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By means of an expansion in a parameter proportional to the small ratio of the temperature to 
the "binding" energy of particles in the material a kinetic equation is obtained which 
makes possible a rigorous description of a cold simple liquid. Problems of time irreversibility 
and the immediate consequences of this equation are investigated. 

Systems of large numbers of interacting particles are 
usually so complicated that it is impossible to derive kinetic 
equations explicitly for them. At present the kinetic equa- 
tions applicable for describing a Boltzmann gas, a weakly 
collisional plasma, and a number of systems which are char- 
acterized in some way by weak interactions between their 
component particles or quasiparticles are well 
Many attempts have been made to go substantially beyond 
this category of classical systems, both some time ago536 and 
in recent years.778 These have led to a significant develop- 
ment in the formalism of kinetic theory (see, e.g., Ref. 9), 
and also to an understanding of many problems in terms of 
qualitatively new ideas (see, e.g., Refs. 10 and 11). 

In addition, until now there has been no kinetic equation 
which would rigorously describe for condensed media not 
only the kinetics of the atomic oscillations about their equi- 
librium points, which in the case of, e.g., a solid body is 
given by the phonon description, but also substantial changes 
in the location of these points, i.e., in the case of a solid body 
would take into account the possibility of restructuring or 
changes in the crystal lattice. It is obvious that such an equa- 
tion should also apply to the description of a cold liquid. In 
the present work we use an expansion in a small parameter 
related to the ratio of the temperature to the "binding" en- 
ergy of atoms in the material, to derive such a kinetic equa- 
tion. The question of the time reversibility of this equation is 
considered. It is shown that this kinetic equation has a family 
of conserved quantities associated with imperfections of the 
crystal lattice in the case of a solid body and with the struc- 
ture of Frenkel "nuclei" and "holes" in the case of a liquid. 
Although the particles are assumed to obey classical me- 
chanics in the derivation of this equation, the equation itself 
and its consequences differ fundamentally from the Boltz- 
mann equation and results derived from it. 

1. In what follows we will consider a system of N pair- 
wise interacting classical particles moving in a volume V,  
described by the Hamiltonian 

where m is the particle mass and U(ri-rj) is the potential of 
the two-particle interaction, which we assume to be a 
Lennard-Jones interaction in order to be specific. 

Everywhere in what follows, unless otherwise men- 
tioned, it is assumed that the particles move in three- 
dimensional space. 

Such a system of particles can be described systemati- 
cally by an infinite hierarchy of coupled equations for the 
correlation functions, or equivalently, for the multiparticle 
distribution functions. Truncation of this system of equations 
is justified only in a limited number of cases, most of which 
reduce to the following: a) a low-density gas with a short- 
range repulsive interaction (the BBGKY expansion param- 
eter is E =nr: ,  where n is the particle density and r ,  is the 
radius of the particle interaction); b) a weakly interacting gas 
(the small parameter is E =  U / T ,  where U is the typical po- 
tential energy and T is the temperature); c) a plasma with a 
large number N D  of particles in a Debye sphere (the small 
parameter is N i  I ) ;  d) a system of perfectly hard spheres (the 
small parameter is E = n ~ ~ ,  where R is the radius of a sphere 
and n is the number density). In all of these cases it is pos- 
sible to derive a closed equation describing the function 
f(tJ-,v). 

2. Unfortunately, in more complicated situations the 
truncation of this hierarchy of equations is not so rigorously 
justified. This makes it necessary to use additional physical 
ideas in order to look for some means of approximating the 
s-particle distribution functions in terms of the lower-order 
distributions. As examples of this we can cite the superposi- 
tion approximation, the introduction of the concepts of "di- 
rect" and "indirect" correlations, etc. The possibilities of 
this approach have been thoroughly studied, and it is not 
used in the present work. Instead, we will develop a very 
different approach, which we now proceed to describe. The 
qualitative discussion in this section is necessary only to un- 
derstand the motivation for the formalism derived below, and 
is essentially not used in the sequel. 

In order to understand more complicated systems that 
those cited in Sec. 1, we look at the problem from a some- 
what different point of view. Specifically, to study the dy- 
namics described by the Hamiltonian (1) it is of interest to 
construct the one-particle trajectories Ri(t), and also the cor- 
relations between the trajectories of individual particles, i.e., 
it is necessary to find a way of describing these curves. 

Of course, depending on the problem being solved it is 
convenient and justified to describe a set of one-particle tra- 
jectories in various "languages," ranging from attempts at 
solving the system of equations corresponding to the Hamil- 
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tonian (1) exactly to using the Gibbs distribution. It should 
be noted that all of these are merely different approaches to 
solving an ensemble of one-particle trajectories (appropriate 
to a particle problem). 

