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The linear and nonlinear stages of transverse and longitudinal instabilities of plane solitons 
are investigated for the two-dimensional Boussinesq equations describing wave 
processes of moderate amplitude in media with weak positive-dispersion. The cause of the 
plane soliton transverse instability is found to be a resonance with "periodic solitons" 
resulting in decay of a plane solitary wave and in the formation of another one, periodically 
modulated along its front. 

1. INTRODUCTION 

Investigations performed over the past twenty years 
have shown that plane solitary waves are unstable with 
respect to long-wave transverse modulation of their fronts 
in weak positive-dispersion media.'-' This fact was first 
discovered by B. B. Kadomtsev and V. I. ~etviashvili' 
within the framework of the approximate equation that is 
now known as the KP equation. Plane soliton instability of 
self-focusing type is encountered in wave processes of dif- 
ferent physical origin: for example, for gravity-capillary 
waves on the surface of thin liquid for oblique 
magnetoacoustic waves in a magnetized for 
waves in a charged surface of a liquid dielectric,'' etc. As is 
known now, in positive-dispersion media there exist not 
only unstable plane solitons but also stable two- 
dimensional (2D) solitons localized in all directions. Ab- 
lowitz and ~ e ~ u r ~ ' ~  put forth a hypothesis that such 2D 
solitons may play the role of elementary particles that are 
formed as a result of breaking of plane nonlinear waves. 
Some numerical simulations on self-focusing instability of 
plane perturbations" confirm this idea. 

However, another idea has prevailed for a long time,12 
according to which plane soliton instability is caused by 
the excitation of small wave oscillations at the soliton 
front. The spectrum of small perturbations in positive- 
dispersion media looks like a bowl and is decaying as com- 
pared with three-wave resonances. According to the hy- 
pothesis proposed by zakharov,12 the development of small 
perturbations due to the energy transferred from nonlinear 
waves and subsequently dispersed in space leads to break- 
ing of the original wave and to formation of a quasi- 

original soliton. The parameters of the nonlinear structures 
appearing in the decay are determined by the nonlinear 
(soliton) resonance relations: 

where o i ,  ki= (kXi,kyi) are the "frequency" (the reciprocal 
of the characteristic duration or period) and the "wave 
vector" (the components of which are proportional to the 
characteristic inverse scales along the x- and y-axes) of the 
soliton structures and D(oi,ki) =O is their nonlinear dis- 
persion relation. 

New structures are also unstable with respect to long- 
wave modulation of their fronts and, in turn, decay into 
plane solitons of still smaller amplitudes and longer chains 
of 2D solitons. Such a cascade may be infinitely long with 
gradual slowing down because the growth rate of the self- 
focusing instability decreases with increasing period of 
transverse modulation. 

The KP model describes multidimensional wave pro- 
cesses whose characteristic scale is larger in the longitudi- 
nal direction than in the transverse direction.' As a conse- 
quence, the spatial variables do not enter the KP equation 
on equal terms. It is important to study the characteristic 
features of plane solitons in the framework of the basic 
equations of an isotropic medium. In the present paper this 
problem is considered for some modifications of the well 
known Boussinesq equation.&'' We show that the idea of 
soliton resonance has again a fundamental meaning for this 
problem. 

2. BOUSSINESQ EQUATION AND MODIFICATIONS 

stochastic wave field. There exist several variants of the Boussinesq equa- 
a new point view On this problem was tions containing different nonlinear and dispersive terms.' 

in a number where new types We restrict our consideration only to two, most typical 
spatio-temporal resonance of plane and essentially 2D soli- models. 
ton structures were discovered for the KP equation with Vortex-free motion of long waves with small but finite 
positive dispersion. According to the mechanism of self- amplitude on the surface of an inviscid incompressible 
focusing instability detected by Pelinovsky and liqUid6,7 Or magnetoacOuStic waves in a collisionless 
~ t e ~ a n ~ a n t s , ' '  an unstable plane soliton evolution under is described by the Boussinesq equation in the 
the action of a periodic perturbation results in its decay form 
into a plane soliton of smaller amplitude and a chain of 
uniformly spaced 2D solitons parallel to the front of the 4 , , - ~ ~ A 4 + 2 f l c ~ ~ $ + 3  C I ( ~ V ~ V ~ ~ + ~ , A + )  =0, (2.1 ) 
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where # is the velocity potential V#=v and A=v2  is the 
2D Laplace operator. 

