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A degenerate antiferromagnetic semiconductor can separate into different phases in a manner 
different from that in the pioneering studies of this topic [E. L. Nagaev, JETP Lett. 16, 
394 (1972); V. A. Kashin and E. L. Nagaev, Sov. Phys. JETP 39, 1036 (1974)l. The crystal 
can separate into alternating regions of a normally stable phase and a normally unstable 
one, both antiferromagnetic. All the charge carriers would be in the unstable phase. In the two- 
phase state, the crystal can be either an insulator or a good conductor, depending on 
whether the highly conducting phase is multiply or singly connected. A spin liquid can serve 
as an alternative highly conducting phase. There is a discussion of some specific phase 
transitions which occur in two-phase systems of this sort: the disappearance of order in the 
highly conducting phase, a temperature-induced magnetic-electronic percolation, and 
a melting of the two-phase state. 

The problem of phase separation in degenerate semi- 
conductors is by no means new: It was first formulated and 
studied back in the early 1970s in papers'.2 by one of the 
present authors. The ground state of a homogeneous, de- 
generate antiferromagnetic semiconductor was studied in 
those papers. It was shown that with suitable parameter 
values the semiconductor should break up into alternating 
regions of a ferromagnetic phase and an antiferromagnetic 
one, with all the conduction electrons in the former. Fer- 
romagnetic regions of this sort are essentially complexes of 
ferrons, which are quasiparticles typical of antiferromag- 
netic semiconductors: A conduction electron (or hole) 
gives rise to a microscopic region in the ferromagnetic 
crystal and stabilizes this region by localizing in it.' The 
authors of the present paper later studied the separation of 
antiferromagnetic and ferromagnetic phases at nonzero 
temperatures, in particular, the melting of a collective fer- 
ron state of this sort accompanied by a transition of the 
crystal to a single-phase magnetic 

The separation of ferromagnetic and antiferromagnetic 
phases predicted in Refs. 1 and 2 has been observed exper- 
imentally in the degenerate antiferromagnetic semiconduc- 
tors EuTe and EuSe. It also occurs in several other 
 material^.^" Among the recent experimental studies in this 
field we should mention that by Osipov and ~ochev, '  who 
identified specific features of collective charge transport in 
very strong electric fields in highly degenerate EuTe below 
the transition to a two-phase ferromagnetic-antiferro- 
magnetic state. A detailed analysis of that experiment was 
carried out in Ref. 9. It was soon recognized that the phase 
separation should be universal, not something peculiar to 
antiferromagnetic semiconductors. 

Just recently, many investigators have taken up the 
problem of phase separation in degenerate antiferromag- 
netic semiconductors in connection with the problem of 
superconductivity (e.g., Refs. 1&13). These investigators 
have apparently been unaware of the earlier work on phase 

separation. For example, the Coulomb energy of highly 
charged regions of different phases and also their surface 
energy were totally ignored in Refs. 10-13. As was shown 
in Refs. 1 and 2, these energies are of fundamental impor- 
tance for demonstrating that a phase separation is possible 
and also for determining the geometry of the two-phase 
state. For this reason, the results of such studies on phase 
separation cannot be regarded as having a solid basis. This 
is true in particular of Ref. 10, where, within the frame- 
work of the Hubbard model, the holes were assumed to be 
concentrated in regions which became nonmagnetic as a 
result. 

In the present paper we discuss a different type of sep- 
aration of a degenerate antiferromagnetic semiconductor 
into phases: a separation which is completely different in 
nature from that in the earlier papers on this topic. Specif- 
ically, we assume that there exist alternative antiferromag- 
netic phases in which the energy of the charge carriers is 
lower than in the antiferromagnetic phase which actually 
exists in their absence. (For definiteness, we will conduct 
the discussion in terms of conduction electrons, although 
everything below also applies to holes.) The crystal can 
then break up into alternating regions of a normally stable 
antiferromagnetic phase and a normally unstable one, with 
all the conduction electrons in the latter. 