In other words, we must be able to answer the following 
questions: A) what is the probability density that in the sys- 
tem of particles described by Eq. (1) at time t one particle is 
at the point O r  with velocity l r ,  acceleration 2r, etc., up to 
the kth time derivative, given by the function 
k~ , ( t ,Or , l r , . . . , k r )? ;  B) how can we find the n-particle dis- 
tribution functions k ~ , ( t ,  1 , .  . . ,n), where 

C) how many parameters Or, lr ,..., kr ,... must be retained in 
order to get a closed (in some approximation; see below) 
description of an ensemble of one-particle trajectories? 

Let us say some additional words about questions A, B, 
and C. Note that if the positions and velocities of all particles 
are given at time t, then by using the equations of motion we 
can find all the higher derivatives at this time. Furthermore, 
the question of the probability density for a finite set of de- 
rivatives to have some set of values is well posed. The equa- 
tions of motion imply that this not only characterizes the 
particle on a given trajectory but also its neighbors. 

The number of parameters needed to provide a closed 
description of the ensemble of one-particle trajectories is de- 
termined (see below) by the structure of a "typical" one- 
particle trajectory, i.e., in the final analysis by the Hamil- 
tonian (I), which provides an idea of the "complexity" of 
the molecular motion. Looking ahead we note that in the 
sequel it will be shown rigorously that for problems treated 
in the present work it is necessary to take k =  2 [see Eqs. 
(20)-(25)1. 

As a simple example we look at the systems considered 
in Sec. 1 from this viewpoint. It is easy to see that the one- 
particle trajectories in cases a and d are accurately approxi- 
mated by piecewise-linear segments, and in cases b and c are 
slightly curved, i.e., they can be approximated well by 
straight lines. This implies that to describe these systems we 
need only two parameters, r='r and v='r. 

For inhomogeneous media of the form b and c, when it 
is necessary to also take into account the self-consistent field, 
the approximate trajectories are no longer straight, but on 
time scales short compared with r C o l l = w ~ ~ , ,  where wColl is 
the collision frequency, are given by 

where U(r,{f}) is the self-consistent potential, which is a 
functional of the distribution function. However, to describe 
an ensemble of trajectories it suffices as before to use the two 
parameters r and v, since the next derivative (the accelera- 
tion) is given by the self-consistent field. 

Note that the possibility of assigning to a particle at the 
point r an acceleration that depends on r ,  the distribution 
function, and the interparticle potential, i.e., the possibility of 
introducing the usual self-consistent potential, is very excep- 
tional. To see this it suffices to consider a simple example: a 
crystal in the harmonic approximation. Specifically, suppose 

that in a crystal with temperature T the atom at the nth site is 
displaced by a distance Sr .  In this case, as can easily be seen 
by expanding the motion of the atoms in normal modes, we 
can speak only of the probability that an atom undergoes 
some acceleration a, since for Sr on the order of the ampli- 
tude 1 ,  of the thermal oscillations we have 

This relation is physically transparent: the total force act- 
ing on the given atom and composed of largely canceling 
forces due to neighboring atoms varies rapidly as the loca- 
tion of a nearest neighbor changes by a quantity of order I T ,  
which gives rise to large fluctuations in the acceleration. 
Thus, the acceleration experienced by the atom in question 
depends not on its distribution function and those of its 
neighbors, but specifically on their positions at the particular 
time. This enables us to understand why it is impossible to 
derive a closed equation for the function f(t,r,v) describing a 
crystal and why it is necessary to resort, say, to phonon lan- 
guage. 

To conclude we note that a particle trajectory, like any 
smooth curve, can be approximated to arbitrarily high accu- 
racy by a series of straight lines. However, we are interested 
in a certain sense in uniform approximations, i.e., those 
which can accurately approximate segments of one-particle 
trajectories corresponding to a time interval At .  Here 

and 7, and ra re  some times which characterize the molecu- 
lar motion, whose specific definition depends on the problem 
in question. 

In the examples noted in Sec. 1 we have 

where ro is the range of the interparticle interaction (taking 
into account plasma shielding, i.e., rm- w, ', where w, is 
the plasma frequency), v is the thermal velocity, and wColl is 
the collision frequency. 

3. We proceed to the direct derivation of the kinetic 
equation in question. We introduce the function 

where Ri(t) is the trajectory of the ith particle, we have 
written Riq)(t) = (dq/dtq)Ri , and the summation over P 
stands for summation over all permutations of the N ele- 
ments. Here the ith element goes into P ( i )  under the permu- 
tation P;  R is a point in multidimensional space, i.e., 

The evolution of the multidimensional vector 
(R~O)(t),R{')(t), ..., ~ { ~ ) ( t ) )  is described by the system of 
equations ( k 2  1)  
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where ulkf ') is defined by induction as follows: 

d U?+"=E 2 ( R : ~ + ~ ) , ~ ) u ~ ' ,  where p>Z.  
] = I  q=o 

Expressions (6)-(8) are obtained simply by successive 
differentiation with respect to time of the equations of mo- 
tion of the system (1). 

