R1 = R2 have identical polarizations, the RPF van- 
ishes. If the directions of the wave vectors of the counter- 
propagating waves are held constant, and the right- and 
left-hand circular polarizations are interchanged with 
w = wba and R = R2, there is no change in the RPF. 

Near Zeeman resonances, in contrast, this equivalence 
of the Zeeman levels is disrupted, since a leading role is 
played by exclusively the resonance Zeeman sublevels. As 
a result, there are substantial changes in the properties of 
the RPF. In a strong magnetic field, for example, this sep- 
aration of the RPF into terms even and odd in H or w - w h  
no longer occurs, regardless of the polarizations of the 
counterpropagating waves. There is also a change in the 
way in which the RPF depends on the angle between the 
polarization planes of the waves. If the waves have identi- 
cal amplitudes and polarizations (linear, right- or left-hand 
circular, or elliptical), the corresponding RPF is nonzero, 
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in contrast with the resonance a= wba. After an inter- 
change of right- and left-hand circular polarizations of the 
counterpropagating waves, with no change in the ampli- 
tudes, in the phase difference, or in the directions of the 
wave vectors, we find that the RPFs for individual pairs of 
Zeeman resonances trade places with respect to the new 
counterpropagating waves. 

1. FORMULATION OF THE PROBLEM; CALCULATION 
METHOD 

Let us consider an atom which is moving perpendicu- 
lar to a static magnetic field H and also perpendicular to 
the propagation direction of two traveling light waves with 
identical frequencies wl = w2 = w and oppositely directed 
wave vectors k,= -k2, as has been the case in several 
experiments (see, for example, Refs. 10-14). 

We direct the Cartesian z axis along the direction col- 
linear with kl  and k2. The resultant electric field of these 
counterpropagating waves is then 

where 

l1 and l2 are unit polarization unit vectors, R1 and R2 are 
real amplitudes, and a, and a2 are constant phase shifts. 

For linearly polarized waves, the polarization wave 
vectors are 

ln=lx COS #,+ally sin 4, , n = 1,2, (2) 

where 

l,, I,,, and 1, are unit vectors along the Cartesian coordi- 
nates x, y, and z; and the positive direction for the angle #, 
is the clockwise direction if we are looking along the unit 
vector l,, regardless of the direction of k,. 

In the case of elliptically polarized waves whose polar- 
ization ellipses have parallel axes, with a right-hand polar- 
ization, we have 

while for a left-hand polarization we replace (3) by 

The argument $, in (3) and (4) takes on values on the 
interval 0($,<1~/2. This argument characterizes the semi- 
axes of the polarization ellipses, which are equal to cos $, 
and sin $, in (3) and sin 4, and cos $, in (4). In partic- 
ular, at the value $,=?r/4 the polarization ellipses become 
circles of unit radius, and Eqs. (3) and (4) describe right- 
and left-hand circular polarizations. In the cases $, =O and 
$,=?r/2, the polarization ellipses become deformed into 
orthogonal line segments. These segments are on the x and 
y axes in the case of (3) and on they and x axes in the case 
of (4). In this case, Eqs. (3) and (4), with ( I ) ,  describe 
linearly polarized waves with polarization planes which are 
parallel or orthogonal. The variable-sign factor a,= 1 

appears in (2)-(4) because of the common rule for de- 
scribing the polarization vectors of the two counterpropa- 
gating waves, ( 1 ). 

The frequency w is close to the frequency 
wba= (Eb- Ea)/fi, which is the frequency of a transition 
between two states of the atom with a zero nuclear spin. 
These states are characterized by, along with the energies 
Ea and Eb (Ea < Eb), the quantum numbers Ja ,  Jb ,  Ma, 
and Mb, where Ja and Jb corresponds to the angular- 
momentum operators J, and Jb in the lower and upper 
levels, and Ma and Mb describe the projections lJa and lJb 
of these angular momenta onto the quantization axis, 
which is directed along the unit vector 1,. 