The regions of unstable phase are actually multielec- 
tron afmons. The concept of an "afmon" was recently in- 
troduced in Refs. 14-16: An afmon is a quasiparticle which 
arises in an antiferromagnetic semiconductor upon the self- 
localization of an electron in a region of an altered antif- 
erromagnetic phase. A condition for the existence of such 
quasiparticles is that the N6el point be sufficiently high; 
this condition rules out the possible existence of ferrons in 
the same material. The afmon's "memory" of a ferron is a 
slight skew of the sublattice moments of the antiferromag- 
net in the region in which a conduction electron localizes. 
Afmons are most favored from the energy standpoint near 
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the boundary between a normally stable antiferromagnetic 
phase and an antiferromagnetic phase which arises upon 
self-localization. However, afmons can also exist at a fair 
distance from this boundary at realistic parameter values. 
For example, the role of an antiferromagnetic structure 
which is stable in the absence of charge carriers might be 
played by a checkerboard NCel structure, while the role of 
a structure in which the carrier self-localizes might be 
played by a layered Landau structure. 

In addition to the division of the crystal into two an- 
tiferromagnetic phases, we will discuss the possibility that 
the crystal breaks up into regions of a normally stable 
antiferromagnetic phase and a spin-liquid phase, with the 
latter having all the conduction electrons. By "spin liquid" 
we mean a system in which there is no magnetic order 
because of a competition between different exchange mech- 
anisms. If a spin liquid exists at T=O, it should be re- 
garded as a quantum system. However, it may also arise at 
a nonzero temperature, as the result of a disruption of 
magnetic order. 

The possibility that a crystal will break up into antif- 
erromagnetic and spin-liquid phases ultimately stems from 
the circumstance that the energy of an electron in a spin- 
liquid state is close to the energy of an electron in a Landau 
structure (at least in the nearest-neighbor approximation). 
The expenditure of magnetic energy on the conversion of a 
NCel order into a Landau order may be greater than the 
expenditure of energy on disordering through a disruption 
of a NCel structure. Accordingly, even at T=O, not to 
mention nonzero temperatures, the energy conditions or 
thermodynamic conditions will favor a breakup of the sys- 
tem into an antiferromagnetic phase and a spin-liquid 
phase, rather than a breakup into two antiferromagnetic 
phases. If the relations among the parameters are instead 
of such a nature that a two-phase antiferromagnetic state 
exists at T=O, then the Landau phase will melt when the 
temperature is raised, converting into a spin liquid which 
coexists with the NCel antiferromagnetic phase and which 
is electrically charged with respect to the latter. 

The procedure developed in Refs. 1-5 for studying the 
geometry of the two-phase state and the melting of this 
state at nonzero temperatures, at which the antiferromag- 
netic phase coexists with a ferromagnetic phase, is gener- 
alized below to the case in which an antiferromagnetic 
phase coexists with another antiferromagnetic phase or 
with a spin liquid. The basic results of Refs. 1-4 remain 
valid for the case discussed here. In the two-phase state 
which we are discussing here, just as in the case of a col- 
lective ferron state, the part of the crystal occupied by 
electrons can have topologies of two types: (a )  a multiply 
connected topology with highly conducting spheres with 
the Landau structure (or spin-liquid spheres) in an insu- 
lating matrix with a NCel structure (Fig. 1); and (b)  a 
singly connected topology, with insulating spheres with the 
NCel structure in a highly conducting matrix with an 
Landau structure (Fig. 2). 

If the topology of the first type is realized, then the 
system must be an insulator (a  two-phase insulating state) 
since the conduction electrons are trapped inside each of 

FIG. 1 .  Two-phase insulating state of a degenerate semiconductor. The 
highly conducting part of the crystal (a Landau antiferromagnetic phase 
or a spin liquid) is represented by the hatching; the insulating part of the 
crystal (a NCel antiferromagnetic phase) is represented by the unhatched 
region. 

their spheres. In the case of a topology of the second type, 
the crystal is in a two-phase conducting state. A change in 
topology may occur upon a change in the density of con- 
duction electrons in the crystal. An increase in density 
converts the highly conducting phase from a multiply con- 
nected to a singly connected topology. This conversion cor- 
responds to a percolation of conduction electrons and a 
layered antiferromagnetic order. An insulator-metal tran- 
sition thus occurs. 

Percolation can also occur upon a change in tempera- 
ture, because of an increase in the volume of the highly 
conducting phase. At high temperatures, the two-phase 
state melts, converting into a single-phase state. 