Another well known Boussinesq equation is valid in 
the same approximation but is written for a different com- 
ponent of the wave field:'-'' 

For water waves H denotes a displacement of the free sur- 
face and for plasma waves a perturbation of magnetic field 
intensity. 

From a physical point of view, both models are correct 
for long waves of moderate amplitude ( a  and p small), 
and are equivalent over their range of validity, but they 
have different mathematical structures. Nevertheless, it 
will be shown below that the instability of moderate- 
amplitude solitons occurs in a similar manner in either of 
the two models. 

In the one-dimensional case, both Boussinesq equa- 
tions can be investigated using the inverse scattering trans- 
form, and possess multisoliton solutions. 16," However, the 
two-dimensional equations (2.1 ) and (2.2) are evidently 
not integrable, and have no N-soliton solutions. We ana- 
lyze the linear and nonlinear stages of plane soliton insta- 
bility describing these models by means of some approxi- 
mate methods. 

Solutions in the form of plane solitons can be found 
directly from the basic equations and are written as fol- 
lows: 

6pck2 kr - wt 
#a= -,w tanh - + const (2.3a) 

2 

for Eq. (2.1 ) and 

3 m 2  kr-wt 
Ha=- sechP2 - 

a 2 

for Eq. (2.2). Here the parameters w and k are related by 

Both models are spatially isotropic, so that solitons can 
propagate in any direction in the xy-plane. We choose the 
direction of a plane soliton vector k =  (k,O) coinciding 
with the x-axis. Further on, we consider the evolution of 
such a single-soliton solution with a weakly perturbed 
front. If the soliton modulation is smooth enough that the 
diffractive effects of perturbation diverging in the trans- 
verse direction have the same order of smallness as the 
dispersive effects, then both Boussinesq equations can be 
simplified and reduced to a completely integrable KP equa- 
tion (see, for example,9): 

where the plus and minus signs correspond to waves prop- 
agating to the right or left, respectively, and H and # are 
related by H= r 4,. 

However, if the characteristic scale of transverse per- 
turbations is comparable to the longitudinal, the KP ap- 
proximation is not correct and we have to use the basic 
Boussinesq equations. 

3. TRANSVERSE AND LONGITUDINAL INSTABILITY OF A 
PLANE SOLITON 

Here we investigate the principal characteristic fea- 
tures of plane soliton instability at p >  0 by using an as- 
ymptotic approach to the solution of linear equations with 
variable coefficients. 

First, we consider the model (2.2). We are looking for 
a localized linear mode w(g), where c = x - v t ,  with the 
positive growth rate il and the wave number of transverse 
modulation p in the problem linearized against the solution 
(2.3b), i.e., H= Ho(c) +&w(.g)exp(ilt+ipy): 

If the modulation is small enough, the linear Eq. (3.1 ) 
can be solved by expanding the eigenfunction w(6) and the 
eigenvalue il in p (see Refs. 1-5): 

This asymptotic expansion is based on the assumption 
that the presence of small transverse modulation of the 
soliton phase and velocity is the reason for its instability. In 
the absence of modulation (p=O), the soliton is stable 
(il=O). 

The first two corrections, determining unambiguously 
the entire series for the linear localized mode, have the 
form 

and are, actually, the customary renormalization of the 
phase and velocity of a modulated soliton. The leading part 
of the eigenvalue ill is contained in these formulas as an 
arbitrary parameter. 