In addition to the electric field in ( 1 ), the atom inter- 
acts with the static magnetic field H, which is collinear 
with k, and k2, and which splits the lower and upper levels 
into Zeeman sublevels: 

where 

ga and gb are gyromagnetic factors, pB is the Bohr magne- 
ton, and e and m are the charge and mass of an electron. 

The state of the atom in electric field ( 1 ) and magnetic 
field H is described by a quantum-mechanical equation for 
the density matrix p in the J M  representation: 

where 

v is the velocity of the atom; dMA is a matrix element of 
the operator d, which represents the electric dipole mo- 
ment of the atom; dba is the reduced dipole moment; yba is 
the half-width of the spectral line of the resonance transi- 
tion; tiya and 3yb are the homogeneous widths of the lower 
level Ea and the upper one Eb; y is the probability for the 
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spontaneous emission of a photon +jab, by the isolated 
atom; and a repeated matrix index implies a summation. 

The term containing ya on the right side of Eq. (8) 
reflects the circumstance that, before it enters field ( I ) ,  the 
atom is in a steady state in the lower level, which is de- 
scribed by a steady-state solution of Eqs. (6)-(8) with 
E =O and HfO in the form 

where we have assumed an equiprobable distribution be- 
tween Zeeman sublevels in the magnetic field, since 
fiRa(Ma - M:) is small in comparison with the energy per 
degree of freedom in the case of a statistical energy distri- 
bution. 

As the initial time for Eqs. (6)-(8) we use the instant 
t=O, at which the atom enters electric field ( I ) ,  at the 
point x = y = 0, z#0. 

By virtue of the resonance interaction with counter- 
propagating waves ( 1 ), the atom experiences an RPF. '-' 
When the degeneracy of the levels with respect to angular- 
momentum projections in the H=O case is taken into ac- 
count, and when the presence of a Zeeman splitting of the 
levels, ( 5 ) ,  in the case H#O is taken into account, this 
RPF is conveniently written in the form 

F= (Tr pV(dE)), (9) 

where ( . - - )  means an average over the time t between t 
and t + 2n-/m. 

Expression (9) was derived with the help of a 
quantum-mechanical equation of motion. However, the 
RPF could also be derived from the conservation of elec- 
tromagnetic energy for an atomic gas: 

where S is the Poynting vector, P = N  Tr pd is the vector 
dielectric polarization of the atomic gas, and N is the den- 
sity of resonance atoms in an arbitrary volume V bounded 
by the surface f .  The flux of the Poynting vector across the 
closed surface f on the left side of this equality is propor- 
tional to the force applied to the active atoms in the volume 
V. We thus find the RPF which is exerted on an individual 
resonant atom; it is expressed in a different way: 

where El +E2=E, and El  and E2 are the electric fields.of 
the waves in ( 1 ). 

According to (6)-(8), the density matrix which is 
nondiagonal in the indices a and b can be written in the 
resonance approximation as follows: 

where r ~ ~ ' ,  is a slow function of time t in comparison with 
exp(-imt). The two expressions written above for the 
RPF thus take the same form after an average is taken over 
the time t between t and t + 2n-/o: 

X exp(-ia2)])+c.c. 

To calculate (9),  we solved Eqs. (6 )-(8) in the reso- 
nance approximation by perturbation theory for a weak 
field E in the absence of saturation. We allowed for the 
circumstance that in a study of the vector properties of the 
RPF it is sufficient to find the first nonvanishing result of 
the calculation of (9), which is quadratic in the field E. In 
this approximation the term containing y in Eq. (8),  which 
describes the arrival of the atom in the lower level because 
of spontaneous emission in the upper level, makes no con- 
tribution. 

