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Echo signals are computed in a three-level quadrupolar spin system ( I =  1 )  with small or almost 
zero asymmetry parameter, where the ground (equilibrium) state is determined not by a 
polarization vector but by an alignment tensor. Transformation supermatrices express the action 
of pulses and internal interactions. The evolution of the system is presented in the form of 
a graph, showing the trajectories for transfer of coherence and magnetization. It is shown that the 
echo signal is less than the free precession signal amplitude by not more than a factor of 
two. The formalism predicts the formation of an echo signal near or at zero frequency. 

1. INTRODUCTION xe = wps; + ;( W, - o r )  (s; - s;), (1) 
We have observed previously an irreversible attenuation 

of transverse magnetization in a quadrupole spin system with 
an axially symmetric electric field gradient (EFG) tensor.l9' 
Numerical calculations2 showed that homonuclear dipole- 
dipole interactions, usually considered responsible for this 
attenuation, are too weak in such compounds to explain the 
experimental results. Moreover, it was shown experimentally 
that deuteration of a specimen resulted in an appreciable in- 
crease (by more than an order of magnitude) in the lifetime 
of transverse magnetization.' 

These experiments stimulated a detailed theoretical dis- 
cussion of the possibility of formation of echo signals in 
three-level quadrupolar spin systems with a pair of degener- 
ate, or close to degenerate levels. In this case the ground 
state Hamiltonian is defined as an alignment tensor and not a 
polarization vector (using Blum's terminology3). 

A quadrupolar three-level system with zero symmetry 
parameter was studied earlier4 with approximations allowing 
the problem to be reduced to a consideration of a two-level 
system. In the present work it is assumed that because of the 
spread in the components of the EFG tensor the same shift of 
both two-level transition frequencies takes place. We assume 
that as a consequence of this spread there is an arbitrary shift 
in each energy level, which leads both to a shift of mean 
frequency and to the appearance of a normally distributed 
asymmetry parameter with zero mean value. In addition, we 
consider systems with small (nonzero) asymmetry parameter 
in order to obtain the dependence of the parameters of the 
transition signals on changes in the asymmetry parameter. 

In presenting the material we first consider the features 
of the Hamiltonians of internal interactions in systems with 
asymmetry parameter 7 close to zero in relation to systems 
with large5 and zero4 value. These properties will determine 
new features in the evolution of the spin system. 

where K =  e Z q e / 4  is the quadrupole interaction constant, the 
indices p, q, and r indicate transitions between levels +HO, 
OH- and -H+ ( E + = K ( l +  v), E - = K ( l - v ) ,  
E,= - 2K 7). Determination of the transition operators 
and the commutation relation are given in Appendix 
1. The three transition frequencies o p = K ( 3 + 7 ) ,  
o,= - K(3  - 77) and or= - 2K 7 satisfy the condition 
wp + w, + or = 0, which, when taking account of the prop- 
erty S,4 + Sf) + S: = 0 of the single-transition operators, allows 
us to write the quadrupolar Hamiltonian of Eq. (1) in three 
equivalent forms by means of cyclic permutation of the in- 
dices. All the S, operators commute with one another, which 
under the condition S,4 + Sf + S: = 0 corresponds to the exist- 
ence of two integrals of the motion determined by the opera- 
tors Sf and S,4 - S:, which can be considered the polarization 
vector and the alignment ter~sor.~ 

Because of the symmetry of Eq. (1) under permutation 
of the indices, such a separation is possible by three equiva- 
lent means relative to each transition frequency. If the three 
transition frequencies differ appreciably from one another, 
then the frequency of an external radio-frequency field can 
coincide with only one of them, o,, and only produces tran- 
sitions between that pair of levels. All the operators (Sf, S;, 
and Sf )  of this transition commute with the operator S,4-S:, 
so that a vector model of a two-level system can be used to 
describe the processes of formation of a spin echo. If the 
asymmetry parameter is close to zero, then one of the tran- 
sition frequencies, w,= - 2K7,  also becomes close to zero, 
the alignment tensor becomes a ground-state Hamiltonian, 
and transverse magnetization is excited in all three transi- 
tions, which considerably complicates the description of 
echo signal formation. 

The interaction Hamiltonian of the spin system with a 
radio-frequency magnetic field 

2. INTERACTION HAMlLTONlAN 
Xi = y H l ( c J x + c y I y + c ~ , ) c o s ( w t +  4 )  

For I= 1, the quadrupole interaction Hamiltonian 

B ~ = K [ ~ I ; -  v ( ~ ~ - ~ ~ ) ]  can be written with the help of single-transition operators as 

can be written with the help of fictitious spin-1/2 operators r 

(Ref. 6) (single-transition operators according to the termi- 3%;=2x oyS: c o s ( ~ t + + ) ,  
nology of Ernst et aL7) in the form m=p 

(2) 
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where H I ,  w, and ) are the amplitude, frequency and phase 
of the radio-frequency field, c,, c,, c, are the direction co- 
sines of the r.f. field vector in the system of the principal 
axes of the EFG tensor, o';= yHlcrn is the nutation fre- 
quency, and y is the gyromagnetic ratio. In the interaction 
picture 

If the frequency of the external field coincides with the 
frequency of one transition, then upon neglecting rapidly os- 
cillating terms, we can obtain 

r 

.XI = x w;[s; cos ) + s," sin $1. (4) 
m = p  

The initial phase of the first pulse can be set equal to 
zero and the phases of subsequent pulses can be counted 
from it. Then 

This case is realized for large asymmetry parameters. 
For zero asymmetry parameter, the frequency of the ex- 

ternal field coincides (at resonance) with the frequencies of 
two transitions and 

In this case the positions of the principal x and y axes are 
undefined, and with no loss of generality we can put C, = 0, 
which again leads to Eq. (5). However, the coordinate system 
is now determined by the projection of the r.f. field vector, 
and because of the asymmetry of the EFG tensor, the opera- 
tor responsible for the splitting of the levels is non-diagonal 
in this coordinate system. 