Recent experiments1' point to a separation of phases in 
certain high T, superconductors; specifically, this is a sep- 
aration into a spin-liquid conducting phase and an antifer- 
romagnetic insulating phase. A separation of phases in a 
high T, superconductor was also observed in Ref. 18. The 
experimental data of that study are evidence of a percola- 
tion in the superconducting phase. 

METHOD FOR CALCULATIONS ON A TWO-PHASE 
ANTIFERROMAGNETIC STATE AT T=O 

The calculation is carried out in the s- f model (or, 
equivalently, the s-d model) with the Hamiltonian 

FIG. 2. Highly conducting two-phase state of a degenerate semiconduc- 
tor. The hatched and unhatched regions have the same meaning as in 
Fig. 1 .  
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where the operators a,*, and a,, create and annihilate an 
s-wave electron with a spin projection a at the magnetic 
atom of index g, S, is the spin of the f-wave electrons of 
this atom, s,~ are the Pauli matrices, and the vector A 
numbers the nearest neighbors. In contrast with the 
kinetic-energy operator of the s-wave electrons [the first 
term in (I)] ,  the Hamiltonian of the "direct" f- f ex- 
change [the last term in ( 1 )] incorporates the interaction 
between neighbors which are more distant than nearest 
neighbors. This point must be taken into account if we 
wish to study the vicinity of the boundary between antif- 
erromagnetic phases: Layered antiferromagnetic structures 
can be stable only if neighbors out to at least the second- 
nearest are taken into account. 

Like the problem'-5 of the stratification of a crystal 
into antiferromagnetic and ferromagnetic phases, the prob- 
lem of the stratification of a crystal into two distinct anti- 
ferromagnetic phases is solved by a variational method. In 
this case, however, the problem is far more complicated: 
Instead of two variational parameters it is necessary to 
introduce four. 

It is assumed that one phase corresponds to a check- 
erboard antiferromagnetic order and does not contain con- 
duction electrons, while the other corresponds to a layered 
antiferromagnetic order and contains all the conduction 
electrons. The first variational parameter is the ratio of the 
volumes of the first and second phases, X. Neglecting fluc- 
tuations of the electrostatic potential of an impurity, we 
also assume that the phase with the smaller volume forms 
a periodic structure of spherical inclusions of radius R in- 
side the predominant phase. The quantity R is the second 
variational parameter of the problem. 

The s- f exchange may distort the magnetic structure 
of the phase containing the electrons in such a way that the 
angle (29) between the spin directions in neighboring fer- 
romagnetic layers becomes nonzero, and a magnetic mo- 
ment arises in the corresponding part of the crystal. The 
skew angle of the moments of the sublattices, p, serves as 
the third variational parameter. 

For a crystal with a simple cubic lattice and a lattice 
constant a, as discussed below, the spin configuration of 
the magnetic structure with a vector q is specified by the 
following expressions: 

Si = S sin p cos (qg ) , 

SY,=S sin q, sin(qg), (2) 

s;=s cos p .  

For a checkerboard order we would have 
q = q ~ =  (~/a,.rr/a,.rr/a), for a chain order we would have 
qc= (r /a ,~/a,O),  and for a layered order we would have 
q~ = (.rr/a,O,O). 

The electron spectrum in a crystal with structure (2) 
consists of two subbands, whose bottoms have the energies 

where W is the width of the seed conduction band. We will 
not discuss a chain structure, since according to Ref. 16 the 
energy of an electron in it is far higher than in a layered 
structure. 

Expressions ( 3 )  and (4) follow from the general for- 
mula for the lower part of the electron spectrum in mag- 
netic structure (2) : 

- , /(E~-E~+,+~uAs cos p ) 2 + ~ 2 ~ 2  sin2 p ]  

with 

and W= 12 1 BI . This formula is found through an exact 
diagonalization of Hamiltonian ( 1 ), if we assume that the 
spins S, in it are classical vectors described by Eqs. (2).  
Equation (5) holds under the condition 2S)l if W)AS, 
or (2~) ' "$  1 if W(AS (Ref. 16). Under the condition 
W)AS for the problem at hand, Eq. (5) actually also 
applies at small values of the spins of the f electrons, S,  
since the correction to it for quantum fluctuations of the 
spins is the same for all nonmagnetic structures.16 This 
formula thus does not affect the energy benefit resulting 
from a phase separation of the type under consideration 
here (provided, of course, that there is no skew or only a 
slight skew of the sublattice moments). 