Note that Eqs. (6) yield an analog of Liouville's Theo- 
rem: the volume corresponding to the element 

N k  n n dRiq),  
i = l  q=O 

is conserved, where we have used the notation 
d r=dr ld r2dr3  for an arbitrary three-component vector 
r=(r l  7r2 7r3). 

Using (5)  and (6) we find the equation describing the 
evolution of kp, : 

k - l  N 

Note that uIk+') does not depend on Rjk) for k a l ,  
where i and j are arbitrary integers such that 1 S i S N  and 
1 C j S N .  This means that after integrating (9) by parts, we 
obtain a chain of equations for the multiparticle distribution 
function 

specifically 

where u ( ~ +  ')(j,i) is obtained according to (7) and (8) by 
retaining in the right-hand side of Eq. (7) for uj2) the single 

term u(R$O)-R$O)) with the single change in notation 
R f 4 ) j q r j  and ~ ~ ~ ) + ~ r ~ - f o r  q = 0 ,  k- 1 ; in addition we 
have the relation 

which defines the notation U Y ' ~ ) ( ~ ) .  
The linearity of (9) implies that if kp,(Q) is an arbitrary 

function such that the expression kpt(R)dR is proportional 
to the probability that at time t the state of the system is 
located in an infinitesimal volume d a  near the point and 
the function k ~ ,  is given by expression (lo), then Eq. (11) 
continues to hold for them. In what follows Eqs. (11) are 
interpreted only in this sense. 

The hierarchy of equations (11) is a generalization of the 
well-known BBGKY hierarchy, which is obtained in the 
limit k =  1. [It is true that when the BBGKY hierarchy is 
employed one usually uses a normalization of the multipar- 
ticle distribution function which differs from that employed 
in (lo)]. 

We emphasize again that in order to investigate different 
systems of particles it is convenient to choose different val- 
ues of the number k. 

4. Before proceeding to study the low-temperature ki- 
netics we must discuss the question of the choice of the 
system ensemble which we intend to describe by the multi- 
particle distribution functions. A simple but rather artificial 
example which rigorously demonstrates the need to make a 
reasonable choice of the ensemble is given in the appendix. 
There it is shown that the multiparticle distribution functions 
are just characteristics of the ensemble of particle systems 
they describe. In order that the results obtained using them 
describe an individual representative of the ensemble so as to 
make physical sense, the choice of the ensemble as a whole 
must be subjected to certain restrictions. The requirements 
imposed on the ensemble can be represented in various 
ways. For example, we can require that certain relations be- 
tween the multiparticle distribution functions hold (here, of 
course, relationships which are maintained as the ensemble 
evolves have special significance; in this connection we re- 
call the Boltzmann condition of molecular chaos or the prin- 
ciple of decay of correlations). Naturally, this question can 
be put in a different way: does there correspond to each set 
of initial data, i.e., to each representative, some ensemble of 
particle systems which adequately describes its dynamics? In 
view of these remarks we proceed to consider specific ex- 
amples which will be studied in the present work. 

We assume that kinetic processes in a crystal are being 
studied. What restrictions must be imposed on the ensemble 
of systems in this case? It is obvious that the ensemble must 
contain only systems with precisely the same position of the 
crystal lattice or one that differs over distances much less 
than the amplitude of the thermal oscillations, since then the 
ensemble can be interpreted as the state of a single crystal 
under conditions such that we do not have exact information 
about the position of each atom and must resort to a proba- 
bilistic description. But if we assume that the ensemble con- 
tains a system of particles with different positions of the 
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crystal lattice, then we can construct ensembles for which the 1 u 
one-particle distribution function does not depend on posi- = - e T  <<7= -. 

m 
Wo rp u T 

(16) 
tion or has an arbitrary preassigned period. This means that 
we cannot interpret the results in terms of a single crystal We introduce the quantity 
only. To the other restrictions imposed on the ensemble we 

+m 

must add requirements associated with the closeness of the 
-35 

(17) 
systems that compose it in terms of energy. 

It is noteworthy that when we use phonon terminology 
to describe kinetic processes in a crystal, an ensemble of 
systems in which the crystal lattice has the same position for 
each representative is used from the very beginning, which is 
guaranteed by expanding in small displacements of an atom 
about its equilibrium position. 

As will be shown below, when we go over to the case of 
a liquid the situation regarding the construction of an ad- 
equate ensemble remains essentially unchanged. That is, a 
liquid is uniform only when we average over times much 
larger than 

where vT  is the thermal velocity and u is the characteristic 
scale length of the interatomic interaction potential; here we 
have assumed nu3- 1, where n is the atomic density. On the 
other hand, the atoms are located in the potential produced 
by their immediate neighbors with a characteristic magnitude 
U s .  If 

then they undergo oscillations at the natural frequency 

It is then easy to see that 

In what follows we will use the notation n, a, U s ,  vT,  
wo, T ,  , T, E for the same quantities in the solid state as well 
unless otherwise noted. Equation (13) constitutes a simple 
restriction on the range of temperatures, and in the present 
work is always assumed to hold. 