2. RADIATION-PRESSURE FORCE NEAR RESONANCE, 
0 = foba 

To simplify the equations we assume that the ampli- 
tudes R and R2 of counterpropagating waves ( 1 ) are con- 
stant. In a perturbation theory quadratic in the field E, the 
RPF in (9) thus breaks up into two quite different parts: 

which are given in the case of a linear polarization (2) by 

X [ S ( l ) - S ( - l ) ] s i n ~ ~ o s ( @ ~ - @ ~ ) .  (12) 

For a right-hand elliptical polarization (3), these compo- 
nents are instead 

x (al sin $1 cos q2+ a 2  sin $2 cos $1 

X~in(@,-@~)},  

where 

1 Jb Ja 

) 2  

Yba 
S(9)  =u.+I ( 

P 9-P -9 (A-A,,)~+?& 

1 Jb Ja 

) 2  

Yba 
S1(q)  =- 

u a + l :  (P  9-P -9 ( A - A ~ ) ~ + ~ ~  
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The notation for the 3 j  symbol, (: :), and for the re- 
duced dipole moment dba is taken from Ref. 15. 

To pursue the analysis we adopt the condition that the 
linear polarization vectors in (2) are characterized by an- 
gles 41 and 42 which lie in the interval -.rrO#~,<.rr, where 
n = 1,2. If an angle 4, lies outside this interval, then the 
substitution 1,- -1, will put the new angle 4; = 4, - .rr in 
the interval - .rr < 4; ( .rr, and the minus sign which ap- 
pears on 1, will lead to a phase shift @,-@,+n. 

If the counterpropagating waves are polarized in a 
common plane or in mutually perpendicular planes, ex- 
pressions ( 11 ) and ( 13) are the same, as are ( 12) and 
( 14). As an example we consider the case 1, = 1, and 1, = 1,. 
According to ( 1)-(3), we should then set ol = -a2= 1, 
4 =.rr/2, =O, $2=.rr/2 in ( 11 )-( 14) and make the sub- 
stitution a2- a, - ~ / 2 .  After these changes, the forces in 
( 11 ) and ( 13) take the same form, as do ( 12) and ( 14). 

Equations ( 13) and ( 14) cover several cases of the 
polarizations of waves ( 1 ) . If both elliptically polarized 
waves have a left-hand polarization, as in (4) ,  we need to 
make the following substitution in ( 13 ) and ( 14) : 

If one of the elliptically polarized waves has a left-hand 
polarization, then substitution (17) is made for the corre- 
sponding parameter or $2. In the case of a right-hand 
circular polarization we have one of the following: 
ql=?r/4 and 1+h~#.rr/4, $~~#7~ /4  and $~~=.rr/4, 
$l = $2 = ~ / 4 .  For a left-hand circular polarization we 
make the substitution $l - 3 ~ / 4  or $2- 37r/4, respectively. 
If one of the waves in ( 1 ), e.g., the first, is linearly polar- 
ized, then we should set $l = 0  for 1, =I, according to (3). 
In the case of an orthogonal polarization ql = ~ / 2 ,  al = 1, 
and l l = l y ,  we need to make the substitution 
al-al+?r/2. The polarization unit vector then takes a 
canonical form, l1 = 1, , and the factor of i is incorporated in 
a constant phase shift. 

For one traveling wave, R l  = R and R2=0, with a lin- 
ear polarization (2) or an elliptical polarization (3) or 
(4), in the steady state, under the condition 

the RPF in ( 10) in the absence of a magnetic field is of the 
same form: 

In the case of a linearly polarized standing wave, 

in the steady-state regime in ( 18) for the RPF in ( lo),  we 
find, according to ( 1 1 ) and ( 12), 

In the case Ja=O, the RPFs in ( 19) and (20) are the 
same as the results of Refs. 1-5, 16 and 1, 2, 9, 16, respec- 
tively, if we set d2= (dbal 2/3 and switch to the case of a 
weak field E in those cases. Those previous results were 
derived for a two-level atom without consideration of a 
level degeneracy with respect to angular-momentum pro- 
jections. 

Finally, for counterpropagating waves which are po- 
larized in a common plane, the RPF in (10) in region ( 18) 
with H= J a = O  and d2= I dbal 2/3 is the same as the result 
derived in Ref. 16 without consideration of level degener- 
acy. 