It follows from (3) and (4) that the minimum electron 
energy in the case of a layered ordering is indeed lower 
than the corresponding energy in a checkerboard ordering. 
The difference can reach several tens of electron volts for 
typical values of the crystal parameters. This is why a two- 
phase antiferromagnetic state can be realized. Such a state 
could hardly arise in compounds of rare earth elements, in 
which the strong inequality W)AS holds. It would be 
more likely in compounds of transition elements with 
W-AS. 

The discussion below will be restricted to the case 
W>AS, and in general we will not assume that this ine- 
quality is very strong. Since the electron spectrum consists 
of many spin subbands, it is convenient to introduce a 
fourth variational parameter, y, which determines the dis- 
tribution of electrons between the two subbands: 

where n is the total density of conduction electrons, and 
n (a )  are the densities of electrons in the corresponding 
subbands. In principle, the parameter Y could be expressed 
in terms of q, by working from the condition that the Fermi 
energies in the two subbands are equal. However, the ex- 
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pression for the Fermi level in a sample of finite dimensions 
is complicated by the existence of a surface correction to its 
bulk part.'9 It is thus difficult to express Y in terms of g, 
analytically. 

Correspondingly, the total energy of the electrons must 
also include a bulk part Ev and a surface part Es (Ref. 19). 
This circumstance is of fundamental importance; the the- 
ory of Refs. 1 4  is constructed on the basis of this circum- 
stance. In the case at hand, the expressions for Ev and Es 
found from (3)-(7) by the methods of Ref. 19 are not of 
the same form as in Refs. 1-4: 

where {=3 for the case of spheres filled by electrons, 
6=3X for the case of insulating spheres, 
p= (3n-%)2/3/2m*, and l/m*= wa2/6. 

The first term in (8) means the minimum energy of the 
conduction electrons corresponding to a motion of these 
electrons along the ferromagnetic layers. The second and 
third terms represent the minimum energy of the conduc- 
tion electrons corresponding to their motion across the 
ferromagnetic layers, for the lower and upper spin sub- 
bands, respectively. The fourth term is the kinetic energy 
of the gas of degenerate electrons, reckoned from the bot- 
tom of the conduction band in the case A S = O  (p is the 
Fermi energy in the case AS=O) .  In other words, this term 
is written in the zeroth approximation in AS/W, in con- 
trast with the preceding terms. This approach is justified by 
the presence of the small parameter ?I3 in this term; this 
parameter is not present in the preceding terms (the num- 
ber of conduction electrons per atom, v, is - 10-~-10-~ in 
a degenerate semiconductor with an effective electron mass 
m* on the order of the actual mass). 

There is an especially noteworthy fact here: This small 
value of the kinetic energy, in accordance with v, has the 
consequence that the lower position of the bottom of the 
conduction band in the case of a layered order than in the 
case of a checkerboard order guarantees that the electron 
energy for a layered order will be lower than that for a 
checkerboard order. 

The term Es, which gives the surface energy of the 
electrons, arises from a summation over the two spin sub- 
bands. It results from an expansion of the electron energy 
in l/kFR as a first-order correction to the bulk energy, (8) 
(kF is the Fermi momentum). 

The existence of negatively charged, highly conducting 
regions and positively charged insulating regions leads to a 
substantial increase in the energy of the two-phase state. 

To estimate the Coulomb energy we can use the method of 
Wigner cells as in Refs. 1-4. As a result we find 

2P 2 2  2 Ec=- SE n e R f (X), 

where 

for spheres occupied by electrons (Fig. 1 ) , 

f (X) = ~ [ 3 ~ + 2 - 3 ~ ' " ( 1 + ~ ) ~ / ~ ]  

for empty spheres (Fig. 2), and E is the dielectric permit- 
tivity of the crystal. 

We now consider the magnetic energy EM of a two- 
phase antiferromagnetic state, i.e., the energy of direct in- 
teratomic exchange. It follows from (1) and (2) that the 
energy of the skewed magnetic structure with a vector q is 
given by the following expression, in which neighbors out 
to third-nearest are taken into account: 

The corresponding exchange integrals are assumed to be 
negative (J1,J2,J3 < 0). It is also assumed that the inequal- 
ity I J3 1 > I J1 1 /4 holds. This inequality means that a lay- 
ered Landau antiferromagnetic structure (q = q,) is more 
favorable from the energy standpoint than a chain struc- 
ture (q=qc). 