In the next order (-p2), the linear inhomogeneous 
equation for w ( ~ )  has a bounded solution only if the inho- 
mogeneous terms are orthogonal to the falling solution of 
the self-adjoint operator t. Then A1 is refined from the 
equation 

This implies that the solitons of moderate amplitudes 
with k- 0 (  1 ) are unstable only for p> 0. We shall call 
such an instability and the plane soliton resonance associ- 
ated with it transverse instability (resonance). 

The higher-order corrections in (3.4), which are im- 
portant only for k2 - O(P-I), lead to a new effect. When 
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the expression in brackets before A: in (3.4) vanishes, 
which occurs for high-amplitude solitons with 
k2=k:=3c/8p, A can be finite even whenp=O, i.e., in the 
1 D case. Such an instability and the related resonance of 
plane solitons of large amplitudes k>k, and small velocities 
I v  ( <c/2 are referred to as longitudinal ones. This phenom- 
enon was first discovered by Spector et a1.18 and by Tajiri 
and ~ u r a k a m i .  l9  

The last term in (3.4) diminishes the growth rate A but 
its contribution is appreciable only for k2>5c/8p. How- 
ever, a soliton with such a value of k no longer exists, 

2 because its velocity becomes imaginary: v  = - c2/4. 
In analyzing the higher-order corrections, one should 

remember that all the Boussinesq equations obtained by 
asymptotic procedures"10 hold when the terms of order 
0 ( a 2 , p 2 , a ~ )  are negligible. Therefore the longitudinal in- 
stability may be physically meaningless and may be not 
observed in real systems. 

When the orthogonality conditions are fulfilled, we can 
calculate the correction w ( ~ ) .  However, it is not localized in 
space and we need to set boundary conditions for w(I). The 
correction is not localized because of the radiation propa- 
gating from a perturbed soliton in the nonstationary prob- 
lem. It is physically obvious that the growth of soliton 
modulation leads to formation of highly nonlinear 2D 
structures with larger amplitudes and smaller velocities 
than in the original soliton. The growing nonlinear pertur- 
bations propagate towards c < 0 if v  > 0 and towards 6 > 0 
if v  <O in the reference frame ( moving with the soliton 
velocity V. The lack of radiation in the opposite directions 
allows us to choose the boundary conditions for each cor- 
rection w'") in the form 

w(")(c-+ + co ) =0 for v >  0, (3.5a) 

w ( " ) ( ( - + - - C O ) = O  for v<O. (3.5b) 

Note that linear dispersive waves in positive-dispersion 
media propagate faster than soliton structures. Therefore, 
if small oscillations of a wave medium were excited as a 
result of soliton instability, as was supposed earlier,12 we 
would choose the opposite boundary conditions for the 
linear discrete-spectrum mode. However, comparison with 
the known mode for the KP equation12"5 reveals that this 
step would lead to an error. 

A correct choice of the boundary conditions (3.5) 
gives an unambiguous correction w ( ~ )  in the form 

where 

FIG. 1. The approximate dependence of the growth rate /t of the linear 
mode versus transverse wavenumberp (solid lines) for some values of the 
plane soliton amplitude in the linearized problem (3.1 ) for c= 1, /3=0.01, 
k,=6.124. The numbers near the curves correspond to the following val- 
ues of the parameter k: 1-5.25; 2-5.75; 3-6.25; 4-6.75. The disper- 
sion dependence A(p), following from Eq. (3.9) is shown by the dashed 
line for k= 5.25. 

where the upper sign on the lower integration limit corre- 
sponds to u  > 0, and the lower one to v  < 0. 

The correction A2 to the eigenvalue is calculated from 
the similar requirement of a bounded solution w ( ~ )  to order 
p3 and is determined by the equation: 

Hence, the growth rate A is restricted at large enough p 
(because A2 < 0),  which specifies a finite size of the insta- 
bility region on the p-axis.5 The approximate dependence 
A(p) is shown in Fig. 1 as solid lines for some values of the 
soliton amplitude (velocity). The displacement of the 
curve from zero in the region of long-wave transverse mod- 
ulation A (0)  > 0 corresponds to the appearance of longitu- 
dinal instability at large enough soliton amplitudes. 