3. RADIATION-PRESSURE FORCE NEAR ZEEMAN 
RESONANCES 

Equations ( 11)-(14) are useful for studying the be- 
havior of RPF (10) near a resonance A=O at the central 
transition frequency uba,  in which case Zeeman sublevels 
(5) with positive and negative angular-momentum projec- 
tions appear in these equations in equivalent ways. In a 
study of the RPF near resonances involving Zeeman sub- 
levels, however, this equivalency is disrupted. In this case it 
is necessary to decompose RPF ( 10) into terms corre- 
sponding to circular waves which are natural modes for 
propagation in a direction collinear with H. 

For this purpose we use a right-hand Cartesian coor- 
dinate system in which the unit pseudoscalar j? has a pos- 
itive value p=  1, and the unit vector 1, along the z axis is 
parallel to the quantization axis. The expansion of RPF 
( 10) in natural modes then takes the following form in the 
case of counterpropagating waves with linear polarization 
(2): 

where 

The expansion of RPF ( 10) in natural modes for coun- 
terpropagating waves with a right-hand elliptical polariza- 
tion as in (3)  is written in a different way: 

where 

Q~=R:(COS ql+al sin $ 1 ) 2 - ~ i ( ~ ~ ~  $2+a2 sin q212, 
(23) 

Q~=R:(COS $1-01 sin $ 1 ) 2 - ~ : ( ~ ~ ~  q2-u2 sin q212, 
(24) 

Q ~ = R I R ~ ( c o s  $1-a1 sin $1) (cos $2-a2 sin I)~). 
(26) 
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For the left-hand elliptical polarization in (4), we 
make substitution (17) in Eqs. (23)-(26), taking note of 
the comments made for other possible polarizations of the 
waves. 

It can be seen from (22) that for a first wave propa- 
gating along 1, with a right-hand circular polarization, 
a,= 1 and $, = ~ / 4 ,  and for a second wave propagating 
opposite 1, with a left-hand circular polarization, u2= - 1 
and q2- 3 ~ / 4 ,  we have Q2= Q4=0. For these waves, a 
resonance on Zeeman sublevels is therefore realized at the 
frequency 

for the terms in S' ( 1 ) and at frequencies 

for the terms in S(1) .  These resonances correspond to 
transitions Jb- Ja characterized by the quantum numbers 

Zeeman resonances play an extremely important role 
in a strong magnetic field: 

where 6Ea and 6Eb are the fine splitting of the lower and 
upper levels. Near resonances (27) and (28), the quanti- 
tiesS(1) andS1( l )  inEqs. (11)-(14), (21), and (22) are 
larger than S( - 1 ) and S t (  - 1 ) by a factor of f l i /da  or 
fiPy26,. The latter can thus be omitted. In addition, in the 
sum over the index p in S (  1 ) and S' ( 1 ) we should retain 
only the resonance terms. 

Correspondingly, for a first wave propagating along 1, 
with a left-hand circular polarization, a, = 1 and 
$, - 3 ~ / 4 ,  and for a second wave propagating opposite l,, 
with a right-hand circular polarization, 02= - 1 and 
q2 = ~ / 4 ,  we have Q1 = Q3 = 0. For these waves a resonance 
thus occurs at the frequency 

for the terms in S' ( - 1 ) and at frequencies 

for the terms in S( - 1 ). These resonance correspond to 
transitions Jb- Ja characterized by the quantum numbers 

Near resonances (30) and (3 1 ) in a strong magnetic 
field, (29), the quantities S( - 1 ) and S' ( - 1 ) in Eqs. 
(11)-(14), (21), and (22) arelargerthanS(1) andS'(1) 
by a factor of fi;/y26, or @/y26a. The latter can thus be 
ignored, and in the sum over the index p in S (  - 1) and 
S f ( -  1) we need to retain only the resonance terms. 