When surface effects at the interface are ignored, the 
magnetic energy of this system is the exchange energy of a 
sample of which a fraction X/(1 +X) has the NCel struc- 
ture without a skew of moments (g,=?r/2), while a frac- 
tion 1/(1+X) has a Landau structure with a skew. The 
density of this energy is correspondingly written 

1 

(This energy is reckoned from the exchange energy density 
in the case of an ideal collinear checkerboard order.) The 
quantity Dl in ( 12) is the difference between the energies 
(per atom) of the unskewed layered and checkerboard 
structures. This difference vanishes at the interface; in gen- 
eral, it is small in comparison with D2, which is another 
combination of exchange integrals. 

The stationary state of the system is found by mini- 
mizing the total energy of the system: 

Only the surface energy and the Coulomb energy of the 
system depend on the parameter R; i.e., the geometry of 
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the two-phase state is determined by these energies alone. 
A minimization of the sum of Es and Ec leads to the 
following expressions: 

Q=Es+Ec 

After ( 14) is substituted into ( 13), the minimization 
in terms of the other variational parameters is carried out 
numerically. The minimized energy in (13) must be com- 
pared with the energies of the two-phase antiferro- 
magnetic-ferromagnetic state and a uniform state of the 
crystal. In the calculation of the first of them it was as- 
sumed that the insulating phase has an ideal collinear NCel 
antiferromagnetic structure, while the conducting phase 
might be magnetized to a point less than saturation. If this 
is the case, then this phase, too, has a checkerboard struc- 
ture, but one which is very skewed. The energy of such a 
state differs from ( 13) by the expressions for Ev and E M :  

Each of the first two terms in (15') is the energy of the 
bottom of a corresponding spin subband. The third term 
gives the kinetic energy of the electrons in these subbands 
[in the leading approximation in AS/W, this third term is 
the same as the corresponding term in (8)]. 

As the energy of the uniform state we adopt the 
smaller of the energies of the following two states: 1) that 
in which the electrons uniformly fill the entire crystal, and 
the latter has a skewed NCel structure; 2 )  that in which the 
electrons uniformly fill the entire crystal, and the latter has 
a skewed Landau structure. The values of these energies 
are found by minimizing the two versions of expression 
( 13) written above under the condition X =O. 

CALCULATION FOR A PARTIALLY OR COMPLETELY 
DISORDERED TWO-PHASE STATE 

The variational procedure described above for a two- 
phase antiferromagnetic structure can be generalized to 
nonzero temperatures. In the latter case, it must be formu- 
lated as a condition for a minimum of the free energy of the 
system. We restrict the discussion below to the case in 

which the skew of the sublattice moments can be ignored. 
A sufficient condition here is the inequality p)AS. The 
renormalization of the electron energy due to s- f exchange 
can thus be described in terms of the Hamiltonian for in- 
direct exchange between f-wave spins. Since this Hamil- 
tonian has a Heisenberg structure, a skew is not possible in 
this system in the absence of an external magnetic field. 

In the absence of a skew, it is sufficient to use two 
variational parameters, R and X. Since the electron gas is 
degenerate at the temperatures under consideration here, 
the lowest energy of a nonuniform electron gas must be 
used in the expression for the total free energy of the sys- 
tem. As before, this energy is the sum of bulk, surface, and 
Coulomb parts; the latter two are the same as expression 
(9) for Es and expression ( l o )  for Ec. The energy of an 
electron in the one-site approximation, which does not de- 
pend on the configuration of the s-wave spins, should be 
used in the first of these components: 

where nk is the electron Ferrni function. The energy of the 
magnetic order in (13) should be replaced by the free en- 
ergy of the magnetic subsystem, F M .  This free energy is 
expressed not only in terms of the direct-exchange integral 
Jq in ( 11 ) but also in terms of the indirect-exchange inte- 
gral. The latter is directly related to the two-site correction 
to the electron energy. 

In the molecular field approximation the free energy of 
the magnetic subsystem can be written 

(21) 

In place of expression ( 6 )  for Ek we can use the quadratic 
approximation in ( 17) and ( 2  1 ) . 