From this physical picture of the atomic motion in a 
liquid it follows that at times much less than T [cf. Eqs. (12) 
and (IS)] their motion is similar to that of atoms in a solid 
body. This means that ensembles of systems appropriate for 
describing these two different media should be constructed in 
a similar fashion. To construct an ensemble suitable for de- 
scribing both media we take an arbitrary nonnegative func- 
tion q ( t )  which increases monotonically in the interval from 
-CC to 0 and falls off monotonically in the interval from 0 to 
+m so that 

holds, and the characteristic time scale T, of the function 
q ( t )  satisfies the inequality 

where k p , ( R )  is given by (5). 
To obtain a smooth *p;E(Ck) we can, e.g., perform further 

averaging over the initial particle velocities and positions. 
Then the width Av in velocity and the width Ar in position 
of allowable distributions of the initial conditions satisfy the 
inequalities 

where 1 ,  is the amplitude of the thermal oscillations. 
The quantity * p ; ( f l )  resulting from these operations 

specifies the ensemble which we study. It is easy to discern 
the close relationship between the ensembles constructed 
here and the quasiaverages which are widely used in 
t h e r m ~ d ~ n a m i c s . ~  This is of course completely natural. 

From (17) it follows that this ensemble describes the 
motion of individual particles, in some sense averaged over a 
time interval of order 7,. On the other hand, the average over 
the initial conditions satisfying (18) causes the representa- 
tives of the ensemble to be close both in energy and in loca- 
tion of the crystal lattice or in the local density distribution 
(at least initially) in the liquid. In what follows it is ex- 
tremely important to understand that even at times t =  +m, 

i.e., after thermal equilibrium is established, and even when 
k p , * ( ~ )  satisfies the inequalities (18), the distribution func- 
tions of the ensemble (17) can be time-dependent. This is not 
at all inconsistent with the Gibbs distribution: the Gibbs dis- 
tribution would result if we used sufficiently large T,  in (17) 
(strictly speaking, if we took the limit T,-++w), which in no 
way guarantees that the restriction imposed above in Eq. (16) 
is satisfied. Time-independent distribution functions corre- 
sponding to the Gibbs distribution can be obtained from the 
distribution functions of the ensemble (17) by additional av- 
eraging of the latter over a sufficiently long time interval. 
The time dependence of these distribution functions is stud- 
ied in detail in Secs. 8 and 9. 

5. Let us write down the first equation in (11) for k =  1 : 

and the first two equations of (11) for k =  2: 
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where i.e., this quantity is composed of terms of order 

When condition (13) holds, by using, say, the Gibbs dis- 
tribution we can easily see that the ith atom is near (within a 
distance of order IT) the point r: , which ensures at least a 
local minimum of the potential due to the neighbors of the 
ith atom, i.e., 

Note that r: is a function of time; moreover, we can assert 
that 

The points r:(t) move differently in liquids and solids, 
but this plays no part in the following discussion. The im- 
portant thing is merely to note that in a sphere with center at 
the point r,*(t) and radius R, 

there is necessarily one and only one particle (recall that 
nu3--I). 

It is easy to see that the ith atom experiences an accel- 
eration of order WoVT [see Eqs. (13) and (14) and the com- 
ment following (15)], i.e., it is small at low temperatures, but 
is a sum of large quantities of order 

which largely cancel one another. Here Uo is the typical 
value of the interatomic potential. 

This cancellation of large quantities is a serious compli- 
cation for the study of the low-temperature kinetics using 
Eqs. (11) with k= 1. Specifically, in accordance with the 
foregoing remarks, the contributions to the integral appear- 
ing in the right-hand side of (19) from the separate parts of 
the integration region are not individually small, but they 
almost completely cancel one another, leaving only a quan- 
tity of order W o V T  [see Eq. (13)l. That is, even a relatively 
small error in can lead to a considerable change in the 
value of this integral. 

If we take k=  2 in Eq. (11) the situation changes consid- 
erably. The derivative a i  of the acceleration of the ith atom is 
a quantity of order wgv T ,  

which, like their sum, decrease as the temperature is reduced. 
In consequence of this, we consider below only the case 

k = 2 .  Note that the following relations hold (see the expla- 
nation below): 

where 1 signifies I r1 - rT I G a, while no restrictions are 
placed on a, and v1 ; the integration over D j  means taking the 
integral over all v, and a, in Eqs. (26) and (27) [over v, and 
a3 in Eqs. (28) and (29)] and with respect to r, [r, in Eqs. 
(28) and (29)] over the sphere with center r; [r,* in Eqs. (28) 
and (29)] and radius R such that u TT,+<R< u ;  in Eqs. (26)- 
(29) it is assumed that i # j # k. 