In principle, we are able to calculate successively all 
the terms in the series (3.2) for k < kc. In order to allow 
for the existence of instability in the 1D problem at k>k,, 
it is necessary to modify the expansions (3.2) and include 
the leading part A,#O into the series in terms of A. If we 
keep in all relations only the lowest term with respect to 
the parameter p, then the series (3.2) correspond exactly 
to the expansion of the linear localized mode and its 
growth rate, which is known for the KP equation 
(2.5):l2,I5 
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where 

and the condition of mode localization implies that 
Ik'I (k. 

The dispersion dependence A (p)  following from Eqs. 
(3.9) is shown in Fig. 1 by the dashed curve. As is seen, 
the curves are qualitatively similar at small amplitudes of 
the plane soliton. However, there is no longitudinal soliton 
instability in the framework of the KP equation. 

By repeating similar calculations for the other Bouss- 
inesq equation described by (2.1 ) and writing 

where q5,({) is expressed by (2.3a), we can readily find the 
first terms (3.3) of the series (3.2) for the linear mode 
w ( c) =& and the dispersion relation for the eigenvalue A ,  

It follows from this relation that except the transverse in- 
stability of a plane soliton, other instability types including 
the longitudinal one are absent. Besides, the higher-order 
corrections in fl do not interfere with the transverse insta- 
bility throughout the region of soliton existence, and sim- 
ilarly for the formulas (3.4) and (3.7). 

4. TRANSVERSE SOLITON RESONANCE 

In the previous section the problem of plane soliton 
instability was considered for the basic models, without 
allowance for their range of applicability. We formally kept 
terms to the 0 ( p 2 )  and higher orders which are usually 
supposed to be small values. Results of our calculations 
reveal that the influence of these terms on the growth rates 
of the transverse soliton instability and on distortions of 
the linear mode is actually negligible. Therefore, the prob- 
lem can be adequately investigated to first order in O(P). 
In this approximation, the basic equation (2.1) can be 
reduced by replacing the dependent variable by a bilinear 
form which has partial explicit solutions. 

For this purpose we use the approach proposed by 
Yajima et a120 and rewrite Eq. (2.1) in the equivalent 
form neglecting terms of order 0(a2,aP,fl2): 

It is not difficult to find (see Ref. 20) that the substi- 
tution += 12P/ac(a/a) t In f transforms (4.1 ) to a bilin- 
ear equation for f (r,t) : 
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where we use the Hirota differential operator: 

(D:)fg=(at-atf)"f (t)g(t ')  It=,, 

and 

@= D;+ D;. 

For the variable f the single-soliton solution (2.3a) of 
Eq. (4.1 ) has the form 

f ~ = l + e x p ( q ~ ) ,  qi=kir--wit+qa, (4.3) 

where q, is a phase constant and the parameters oi,ki 
satisfy the relation 

which coincides with (2.4) when terms 0 ( p 2 )  are ne- 
glected. 

If the parameters kXi,kyi are supposed to be complex 
values, the solution (4.3) is complex too. In this case, the 
corresponding function q5(x,y) is localized in the direction 
of Re ki and periodic in the direction of Im ki. We shall 
call such periodic and localized complex solution a peri- 
odic soliton. 

A two-soliton solution in conventional form20,21 

f 2 = l + e x ~ ( q 1 )  +exp(772) +Al2exp(ql+q2) (4.5) 

can also be obtained for Eq. (4.2) with the function AI2 
(kl,k2) 

D(wl-~2,kl-k2) 
A12= - - 8D 

1 + - 0 ~ 0 ~  . (4.6) 
D(wl+wi,kl+k2) ( 3c3 ) 

A detailed investigation of Eqs. (4.5) and (4.6), de- 
scribed below, allows us to analyze the development of 
transverse instability of plane solitons and the formation of 
2D modulated waves in media with positive dispersion, 
/3> 0. 