The expectation values of the spins are found from the 
self-consistency equations: 
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where Bs is the Brillouin function, and J (q )  = J, . 
We note that the indirect-exchange integral [the sec- 

ond term in (21)], which increases with decreasing q, sta- 
bilizes the Landau structure even if J(w) is greater than 
J ( q L ) .  However, the electron densities must be below the 
values at which ?(q) acquires a maximum at q < q~ . 

We turn now to the case in which the self-localization 
of carriers occurs in regions in which there is absolutely no 
magnetic order. This situation appears to be possible in 
principle even at T =0, because the electron energy in the 
magnetically disordered regions, given by ( 17), is very 
close to the energy in a Landau antiferromagnetic struc- 
ture, (4), under the condition AS4 W with dispersion re- 
lation (6) (it is assumed that there is no skew). To ensure 
that this assertion is valid not only for large spins S but 
also small ones, we should add to the expression found 
from (4) the energy of Coulomb fluctuations of spins:16 

where P means the principal value. It is simple to verify 
that the difference between the positions of the bottom of 
the conduction band in these two cases, divided by the 
energy of an s-wave electron, is only 1.5%. 

On the other hand, the exchange energy expended on 
creating a spin-liquid region may be less than that ex- 
pended on creating a region of Landau phase. With J3 = 0, 
for example, the first of these energies, per atom, at the 
interface between checkerboard and chain phases is 
3 I J, 1 s2/2 according to ( 1 1 ), and the second of these en- 
ergies is larger by a factor of 4/3. For this reason, the idea 
that a semiconductor at T=O might separate into regions 
of an antiferromagnetic phase and a spin-liquid phase, with 
all the carriers in the latter, does not look totally absurd. 
Nevertheless, this question can be unambiguously resolved 
only after we have verified that a two-phase 
antiferromagnetic-ferromagnetic state is not more favor- 
able from the energy standpoint than a two-phase 
antiferromagnetic-spin-liquid state. The possible existence 
of such a state at nonzero temperatures is self-evident. 

RESULTS OF THE CALCULATIONS AND DISCUSSION 

In the numerical calculations we ignored spatial fluc- 
tuations of the potential of dopant atoms which make the 
semiconductor degenerate. These fluctuations have little 
effect on the equilibrium properties of the two-phase state, 
although they may be extremely important for the kinetics, 
e.g., causing a pinning of charged regions. 

Calculations carried out for T=O show that a two- 
phase antiferromagnetic state with alternating NCel and 
Landau phases can be more favorable from the energy 
standpoint than a uniform state at reasonable values of the 
parameters of the system. At low carrier densities, the 
Landau phase consists of distinct spherical droplets, which 
form a periodic structure within the NCel phase (Fig. 1). 
Since there are no conduction electrons in the latter, the 
presence of these electrons in the Landau-phase regions 
does not cause the crystal as a whole to become a conduc- 

tor. The reason is that each electron is trapped in its own 
droplet and cannot carry its charge through the crystal. 

With increasing electron density, the relative size of 
the Landau phase increases. At a certain density np, the 
regions of this phase make contact with each other. A 
highly conducting Landau phase thus undergoes a topo- 
logical conversion at n=np from a multiply connected 
phase to a singly connected one. Correspondingly, a per- 
colation of the Landau order and the electron liquid also 
occurs at np; i.e., the crystal becomes highly conducting. 
At n > np, the insulating droplets of NCel phase form a 
periodic structure in a predominant Landau phase (Fig. 
2). These droplets have only a slight effect on the conduc- 
tivity of the crystal, since the conduction electrons circum- 
vent these droplets as they move from the cathode toward 
the anode. With a further increase in carrier density, the 
crystal abruptly goes into a uniform state with a Landau 
order [if, at these values of n, no other value of q czrre- 
sponds to a maximum of the total exchange integral J(q); 
see (21)l. 

A two-phase antiferromagnetic state is stable at (for 
example) the following parameter values: W =  1.69 eV 
(the effective electron mass is three times the actual mass), 
a = 3  A, ~ = 2 0 ,  AS= 1 eV, D, =5 - eV, and D2= lop2 
eV. A percolation of the Landau order occurs at 
np= 1.3 lo2' cmp3. The electron droplets are character- 
ized by the values q=.rr/2 and Y=O of the variational 
parameters at the percolation point (the Landau phase is 
collinear, and the electrons are spin-depolarized). The 
number of electrons in a droplet at the percolation point is 
7.8; the radius of a droplet is 19 A. 