Equation (26) becomes obvious if we note that the 
configuration-space sphere with center at the point r; and 
the radius R specified above [see Eqs. (16) and (17) and the 
comment following (22)] contains exactly one particle (arbi- 
trarily labeled j) with unit probability [to within terms which 
are exponentially small in E,  defined in Eq. (13)]. In the 
derivation of the first of Eqs. (26) it is important to use the 
fact that i # j. 

Equation (27) is more complicated and has important 
physical content. Note that the function 

where the integral is taken over all a, and over r, within the 
specified sphere, is proportional to the probability density 
that a single particle, arbitrarily labeled i, is located at the 
point r, with velocity v, and acceleration a,, while another 
particle, arbitrarily labeled j, has velocity v,. Let us ascertain 
the extent to which the "state" of particle i is "coupled" to 
the velocity of particle j. Suppose that we know the positions 
and velocities of all the particles at time t = 0. Noting that the 
neighboring particles, separated by distances of order 
n-1/3- u ,  "mix" their velocities due to interactions over a 
time of order w i l  we can easily see that the process by 
which the mixing of the particle velocities occurs propagates 
through space with velocity 
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We can therefore assert that after a time of order 
h t + w o l  the velocity of the jth particle depends approxi- 
mately equally on the initial conditions for the particles 
throughout a sphere of radius r ( A t ) ,  where 

i.e., the velocity v j ( A t )  of the jth particle at a time At de- 
pends on - 6 N ( A t )  variables where 

is the number of particles in a sphere of radius r ( A t ) .  If we 
change the velocity of the jth particle by a quantity of order 
uT or its position by a quantity of order lT at time t=O,  then 
the subsequent motion of this particle will be altogether dif- 
ferent, i.e., v l ( A t )  also changes by a quantity of order v T .  
Since v l ( A t )  depends approximately equally on the initial 
conditions for the particles in a sphere of radius r ( A t ) ,  it 
follows that changing any of the N ( A t )  velocities or N ( A t )  
positions on which v l ( A t )  depends sensitively by a quantity 
of order U T  or 1 ,  respectively alters v l ( A t )  by a quantity of 
order u T ,  i.e., 

where u i ( 0 )  and r i (0)  are the initial velocity and position of 
the ith particle belonging to the specified sphere. In conse- 
quence of this we find that a change in the initial velocities 
and positions in this sphere by amounts of order v T / N ( A t )  
and lT /N(At )  significantly changes u, (A t ) .  

Consequently, it is easy to see that the effect of the ith 
particle on the velocity of the jth particle is of order 

From the definition of our ensemble [see Eqs. (16) and (17)]  
we find that in the present problem we must set 

At- r v ,  

and hence 

Thus, taking, e.g., 

which satisfies (16),  we find that the effect of the state of the 
ith particle on the velocity of the jth particle is determined in 
our ensemble by the quantity 

i.e., it is negligible [see Eq. (13)l .  This means we can rewrite 
(30) in the form 

where the integral is taken over the region specified follow- 
ing Eq. (30); this expression immediately yields (27). 

Let us add some further comments regarding (27). We 
express the velocity of the ith particle in the form of a rap- 

idly varying part v f  with characteristic time scale much less 
than rv and a slowly varying part v ,  with characteristic time 
scale greater than or of order rv. The "slow" part of the 
velocity is associated with the long-wavelength motions of 
the medium, which are approximately the same at nearby 
atoms. That is to say, the functions 

I F l ( t , l i ) d r l d a l  and I Fl( t , 2 , )dr2da2 ,  (31) 

where the integrals are carried out as indicated in (30),  are 
strongly coupled if the points ri* and r; are close to one 
another; the quantity v, is determined by all the particles in 
the sphere of radius worva, i.e., the jth particle has little 
effect on it. To avoid confusion it is necessary to clearly 
understand the difference between the dependence of the ve- 
locity vi  of the ith particle on v , ,  i.e., the velocity of the jth 
particle, and the relationship between the functions (31).  

Note that it follows from the Gibbs distribution that in a 
state of thermodynamic equilibrium the velocity of a particle 
is uncorrelated with the positions and velocities of other par- 
ticles [cf. the Hamiltonian ( I ) ] .  It is easy to see that the latter 
is related in a certain way to the above results, but is by no 
means identical. 

Note that (27) is valid only after the initial correlations 
decay, i.e., after the passage of a time long in comparison 
with w o l .  It is necessary to take this into account in Eqs. 
(32)-(38) (see below) in estimating their range of applica- 
bility. Note that Eqs. (26) and (27) do not imply at all that 

for (rl-r21-a; furthermore, it follows from the results of 
Sec. 8 that this is not even true. 