If the frequency of the linearly polarized waves lies 
near resonances (27) and (28), then the RPF in (21) in 
steady state (18) for a strong magnetic field, (29), be- 
comes 

where 

Near the resonances in (30) and (31) we have, in 
place of (32), 

(33) 

For a standing wave, R = R2, and a =0, and for the 
atomic transition Jb= 1 + J a = O  with Mb= - 1 and 1,II H, 
the quantity in (33) is the same as the result of Ref. 10, if 
we switch to a weak field E in the latter result. 

For elliptically polarized waves, RPF (22) in steady- 
state regime (18), for a strong magnetic field, (29), is 

near resonances (27) and (28) and 

near resonances (30) and (3  1 ). 
According to (28) and (3  1 ), the second terms in 

(32)-(35), containing A1 and A_,, each have two reso- 
nances, at nearly equal frequencies, differing by 2yba. Cor- 
responding to the resonant frequencies w in (28) and (29), 
which contain + yba and - yba, are the following respec- 
tive factors in (32)-(35): 

~ ,1 / (~ :1+d~)=-1/2yba .  

If the waves in ( 1 ) are polarized in a common plane or 
in mutually perpendicular planes, then Eqs. (32) and (34) 
are the same, as are (33) and (35). For example, let us 
assume 1, = l,, and 1, = 1,. We should then set ol = 1, 
qbl =?r/2, and Y2=0 in (34) and (35) and make the sub- 
stitution a, +a1 + ~ / 2 .  Equations (34) and (35) then take 
the form of (32) and (33), respectively, with $=?r/2. 

The substitution H --* - H changes the numerical val- 
ues of the resonant frequencies in (27), (28), (30), and 
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(31), since 0, and Rb change sign. This point must be 
taken into account in calculating the RPFs in (32)-(35). 

4. VECTOR PROPERTIES OF THE RADIATION-PRESSURE 
FORCENEARTHERESONANCEw=wb, 

The results in ( lo)-( 14) can be used to study the 
vector properties of the RPF which follow from the sym- 
metry for the atom in the external fields. For this purpose 
we note that the quantities in (15) and ( 16) depend on not 
only the time t but also the quantities q, H, and A. We 
accordingly use the notation 

The substitution H-  -H  does not alter the direction 
of the quantization axis selected in ( 5 ) ,  so the quantities 
R, and Rb change sign. However, in the case of the sub- 
stitutions R,- -R, and Rb+ -Rb we should change the 
summation index, p -+ -p, in ( 15) and ( 16). As a result 
we find the important equations 

In the case of the substitution A - -A we should also 
change the summation index, p + -p, in ( 15 ) and ( 16) ; as 
a result we find the new equations 

Using (36) and (37), we find 

It also follows from (36) and (37) that the sum S (  1) 
+S( - 1) is an even function of H and an odd function of 
A. The difference S(1)-S(- 1) is an odd function of H 
and an even function of A. The sum S' ( 1 ) + S' ( - 1 ) is an 
even function of H and A. The difference S f (  1 ) +Sf ( - 1 ) 
is an odd function of H and A. These results, which follow 
from the symmetry for the atom in the external fields, 
underlie the vector properties of the RPF. 

Let us first examine the behavior of RPF ( 10) near a 
resonance at the central frequency of the transition, A =0, 
for which Zeeman sublevels with positive and negative 
angular-momentum projections appear symmetrically in 
( 10)-(14). This symmetry gives rise to the following char- 
acteristic behavior. 

The inversion 1, - - 1, , 1, - - 1, , and 1,- - 1, leads to 
the changes f l u -  -a, and Rb+ - a b ,  which are accom- 
panied by transformation (36). Accordingly, the differ- 
ences S (  1 )-S( - 1 ) and S' ( 1 )-Sf ( - 1 ) change sign. In 
addition, the sign of the unit pseudovector fl changes, so 
RPF( lo),  with ( 11)-(14), behaves as a polar vector. 