4.1. Interaction of Plane Solitons 

To analyze the solution (4.5), (4.6) describing the 
interaction of two plane solitons, it is convenient to intro- 
duce the angle between their propagation directions 
0 = qk2. Tiken function A12(kl ,k2) can be rewritten in 
the form 

Obviously, at P>O the function AI2 is positive over the 
entire range of real values of 6. Therefore, the plane soliton 
interaction is nonresonant and leads only to appearance of 
a spatio-temporal phase shift S=In A12 of the soliton fronts 
relative to the narrow region of their interaction. For large 
enough angles 8-0(1) ,  this shift is small and is equal to 

2P 1+2 cos 6 
~=-- lk1l lk2I  l-cos6 

C 
+ ow2) 
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It differs from the soliton shift in negative-dispersion media 
only by its sign. It follows from (4.8) that at 8=2a/3, 
4a/3 the phase shift vanishes, i.e., two solitons do not 
interact in the model (2.1) at small P, and the field #(r,t) 
is a linear superposition of the fields of two solitons. For 
negative-dispersion media this effect was first detected by 
Benney and ~ ~ k e . ~ ~ , ~ ~  

However, at small angles e - ~ ( f l ' / ~ ) ,  for which the 
solitons interact strongly, the difference in the dispersion is 
important. Whereas the spatial resonance of plane solitons 
and the formation of soliton triplets intersecting at an angle 
to one another are possible at 0 < 0 [23], for P >  0 the field 
does not strongly depend upon 8, and A,, can be rewritten 
as 

4.2. Resonance of Periodic Solitons 

As follows from ( 1.1) and (4.6), soliton resonance 
occurs when A,, tends to zero or infinity. For media with 
positive dispersion, this is only possible by virtue of ana- 
lytic continuation of the real soliton parameters into the 
complex plane. The conditions A12=0 or A,,= cu deter- 
mine the relationship between the parameters of resonant 
solitons: 

To understand the physical meaning of this resonance, 
we suppose one of the solitons to be real, with k, (kl,O) 
and A12=0. Then the solution (4.5), which can be rewrit- 
ten in the form 

remains a complex function and formally describes the de- 
cay of a real plane soliton with parameters wl, k1 into two 
complex ones with parameters w2, k2(k2,@) and 
03=w1 -w2, k3=k1 -k2. However, in the initial stage of 
the decay, this solution is a plane soliton with small peri- 
odic perturbation which is nothing but the linear localized 
mode (3.8) with parameters k= k, , kf=2k2- k l ,  and 
A = k2(v1 - v2). The resonance condition (4. lob) leads to 
Eq. (3.9b), allowing us to find a dispersion relation A(p) 
for this mode by eliminating k'. 

It is obvious from Eq. (3.9b) that the wave number of 
transverse modulation at which resonant soliton instability 
can be observed is a small quantity of order ~ ( p " ~ ) .  In 
other words, the instability of a plane soliton with moder- 
ate amplitude is caused by long transverse perturbations 
when the dispersion and diffraction of the wave field have 
the same order of smallness. In this case, the KP equation 
is again a universal model for description of transverse 
soliton instability in weakly nonlinear dispersive media. 

Note that the possibility of periodic soliton resonance 
in the Boussinesq equation at P > 0 was first pointed out by 

~ i l e s . ~ ~  However, he did not associate this phenomenon 
with plane soliton instability. Moreover, he cautioned that 
such an instability makes the solutions thus derived phys- 
ically meaningless. 