6. Using Eqs. (26)-(29) we find closed equations for the 
functions F l  and F 2 .  If we note that according to Eqs. (16) 
and (17) the spatial width of the maxima of the functions F2 
and F3 is limited by 

and using Eqs. (20),  (26),  and (27),  we find 

where 012 is a function introduced to exclude "self-action." 
It can be defined, e.g., as follows: 

where v T r , < r o ~ u  and U(ro) -Umi , ,PT ,  and Urnin is the 
minimum value of the interatomic interaction potential. 

Using Eqs. (21) and (26)-(29) we find an equation de- 
scribing F 2 ( t ,  1 , 2 ) :  
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where OI23 is a function introduced to exclude self-action; it 
can be defined, e.g., by 8123= 013023 [cf. Eq. (33)l. 

From (20) it follows that 

where to is an arbitrary time. Noting that 

lim F l ( t , l ) =  lim F2(t ,1 ,2)=0,  
V, +m V 1 p m  

and hence 

we find for sufficiently large values of t (see below) 

The limiting process which yields (36) is nonuniform. 
This, however, causes no problems in what follows, and we 
will not go into this rather delicate point in more detail. 

Equation (36) has no analog in the treatment of conven- 
tional kinetic equations, i.e., those obtained from the usual 
BBGKY hierarchy, which corresponds in our case to k =  1. 

Taking into consideration that the acceleration is typi- 
cally of order w o v ~  we can regard Eq. (36) as justified for 

The time scale on which F l ( t , l )  and F2(t,1,2) vary, how- 
ever, is at least of order T~ [cf. Eqs. (10) and (17)], which 
enables us to simplify Eq. (36) somewhat and to write 

It is of interest to note that after the time interval (37) 
has passed the functions F, and F2 evolve so as to produce 
(38), and consequently make the right-hand side of (38) non- 
negative, i.e., the function F2(t, 1,2) on the right-hand side 
of this expression is subject to some severe restrictions. 

The action of the operator e-TL1 is very simple and can 
be written as follows: 

where the indicated values are substituted into the scalar 
product after the differentiation with respect to a, is carried 
out. 

Substitution of (38) into (34) yields a closed equation for 
F 2 .  

7. Before continuing our discussion we write down 
equations for the functions F1 and F2 for future reference: 

where 

In addition, Eq. (38), which expresses F l ( t , l )  in terms of 
F2(t,  1,2), also holds. 

Note that Eqs. (6) contain solutions which do not corre- 
spond to any real particle motions described by the Hamil- 
tonian (1). This implies that additional conditions must be 
imposed on the functions k ~ ,  to exclude distribution func- 
tions associated with these nonexistent motions. Using (1) 
we find 

From Eqs. (5), (lo), and (43) we find 

Taking into account Eqs. (38) and (44) we arrive at the fol- 
lowing condition: 

Condition (45) always holds if it holds initially, i.e., (45) is 
actually a restriction on the choice of initial conditions for 
Eq. (41). 

Turning to Eq. (lo), the comments following Eq. (38), 
and Eq. (45), we find that in order to obtain a physically 
meaningful Cauchy problem for Eq. (41) we must impose 
the following conditions on the choice of the initial data, i.e., 
on the function F2(t = 0,1,2): 

247 JETP 79 (2), August 1994 S. N. Gordienko 247 



where N is the number of particles in the system [cf. Eq. ( I ) ] .  
The Cauchy problem for Eq. (40) is physically meaning- 

ful only when the function F l ( t = O , l )  chosen as the initial 
condition corresponds to a function F2(t  = 0 , 1 , 2 )  which sat- 
isfied (46)-(49), for which 

If Eqs. (46)-(50) hold initially they remain valid thereafter. 
We point out once more why the restrictions (46)-(50) 

arise: Eqs. (46), (49), and (50) follow from (10); Eq. (47) is 
a consequence of "discarding" the initial time interval (37) 
during which F 1  and F2 change so as to satisfy (38) when 
we study the evolution of the system; Eq. (48) was intro- 
duced to exclude the nonexistent motions contained in Eq. 
(6).  

8. The reversibility of Eqs. (40) and (41) in this situation 
can be interpreted in different ways. The first is the answer to 
the question, do the functions F 1  and F2 satisfying (40) and 
(41) respectively go over to functions which again satisfy 
(40) and (41) under time inversion, i.e., under the transfor- 
mation 

The second meaning of reversibility is the answer to the 
following question: suppose that the initial conditions 
F l ( t  = O,r, ,vl ,a1) [or F2(t  = 07r1  ,vl ,a1 ,r2,v2,a2)] correspond 
to a physically meaningful Cauchy problem [cf. Eqs. (46)- 
(50)l. Then do the functions F,( t  = O,rl ,-vl  ,a1) [or 
F2(t  = 0,r17 -v ,  ,a1 ,r2,-v2,a2)] correspond to a similar 
Cauchy problem? For simplicity in what follows we will use 
the following notation: 

and similar notations for the function F 2 .  
We recall that the Boltzmann equation is irreversible in 

time in the first sense because the collisional term is even 
under the transformation (51). 