The first term in ( lo) ,  F1, is an even function of H, 
and it is nonzero if H=O. The direction of F1 in the case 
a, =a2 is determined by the vector kl ; in the case R = R2 
it also depends on the sign of A. The second term in ( lo ) ,  
F,, is an odd function of H, and it vanishes in the case 
H=O. With increasing magnetic field H in the region 

the force F2 increases in proportion to H; it then changes to 
a different behavior, tending toward zero with a further 
increase in the magnetic field, in the region 

This behavior of the force F2 can be seen clearly in 
steady state ( 18), for which the characteristic differences 
are 

where 

If we interchange the counterpropagating waves in the 
case of a linear polarization as in (2),  

and also in the case of elliptical polarizations (3) and (4), 

the force F1 does not change, while F2 changes sign. The 
meaning here is that transformations (40) and (41) are 
equivalent to the replacement H -+ - H. 

A special case in transformation (40) is that of waves 
with R1 =R2 and a1 =a2,  polarized in a common plane, 
4 = O  or #= * T. In this case the substitution kl+-+k2 means 
an interchange of the counterpropagating waves, which is 
accompanied by a change in the sign of F2. On the other 
hand, the interchange of the waves in this case does not 
alter the physical system or the force F2. The only vector 
which does not change upon a change in sign is F2=0. It 
follows that F2 is an odd function of 4 near the points 
4=0, *T. Since this assertion follows from the symmetry, 
it holds for an arbitrary intensity of the waves and for an 
arbitrary saturation. 

It follows from (40) and (41) that at a fixed A the 
direction of F2 is determined by the directions of the wave 
vectors kl and k2, of the first and second waves in ( 1 ); here 
the polarizations, amplitudes, and phase shifts of these 
waves are taken into account. It can also be asserted that 
the direction of F2 is determined by the polar vector pH, 
since the substitution H-+ - H  changes the sign of the 
force F2. In particular, in steady state ( 18) the force F2 is 
proportional to PH according to ( 12), ( 14), (38), and 
(39), since the following equalities hold: 
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The forces in ( 11 ), ( 13), and ( 14) contain terms 
which are even and odd in A, while the force in ( 12) is an 
even function of A. Even functions of A have a resonance 
at the frequency w =aba,  while odd functions of A have 
two resonances, at approximately equal frequencies, 
a = wba+ yba and w = wba- yba. Here the directions of the 
corresponding vector terms are opposite. 

If the waves are polarized in a common plane, we have 
F2=0. However, F, vanishes only if R1 =R2 and A=0. If 
the waves are polarized in orthogonal planes, we have 
F2#0. Here we have Fl#O if R1#R2 for arbitrary A, or 
for A#O and arbitrary R,  and R2. 

If the waves have identical amplitudes, R1=R2=R, 
and are strictly at resonance with the central frequency of 
the transition, A=O, the RPF in (10) contains only the 
second term, F=F2, and is given by 

Xsin # cos(a l  -@,) (42) 

for linear polarization (2) and 

X ( a l  sin $1 cos $2+u2 sin $, cos $l)sin(@l - Q2) 

for right-hand polarization (3). In the case of the left-hand 
polarization in (4), we need to take (17) into account. 

If the waves have identical polarizations (linear, right- 
hand or left-hand circular, or elliptical with $, = $,), then 
the corresponding RPF (42) or (43), vanishes. For waves 
with a right-hand or left-hand elliptical polarization, with 
J1,#$,, the quantity in (43) is nonzero. 

If we fix the directions of kl and k, and also the phase 
difference a,-a, and interchange polarization planes 
(4- -4) or if we interchange the right- and left-hand 
circular polarizations or the right-hand (left-hand) polar- 
ization and the left-hand (right-hand) polarization in the 
case of elliptically polarized waves with arbitrary and 
$,, the RPF in (42) changes sign, while that in (43) does 
not change. 

In contrast, if the parameters characterizing the polar- 
izations of the waves, #, , $,, $, , and +,, are kept the same, 
out the directions of the wave vectors kl arid k2 are re- 
versed, with the simultaneous substitution 
al -a,+ - (a1  -a2) ,  the RPF in (42) does not change, 
while the vector in (43) changes sign. 