4.3. Solitary waves with periodically modulated fronts 

Using complex-valued periodic solutions, one can con- 
struct real solutions describing waves that are periodic in 
one coordinate (the y-axis, for instance) and localized in 
the other (the x-axis). Such solutions are described by Eq. 
(4.5) at wl=w2=w and kl(k,ip)=k2, where k andp  are 
real, and the overbar denotes complex conjugation. This 
formula can be rewritten in a more convenient form:24 

where 

This solution is regular in the x,y-plane at 0<,u2<1, 
which is met only if P >  0 and p,<p<k, where 
pf = (6P/c) k4. The meaning of the upper bound is obvious 
from the dispersion relation w (k,p) coinciding with the 
dispersion relation (4.4) of the periodic solitons with pa- 
rameters k(k,ip): the wave has vanishing velocity at p = k  
+O(P) and does not exist in the form (4.12). 

On the other hand, for p=p,, two complex-conjugate 
periodic solitons merge and the solution (4.12) transforms 
into an ordinary plane soliton with parameters w,=2wl 
and kS(2k,0). It is physically clear that for p <p, the dif- 
fractive effects are negligible compared with the dispersive 
ones. Therefore, plane solitons are the only possible sta- 
tionary solitary waves in this case. Solitary waves with 
transverse periodic structure described by Eq. (4.12) can 
be formed solely by virtue of the balance between diffrac- 
tion and dispersion for p2 - o(P). 

Note that the critical point p=p, coincides with the 
cutoff of the instability region for a plane soliton with pa- 
rameters w,, k, . 

4.4. Two-Dimensional Soliton 

At small p-0(P1/2), the solution (4.12) describes 
amplitude-modulated quasiplane solitons, the modulation 
depth growing with increasing (p-p,). At large enough 
p-O(k), the modulation depth is so great that the solu- 
tion looks like a periodic chain of 2D solitons whose fields 
are essentially nonoverlapping. If the parameter k charac- 
terizing the longitudinal localization of the wave tends to 
zero consistently with the transverse wavenumber when 
p=kp,  where 6 ~ k ~ / c < ~ ~ <  1, then in this limit one can find 
the solution describing an individual 2D soliton propagat- 
ing with velocity v = *c d-, localized in all direc- 
tions, and falling off as a power law (see, e.g., [25]): 

The solutions (4.12) and (4.14) generalize the known 
soliton solutions to the classical KP equation (2.5)15*25 for 
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the Boussinesq equation (2.1 ) . In positive-dispersion me- 
dia, both plane solitons and 2D solitons can be regarded as 
special (critical, in a certain sense) forms of the family of 
solitary waves with periodically modulated fronts. 

4.5. Development of Plane Soliton Instability 

Here we analyze the nonlinear stage of plane soliton 
instability under the action of periodic perturbations. It 
follows from (4.1 1 ) that the solution corresponding to this 
process is real if two growing complex-conjugate modes 
(3.8) are given in the vicinity of the soliton. This is possi- 
ble in the framework of resonant processes described by a 
three-soliton so~ut ion: '~"~  

where the variable g l  corresponds to a phase of a plane 
soliton with parameters wl, kl  (kl  ,O), the complex- 
conjugate variables g2 and g3 correspond to the phases of 
the - periodic solitons with parameters w2, k2 (k2 ,@) and w2, 
k2(k2, -@), and p2 is defined by the formula (4.13) with 
k2 substituted for k. The direct substitution of (4.15) into 
Eq. (4.2) reveals that f 3  is its solution if the relations 

between the soliton parameters are met. 
Equations (4.16) determine the resonant conditions 

(4.10b) between the plane soliton and each of the periodic 
solitons. One condition follows from the other by virtue of 
symmetry. The additional condition (4.17), which overde- 
termines the system of algebraic equations with respect to 
the soliton parameters, indicates the existence of yet an- 
other (fourth-order) resonance of two plane and two pe- 
riodic solitons. Moreover, this resonance is described by 
the solution (4.15). Neglecting terms that are 0 (p2 ) ,  Eq. 
(4.17) holds identically if Eqs. (4.16) are fulfilled. 