Admissible initial data for the Boltzmann equation need 
only satisfy the relation 

i.e., in the second sense the Boltzmann equation is trivially 
reversible. Equation (52) is so simple that the question of 
reversibility of the Boltzmann equation in the second sense is 
usually not even raised. 

It is easy to see that if the function F l ( t , l )  satisfies Eq. 
(40), then the function f ~ ~ ( t , l )  must also satisfy (40), i.e., 
Eq. (40) is reversible in the first sense. But the fact that 
F 2 ( t , 1 , 2 )  satisfies (41) does not imply that f ~ ~ ( t , 1 , 2 )  sat- 
isfies (41) also, i.e., Eq. (41) is time-irreversible in the first 
sense. The formal reason for this irreversibility is quite ob- 
vious: the derivation of Eq. (38) from (35) involved a limit- 
ing process. Furthermore, the reversibility of (40) and the 
irreversibility of (41) necessiate a much more careful analy- 
sis. 

We will now clarify the physical content of these results, 
which appear somewhat strange at first glance. Irreversibility 
is closely connected to the way the system "forgets" initial 
correlations, i.e., the way initial conditions are "forgotten" in 
the approach to thermal equilibrium. Moreover, in this case 
by no means all the initial conditions (correlations) are for- 
gotten. In fact, it is easy to see that, say, in a crystal the 
correlations in velocity and displacement from the initial po- 
sitions of the different atoms are quickly forgotten, but infor- 
mation about the position of the crystal lattice is retained in 
its entirety through the function 

In the case of a liquid the quantity J F ( t , l ) d V l d a l  
gives the local density and is also closely related to the local 
density at the initial time. Note that this picture corresponds 
to the results derived on the behavior of the solutions of Eqs. 
(40) and (41) under time reversal: the reversibility of Eq. 
(40) retains information, e.g., about the initial position of the 
crystal lattice, while the irreversible evolution of F2 is asso- 
ciated with the forgetting of correlations, e.g., in velocity or 
deviation of the particles from their equilibrium position. 
Note that if k ~ p  evolves irreversibly, it follows from [see Eq. 
( l o ) ]  

that k ~ p +  evolves more irreversibly. The converse is in gen- 
eral false, since the contribution of the irreversible correla- 
tions k ~ p + l  to the right-hand side of this identity can vanish. 

The way certain correlations are "remembered" can of 
course be expressed as a conservation law. Consider the 
function 

where 
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w(z,t,r) = 0(ln Fl(t ,r ,v,a) -z)dvda, I (54) 

with 

Using Eq. (40) we find 

d,w(z,t,r)+div,J(z,t,r)=O, 

where 

In this case, taking g(x) =x2, we find 

j(z, t ,r)= I vB(ln F,(t,r,v,a)-z)dvda. (56) 

From (53)-(56) we find 

But if the maxima of the one-particle distribution func- 
tion are smeared out in the course of evolution, then after the 
passage of a sufficiently long time t the quantity G would 
assume the value 

where the right-hand side of (57) contains a surface integral 
restricted to the medium we are analyzing, i.e., the right- 
hand side is of order v - " ~ .  

Thus, for sufficiently large V, i.e., in the limit V+ + m  
and N+ + m  with n = N/V=const we have 

a,w(z,t) = o ,  (58) 

i.e., the function W(z,t) is actually time-independent. 
From (58) it follows that 

where g(x) is an arbitrary function such that this integral 
converges. It is obvious that (59) holds if we take into ac- 
count the following identity: 

I = - dz. (60) 

We can consider a function analogous to W(z,t) defined 
in terms of F2( t ,  1,2): 

However, using the relation 

F,(t,1,2).=F,(t,1)F,(t,2) 

for Ir, -r21%-a, we find [see the comment preceding Eq. (58)] 

dW(zf,t)  
dz ' .  

dz  ' (62) 

Note that relations (53), (59), (61), and (62) admit a 
natural probabilistic interpretation. 

A number of important consequences follow from Eqs. 
(58) and (59). Consider the ensemble (17), (18) under con- 
ditions such that the latter describes a liquid at time t =  0. It 
is easy to see that under these conditions the function 
F , ( t=O, l ) ,  regarded as a function of r ,  consists of a set of 
maxima whose width is Sr [cf. Eqs. (16) and (17)]: 

However, the latter cannot occur in view of the incompatibil- 
ity of the inequalities 

[cf. Eqs. (63) and (64)] and the requirement that G not vary 
in time. 