A decrease in the NCel point of the crystal leads to a 
skew of the sublattice moments in the highly conducting 
phase and, correspondingly, to a polarization of the elec- 
trons. With the same parameter values for the system, ex- 
cept D2=5. eV, we thus have np= 1.305 - 10" cmp3, 
cos q =0.097, and Y = 0.5 1 with the same droplet radius 
and with nearly the same average number of electrons in a 
droplet (8.2) at the percolation point. A further decrease 
in the NCel point has the consequence that a two-phase 
antiferromagnetic-ferromagnetic state is energetically 
more favorable than a two-phase antiferromagnetic state. 
With the same parameter values for the system, except 
D2= eV, there is thus a cooperative ferron state with 
a complete magnetization of the highly conducting part of 
the crystal (cp=O) and a complete spin polarization of the 
electrons. The percolation density is 1.7 15 - lo2' cm-3 
here, the number of electrons in a droplet is 11, and the 
droplet radius at the percolation point is 19 A. 

The conditions are even more favorable for the real- 
ization of a two-phase antiferromagnetic state in a degen- 
erate antiferromagnetic semiconductor if the effective mass 
of a carrier is reduced, by increasing the lattice constant, 
while there is essentially no change in the width of the 
conduction band, W =  1.83 eV. If we use the same values of 
E, AS, and D, and adopt the value a =  5 A (in which case 
the effective mass of an electron is equal to the actual 
mass), then with D2= eV there should be a collinear 
two-phase antiferromagnetic state with a percolation den- 
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sity 0 . 2 9 1 . 1 0 ~ ~  ~ m - ~ ,  a droplet radius R=38 A at the 
percolation point, and 14 electrons in a droplet. 

A decrease in D2 to 5 .  lop3 eV leads to a two-phase 
antiferromagnetic state with a significant skew of the mo- 
ments in the Landau phase: While the percolation density 
and the droplet radius remain essentially the same, with a 
slight increase in the number of electrons in a droplet, 
(17), we have cos q=0.194 and y=0.92. If we reduce D2 
to eV, a two-phase antiferromagnetic-ferromagnetic 
state with a complete magnetization of the ferromagnetic 
part of the crystal and a complete spin polarization of the 
electrons becomes energetically favorable. However, the 
droplet radius and the number of electrons in a droplet 
change slightly: At the percolation point, np=0.38 lo2' 
cm-', they are 20 and 39 A, respectively. 

It follows from these results that a two-phase antifer- 
romagnetic state is indeed possible over a fairly broad 
range of completely realistic parameter values of the crys- 
tals. The relation between the parameters W and AS used 
above ( W-AS) is completely realistic for compounds of 
transition metals, although it could hardly be possible in 
compounds of rare earth metals. The density interval 
1 0 ' ~ - 1 0 ~ ~  ~ m - ~ ,  in which the percolation density falls, is 
typical of degenerate semiconductors with an effective car- 
rier mass on the order of the actual mass. 

It was not possible to carry out numerical calculations 
for partially or completely disordered systems, including a 
two-phase antiferromagnet-spin-liquid system at T=O, 
since the procedure developed in the preceding section of 
this paper is not applicable in the most pertinent case, 
W-AS. At W%AS, the numerical results are not very 
informative for real systems. Nevertheless, it is possible to 
draw several qualitative conclusions from the results of the 
preceding section of the paper even without going through 
numerical calculations. 

As we mentioned in the preceding section of this pa- 
per, the difference between the energies of an electron in a 
spin liquid and a Landau phase is small (only 1.5% under 
the condition WSAS). If the system is in a two-phase 
antiferromagnetic state at T=O, we would naturally ex- 
pect, on this basis, that the Landau order would "melt" 
very rapidly as the temperature was raised, and a spin 
liquid would take its place. During heating, the system 
thus goes from a two-phase antiferromagnetic state into a 
two-phase antiferrornagnet-spin-liquid state, with an insu- 
lating NCel antiferromagnetic phase, with all the charge 
carriers in the spin liquid. 