Analysis of (4.15) reveals that the development of 
plane soliton instability leads to the formation, at t+ + co , 
of a solitary wave with a periodically modulated front de- 
termined by the periodic solitons with parameters w2, k2 
and 02 ,  E2, and a plane soliton with parameters 
w4=2c02-wl, k4(2k2-kl,0).15 

Thus, while a linear mode growing against the back- 
ground of the plane soliton can be constructed in the 
framework of a complex solution describing a triple reso- 
nance of a plane and two periodic solitons, the develop- 
ment of a real transverse instability is largely determined 
by the characteristic features of the fourth resonance 
(4.17). Therefore, instead of yet another modulated wave 
with parameters w3 = w1 - w2, k3 = kl  - k2, a plane soliton 
with parameters w4, k4 is formed. 

To conclude this section, we note that in the frame- 
work of the three-soliton solution we can find a linear 
mode growing against the background of the wave with a 
periodically modulated front (4.12). To this end, one 

should analyze the resonance of one of the periodic solitons 
forming the wave and an individual periodic soliton which 
occurs when only one condition of (4.16) is met. This 
mode was constructed for the KP equation by ~ u r t s e v ~ ~  in 
the framework of the 

A complete description of the instability of a wave with 
a periodically modulated front can be given in the frame- 
work of a four-soliton solution. For long-period waves with 
o(P"~), transverse wavenumbers this process is a decay of 
the original wave into two new similar  wave^.'^"^ How- 
ever, since according to Eq. (4.10) resonance of periodic 
solitons and the waves considered is also possible for mod- 
erate transverse wavenumbers, we suppose that similar 
processes of transverse instability and decay are inherent in 
the entire family of solutions (4.12). Thus, for the general 
Boussinesq models describing wave processes in positive- 
dispersion media, we also conclude that an arbitrary non- 
linear perturbation unlocalized in one direction is unstable 
with respect to long-wave front modulations, and decays 
into other waves with greater separations between 2D 
solitons. l5  

5. LONGITUDINAL SOLITON RESONANCE 

Transverse instability and resonance of plane solitons 
are inherent in different Boussinesq models and weakly 
depend on the types of nonlinear and dispersive terms. On 
the other hand, longitudinal instability is directly related to 
the nonlinearity, as follows from Sec. 3, and is observed 
only for solitons with large amplitudes. 

We consider the phenomenon of longitudinal instabil- 
ity by analyzing Eq. (2.2) in the 1D case. For this purpose 
we reduce this equation to bilinear form by replacing 
H= ( 12fl/a) (d2/dx2) In f: 

The N-soliton solutions of this equation were found by 
~ i r o t a . "  For N =  1 and N=2, they have the same func- 
tional structure as the solutions (4.3) and (4.5) but with a 
dispersion relation of the form 

and the function A12: 

where vi= wi/ki. 
Analysis of two-soliton interaction, including the res- 

onant one, was carried out for Eq. (5.1) by Tajiri and 
Nishitani. l9 The linear instability of a soliton in this model 
was investigated by Spector et a1..I8 There exists a close 
relationship between the two phenomena, the role of which 
has not been elucidated yet. 

Indeed, the resonance of two solitons (when AI2=0) 
occurs only at k f>3c/8~,  I v1 I <c/2, which corresponds to 
the range of longitudinal instability of a soliton with pa- 
rameters V1, kl (see Sec. 3).  