If the directions of k, and k2 and also the phase dif- 
ference a,-a2 are kept the same, and if the right-hand 
polarizations of the elliptically polarized waves with arbi- 
trary $, and +, are replaced by left-hand polarizations with 
the help of ( 17), then the RPF in (43) does not change. 

The reason for the properties found here for RPF ( 10) 
is that the Zeeman levels with positive and negative angu- 
lar momentum projections participate on an equal basis in 
the interaction of the atom with the waves, so the basic 
equations, (10)-(14), enter the picture symmetrically. 

This symmetry is disrupted in a strong magnetic field, 
(29), near the Zeeman resonances (27), (28), (30), and 
(3  1 ), since the sum over p in ( 15) and ( 16) is dominated 
by the resonance terms alone; the other terms can be dis- 
carded. Ignoring the small terms disrupts basic equations 
(36) and (37), which led to the vector properties found for 
RPF ( 10). 

The range of applicability of the vector properties 
found here for the RPFs is thus near the resonance at the 
central frequency of the transition, A=O, in a weak mag- 
netic field, while in a strong magnetic field, (29), it is far 
from the resonances involving Zeeman sublevels. It also 
incorporates the strict resonance A=O for an arbitrary 
magnetic field. 

5. VECTOR PROPERTIES OF THE RADIATION-PRESSURE 
FORCENEARZEEMANRESONANCES 

In a strong magnetic field, (29), near Zeeman reso- 
nances, the RPF has some different properties, which can 
be summarized as follows. 

For linearly polarized counterpropagating waves, the 
dependence of the RPFs in (32) and (33) on the angle #, 
between the polarization planes, near Zeeman resonances 
differs from that in the case of the strict resonance, A=0, 
which is represented by Eq. (42). 

Near Zeeman resonances, it is no longer possible to 
decompose the RPF into parts which are even and odd in 
H or A, either in the case of a linear polarization, (32) and 
(33), or in the case of circular or elliptical polarizations, 
(34) and (35). Instead, the RPFs in (32)-(35) break up 
into two terms, the first of which is conserved, while the 
second changes sign under the simultaneous substitutions 
H + - H  and A+-A. 

If waves with R = R, have identical polarizations (lin- 
ear, right-hand or left-hand circular, or elliptical with 
$, = +,), the corresponding RPFs in (32)-(35) are non- 
zero near Zeeman resonances, in contrast with the case of 
the exact resonance, A = 0. 

If we fix Rl  and R, and also the parameters character- 
izing the polarizations of the waves, #,, #2, $,, and +,, and 
if we change the directions of the wave vectors, kl - - k, 
and k, + - k2, while making the simultaneous substitution 
a, -a2-+ - (a, -a2) ,  then the contributions of the reso- 
nances involving Zeeman sublevels (27) and (28) and also 
(30) and (3  1 ) trade places with respect to the new coun- 
terpropagating waves as the frequency w is scanned. As a 
result, RPFs (32) and (34) are replaced by (33) and (35 ), 
and vice versa. This result is an important distinction from 
the cases in (42) and (43). 

After an interchange of the right-hand circular and 
left-hand circular polarizations of the waves, while k,,  k,, 
R ,  , R2, and a, - a, are fixed, we find that as the frequency 
w of the new counterpropagating waves is scanned the 
RPFs in (34) and (35) trade places near Zeeman reso- 
nances. This property of the RPFs has no analog in the 
case of the strict resonance, A =O. 

In the time-varying case, the factors yba and A, in the 
numerator of the fractions in the first and second terms in 
(32)-(35) should be replaced by the expressions in curly 
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brackets in ( 16) and ( 15), respectively, with p = Mb . Ac- sidered in Ref. 17 for atomic transitions with angular mo- 
cordingly, the properties found for the RPFs hold for an menta 1/2 and 3/2 and with identical gyromagnetic fac- 
arbitrary time evolution of the changes in the RPFs. tors. The results in this article can be used to generalize the 

method of Ref. 17 to include arbitrary polarizations of 
6. DISCUSSION counterpropagating light waves and for atomic transitions 