Thus, we can conclude that as the function F, evolves it 
is not smeared out, i.e., F, continues to consist of a set of 
maxima. For a liquid these are displaced, of course, in space 
so as to maintain homogeneity under averaging over suffi- 
ciently long times [cf. Eq. (12)l. Note that even after thermal 
equilibrium is established in the liquid the quantity 
jF,(t ,r ,v,a)da,  is not identically equal to 
J F,(t,r,-v,a)da, since if these expressions were identical 
we would have 

which contradicts the results found above. To be sure, aver- 
aging $ F,(t,r,v,a)da over a sufficiently long time [cf. Eq. 
(12)] should yield a Maxwellian distribution. 

In the next section we will clarify the physical meaning 
of the result that W(z,t) is independent of time in a solid. 

We proceed now to the consideration of irreversibility in 
the second sense. Note that just because Eqs. (47) and (48) 
hold for the function F2( t=0,1 ,2) ,  it does not follow that 
they hold for ? ~ , ( t =  0,1,2).  Hence the problem is irrevers- 
ible in the second sense. 

It is not hard to see that if the functions F l ( t=O, l )  and 
F 2 ( t = 0 ,  1,2) are related by Eq. (44) then the functions 
? ~ , ( t =  0 , l )  and ? ~ , ( t = 0 ,  1 ,2)  also satisfy this relation. 
At the same time, if the original functions satisfy Eq. (38), 
this does not imply that functions obtained by tjme reversal 
also satisfy (38). This means that the functions TFl ( t  = O,1) 
and ? ~ ~ ( t  = 0,1,2) are no longer one- and two-particle dis- 
tribution functions of any physically meaningful ensemble. 

9. We now explore the physical meaning of the time 
independence of W(z,t) [cf. Eq. (53)l. In this section we will 
employ a gedanken experiment, which makes the exposition 
more compact and clearer. 

In the solid phase, when the temperature satisfies T 4  Us 
[cf. Eq. (13)], i.e., the atoms oscillate about their respective 
equilibrium positions with a characteristic velocity VT and 
frequency oo, the quantity 
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increases relatively rapidly as the temperature is decreased. 
Consider the following initial state: the entire solid body 

is broken up into tubes of length L and divided up in check- 
erboard fashion so that their temperatures are equal to Th and 
T ,  with 

and the volumes occupied by the high- and low-temperature 
phases are equal. We also assume 

This justifies the use of the temperatures Th and T , ,  so that 
we need not concern ourselves with the small quantity of 
material which separates these tubes and which of course 
cannot be assigned any temperature, since it is not in an 
equilibrium state. 

We pose the question, what temperature To will be es- 
tablished in the system after it reaches thermal equilibrium? 

The use of the standard model of a weakly anharmonic 
crystal yields 

1 
To- 5 Th , (70) 

which follows simply from energy conservation. But in ac- 
tuality, the correct answer is quite different: using (67) we 
find 

from which it follows that 

The value To given by (70) is considerably greater than 
that determined by (71). To the natural question regarding 
where the "excess" energy went there is an obvious answer: 
the usual model of a weakly anharmonic crystal does not 
take into account the possibility that the crystal lattice itself 
can change in the approach to equilibrium, i.e., defects, "fro- 
zen" internal stresses, and other imperfections can develop 
which entail the expenditure of energy. It is these processes 
which consume the supposedly excess energy. 

Thus, the quantity G [Eq. (67)] characterizes processes 
in a solid associated with changes in the crystal lattice when 
thermal equilibrium is being established: if G is sufficiently 
large [cf. Eqs. (67) and (71)], then most of the energy is 
expended in the formation of various imperfections in the 
crystal lattice. 

In a liquid different values of W correspond to the some- 
what different probabilities of encountering a "nucleus" or 
"hole" of the various structures when these are studied using 
the Frenkel theory. 

Note that real liquids and solids are of course not collec- 
tions of particles described by classical mechanics and inter- 
acting through spherically symmetric two-particle potentials. 
In actuality, the directional nature of chemical bonds, 
quantum-mechanical effects, and three- and four-particle in- 

teractions often play a decisive role. They should all be taken 
into account when the present results are applied to real me- 
dia. 

This work was performed with support from the Russian 
Fund for Fundamental Studies (project No. 93-02-3630). 

APPENDIX 

Let D be a bounded region in the phase space of the 
system (I), and consider a set S:  

where UnTo is the evolution operator and r,, is some nonzero 

time interval. We prescribe an ensemble of systems as fol- 
lows: the probability that the state of a system is in the in- 
finitesimal volume d f l  in the neighborhood of a point R of 
phase space is equal to 

if the point R belongs to the set S and is zero otherwise; here 
Vs is the phase volume of the set S.  

It is easy to see that in this case all many-particle distri- 
bution functions will be periodic in time with period TO. Note 
that the quantity r0 is completely unrelated to the particle 
dynamics, but rather is determined solely by the choice of 
ensemble. 
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