As the temperature is raised further, the two-phase 
state should undergo a melting, with a phase transition to 
a uniform state. A detailed study of a two-phase 
antiferromagnetic-ferromagnetic state has shown4 that this 
state converts into a single-phase state through a first-order 
phase transition. The volume of the highly conducting 
phase abruptly becomes equal to the volume of the entire 
crystal, and the ferromagnetism disappears. We would nat- 
urally expect that in the case under consideration here the 
melting of the two-phase state should occur through a first- 
order phase transition. If the crystal is in a two-phase in- 
sulating state below the point of the transition (Fig. I ) ,  it 

would be in a highly conducting state above this point; i.e., 
there should be an abrupt insulator-metal transition. If the 
crystal is instead in a two-phase, highly conducting state 
below the point of the transition (Fig. 2),  then the melting 
of the two-phase state should not be accompanied by a 
radical change in conductivity. 

By analogy with Refs. 4 and 5, we could expect some 
interesting features of the phase transitions in two-phase 
systems near n,. We might expect that the system could 
behave in two distinct ways. 

1) The dimensions of the highly conducting droplets 
increase with the temperature. If n is just slightly smaller 
than n,, then at some temperature there should be a ther- 
mally induced percolation of the Landau order (or of the 
spin-liquid state) and of the electron gas simultaneously. 
In other words, there should be a transition from the con- 
figuration in Fig. 1 to that in Fig. 2. Consequently, an 
insulator-metal transition occurs without a disruption of 
the two-phase nature of the state. At an even higher tem- 
perature, this state should melt, and the system should go 
into a single-phase state, but this melting would not be 
accompanied by a sharp change in the conductivity of the 
system. A ca l~ula t ion~ '~  for antiferromagnetic- 
ferromagnetic systems shows that this is precisely the sit- 
uation which prevails in those cases. 

2) Alternatively, there is a decrease in the dimensions 
of the highly conducting droplets with increasing temper- 
ature. If n is just slightly above n,, then there might be a 
thermally induced phase transition from the highly con- 
ducting two-phase state in Fig. 2 into the insulating state in 
Fig. 1. As the temperature is raised further, however, the 
latter state should melt, and the crystals should revert to a 
highly conducting state. In other words, one would observe 
a reentrant insulator-metal transition. 

In principle, there is yet a further possibility: phase 
transitions from a two-phase antiferromagnetic state to an 
antiferromagnetic-ferromagnetic state. However, at this 
stage of the research on the problem, that possibility is only 
hypothetical. 

CONCLUSION 

It can be seen from the discussion above that this sep- 
aration of phases has nothing in common with the trivial 
separation of phases which occurs upon a first-order phase 
transition. This is essentially a specific nonuniform state of 
uniform crystals with alternating regions of oppositely 
charged phases, combined into a unified system by a Cou- 
lomb interaction. It is for this reason that models which 
ignore the Coulomb interaction (e.g., the t-J model in Ref. 
10) are inadequate for describing this phenomenon. Fur- 
thermore, such models lead to results which are unstable 
with respect to the incorporation of a Coulomb interaction. 

Really, if one assumes that the system is separated into 
two regions of different phases (and nothing else was stip- 
ulated in Refs. 10-13), then the Coulomb energy should be 
macroscopically large ( - N'I3 in the three-dimensional 
case and - N"' in the two-dimensional case where N is the 
number of charge carriers in a phase). For this reason the 
Coulomb explosion would be inevitable. In principle, the 
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Coulomb interaction might be suppressed if in the region 
where all the carriers are concentrated, donors or acceptors 
compensating their charge are concentrated, donors or ac- 
ceptors compensating their charge are concentrated, too. lo 

But since the diffusion of impurity atoms is very weak their 
distribution is frozen in the crystal virtually in all the cases 
of interest. Thus, apparently, the only way to weaken the 
Coulomb interaction consists in mixing up the phases in 
the fashion described above. 

It should be mentioned then the ferron state of a single 
charge discovered in Ref. 3 and rediscovered recently in 
Ref. 10 is in the t-J-model less energetically favored than 
the magnetic string.6 On the other hand, separation of the 
crystal into a magnetic and nonmagnetic phase is impossi- 
ble in real systems as in them the inequality t3-J should 
hold instead of the opposite inequality assumed in Ref. 10. 
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