The vector properties and quantitative characteristics 
of the radiation-pressure force near resonances have been 
found for low wave intensities, corresponding to a slight 
saturation. However, individual aspects of the behavior of 
the RPF remain the same for arbitrary intensities, regard- 
less of the degree of saturation. For example, the decom- 
position of the RPF into parts even and odd with respect to 
H near a resonance at the central frequency of the transi- 
tion, A=O, for a weak magnetic field and exactly at reso- 
nance, A=O, for an arbitrary value of H is a consequence 
of the symmetry of the Zeeman sublevels with positive and 
negative angular-momentum projections in the interaction 
with the counterpropagating waves. Accordingly, this 
property of the RPF remains in force for arbitrary inten- 
sities of the waves, as has been verified experimentally. " In 
addition, in a sufficiently weak magnetic field the part of 
the RPF odd in H increases in proportion to H, regardless 
of the intensities of the waves. Finally, a change in the sign 
of the part of the RPF odd in H upon an interchange of the 
counterpropagating waves is a consequence of the same 
symmetry, so this property remains in force at arbitrary 
intensities. The latter property of the RPF in the case of 
the strict resonance, A = 0, with R ,  = R2 and a, =a2, leads 
to the important conclusions that the RPF vanishes for 
counterpropagating waves which are polarized in a com- 
mon plane, $=O, * n, and it changes sign upon a change 
4= -4 in the angle between the polarization planes of the 
waves with arbitrary intensities, in agreement with 
experiment. ' ' 

The sharp change in the properties of the RPF in a 
strong magnetic field upon the switch from the strict res- 
onance at the central frequency of the transition, A =0, to 
resonances involving Zeeman sublevels is a consequence of 
the symmetry, which gives rise to natural modes for light 
waves propagating in the direction collinear with H. Ac- 
cordingly, this sharp change in the properties of the RPF 
will be observed for arbitrary intensities of the counter- 
propagating waves, although the nature of the change may 
vary with the intensities of these waves. For example, the 4 
dependence of the RPF in a strong magnetic field as de- 
scribed by (32) and (42) changes when the intensities of 
the waves are raised substantially. The angular dependence 
of the RPF in the case of strong saturation is also affected 
significantly by a term discarded from Eq. (8)  which de- 
scribes the arrival of the atom at the lower level due to 
spontaneous emission in the upper level. While this term is 
inconsequential in first-order perturbation theory, in the 
case of saturation it makes a contribution to the RPF 
which is on the same order of magnitude as the other terms 
on the right side of Eq. (8). Calculations carried out in 
second-order perturbation theory support this assertion. 

A method of rectifying the radiation force in the case 
of two counterpropagating light waves with low intensities 
and arbitrary angle between the polarization planes is con- 

with arbitrary angular momentum and different gyromag- 
netic factors. 

Most of the experiments on the RPF use atoms with a 
nonzero nuclear spin. The hyperfine structure of the levels 
of such atoms seriously complicates the equations of 
nonlinear-optics phenomena, as can be seen in the example 
of four-wave mixing in a magnetic field.18 However, despite 
this complication of nonlinear-optics phenomena, the 
properties of the RPF which stem from the symmetry re- 
main the same when there is a hyperfine level structure. 
The behavior of the RPF is quite different from that of an 
atom without a nuclear spin, because of resonances involv- 
ing components of the hyperfine structure. The reason is 
that the small value of the hyperfine splitting of the levels 
of resonant atoms in the upper level in a magnetic field 
usually leads to a Paschen-Back regime, while in the lower 
level one of the following regimes is established: a Zeeman 
regime, a Paschen-Back regime, or an intermediate regime 
(see, for example, Refs. 18 and 19). In addition, in the case 
of strong saturation there is a decrease in the populations 
of the resonance sublevels because of a transition of the 
atom to nonresonance sublevels of the hyperfine structure 
of the lower level. The frequency dependence of the RPF 
and the related properties of the RPF for atoms with a 
hyperfine structure thus require a separate study. 
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