The resonant solution described by the function (4.11 ) 
remains real for any time t. At the initial stage, it is a single 
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soliton solution with parameters v l  = u, k1 - k that is per- 
turbed by the mode w(x- ut;k,k') in the form (3.8) with 
p=O, A= --/3ck'(k2- kt2)/2v and kt2= 3u2/2pc. This 
mode grows on the soliton background according to a lin- 
ear theory. As the instability develops further, the original 
soliton decays into two new solitons. One of them moves in 
the same direction and has the parameters 

3k u k-k' 
u2= +--- k2=- 

4 2 '  2 '  

while the other moves in the opposite direction and has the 
parameters 

Thus, longitudinal soliton instability is caused by res- 
onant excitation of the soliton in the oncoming wave that is 
also described by the two-wave Boussinesq equation. Ob- 
viously, when the minus sign is chosen before the last term 
in the solution (4.1 1 ) (which can be done by replacing 
~ , 7 ~ ~ - +  in+ ij20), the solitons appearing in the decay have 
cosech2 x-type profiles and are singular. Such an appear- 
ance of singularities in the evolution of the bounded single- 
soliton perturbation can be regarded as a collapse of the 
unstable ~ol i ton . '~  Note that construction of singular solu- 
tions is impossible and there is no soliton collapse for the 
transverse instability of solitons with moderate amplitudes. 

Omitting detailed investigation of the wave collapse 
due to the development of longitudinal instability, we shall 
show that this phenomenon is sensitive to weak changes of 
the dispersion relation (5.2). Namely, we choose it in the 
form 

Such a relation is physically more appropriate for the de- 
scription of waves in weakly dispersive media (see, e.g., 
Ref. 6) because it approximates more accurately real dis- 
persion curves and allows for the existence of solitons with 
arbitrary amplitudes. 

In this case, a resonant triplet of plane solitons (5.4) is 
formed if the condition ( 1.1) is fulfilled. This condition 
determines the dependence k'(k) where we must set 
I k'l <k. Omitting lengthy calculations, we present an 
equation for k' in the final form: 

It is easy to see that for k2-0(1), k f2-O(Ppl ) ,  
which means that the condition is not met, i.e., I k'I > k. 
We assume that there exists k =  kc such that k' (kc) = +kc.  
Then Eq. (5.6) is simplified and transforms to the biqua- 
dratic equation 

which has no real roots kc. Thus, the conditions of longi- 
tudinal soliton resonance are not fulfilled for the dispersion 
relation (5.5). 

6. CONCLUSION 

The results presented in this paper imply that the 
transverse instability of solitary waves is a general phenom- 
enon in isotropic media with weak positive dispersion and 
is adequately described by the KP approximation. As to 
the longitudinal instability and the soliton collapse, this 
problem may be solved correctly only in the framework of 
the basic equations describing strongly nonlinear waves 
with large amplitudes. 

As was to be expected, the self-focusing of small per- 
turbations leads to the formation of multidimensional sol- 
itary waves. For a sufficiently long modulation period 
(p-0), such a wave is a long-period chain of 2D solitons 
formed from the original plane soliton, which results in a 
decrease of amplitude. For a short enough modulation pe- 
riod (p-p,), a solitary wave modulated along the front is 
formed and emits a plane soliton with small amplitude. We 
suppose that the existence of the critical wave number p, as 
well as the scenario of the formation of 2D soliton chains 
from a plane soliton are general for isotropic and aniso- 
tropic media with a decaying dispersion law.27 

The mechanism of solitary wave instability that is de- 
termined by the characteristic features of decaying config- 
urations of resonantly interacting solitons enables us to 
regard these processes as a transformation of the wave field 
from one soliton to another soliton state that is not accom- 
panied by radiation of quasilinear dispersive waves of small 
amplitude. The resonant conditions in the form ( 1.1 ) for 
the waves which are periodic in one direction and localized 
in the other give a reliable criterion of plane soliton insta- 
bility to multidimensional perturbations. Unfortunately, it 
is not easy to establish the form of the nonlinear dispersion 
relation in the general case. Therefore, the instability cri- 
terion based on a decaying spectrum of linear perturbations 
is more convenient. At present, there is no rigorous proof 
of such a criterion, although the examples of weakly dis- 
persive media considered here confirm its validity. A 
search for the relationship between the two criteria men- 
tioned above is a timely problem for further investigation. 
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