Hamiltonian of heteronuclear dipole-dipole interac- 
tions. These interactions can be considered interactions of a 
spin system with a local magnetic field HL, and the expres- 
sion for the Hamiltonian is the same as Eq. (2) if we omit the 
cos(wt+ 4) and replace w, by w, 

The Hamiltonian of inhomogeneous broadening. For 
small asymmetry parameter, the basic Hamiltonian, which is 
determined by the alignment tensor, can be written in the 
form 

where wQ=(E + + E _  - 2Eo)/2 = 3K is the mean quadm- 
pole resonance frequency. Consequently the Hamiltonian of 
inhomogeneous broadening-i.e., of the frequency shift- 
can be represented as 

where A = w ~ - w .  
It is also necessary to take into account the level- 

splitting Hamiltonian 

In a coordinate system in which the x axis is directed 
along the r.f. field vector, the position of the x and y axes of 
the spin operator I is determined by the rotation operator I, 
or, equivalently, by the operator S:. 

Consequently 

.Xk= wr(S: cos 2 a + S i  sin 2 a ) ,  (12) 

where a is the angle between the principal x axis of the EFG 
tensor and the projection of the r.f. field vector on the xy 
plane. 

In this way, the evolution of the spin system in the in- 
terval between the pulses will take place under the action of 
two commuting Hamiltonians: the Hamiltonian of the shift 
.XA, and the total Hamiltonian for splitting and hetero- 
nuclear dipole interactions. 

. X r =  .Hi+ .XIS= wLS:+ wrS: cos 2 a  + wrSi sin 2 a 

where 

WL W, sin 2 a  or cos 2 a  
n s = - ,  ny=  , nz= 

We We We 

are the direction cosines of the effective field, and w, 
= Jw is the effective spin precession frequency in "r" 
subspace. 

We proceed now to a calculation of the transition signals 
in the spin system. 

3. CALCULATION OF TRANSITION SIGNALS 
In the interaction picture, 

In the case of nonzero asymmetry parameter this Hamil- 
tonian does not contain constant terms, and consequently 
only makes a contribution to broadening in second-order per- 
turbation theory. If 77=0 then or is also equal to zero, and 

The initial density matrix determined by the Hamiltonian 
of Eq. (9) is given by 

where we omit the unit operator and a constant factor for the 
calculations. 

To find an expression for the density matrix describing 
the formation of an echo, it is necessary to carry out a se- 
quence of transformations of the initial density matrix, cor- 
responding to the action of the first pulse, the evolution of 
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FIG. 1. Trajectories of the evolution of a spin 
system during formation of echo signals. Ele- 
ments of the P and U matrices are shown in 
Appendices 2 and 3. 

free precession under the action of the Hamiltonians of Eqs. 
(10) and (13) and the second pulse, and subsequent free pre- 
cession evolution: 

The action of a pulse can be expressed in terms of one- 
transition operators, using the propagator exp(i*Sc). These 
transformations are well known, and for reference are given 
in Appendix 2. The operators .KA and .Kr commute, so they 
can be considered to act in succession. Furthermore, .XA 
commutes with all operators of the subspace "r," and the 
transformation in this subspace is a conventional three- 
dimensional rotation by an angle wet around the axis deter- 
mined by the direction cosines n x ,  ny  , n , :  

The general transformation matrix corresponding to the pe- 
riod of evolution is shown in Appendix 3. It is of block- 
diagonal form, and separates into vector and tensor sub- 
spaces. 

Using the transformation rules given in the Appendices, 
the general expression for the solution of Eq. (15) can be 
written down. However, it would be too complicated for pre- 
sentation. We therefore express our results in the form of a 
graph and follow the evolution of the spin system along the 
trajectories shown in Fig. 1. 

As can be seen from Fig. 1, a radio-frequency pulse in 
the "p" subspace produces a transfer of coherence from "r" 
subspace to "q" subspace and back, while the vector (r) and 
tensor ( p q )  subsystems evolve independently of one another. 
Since what is observed in the present case is transverse mag- 
netization corresponding to the operator S$, it is necessary 
for us to consider the evolution of the system along the tra- 
jectories 

+ [nSr]sin(w,t). (16) 
l'1.5 '5.8 '8.8 u8.5 

The transformations in the two other subspaces can in 4. S!-S; - S; - Sz - Sz - S ; .  
general be represented by 

exp[ - iwet(nSr)]S::;exp[ + iwet(nSr)] The "classical" (vector) echo is produced along trajec- 
tories 1 and 2. The corresponding contributions to the density 
matrix can be written by using transformation matrices P and 
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X cos - ( t  + r )  cos (A(t + 7)) [ (04 1 

+COS ($ ( t -  r))Cos (A(t+ T)) I 

COS(A((~-- r ) ) ]+( l -n : )  

x[-cos ($ ( t+T))COS (A(t-7)) 

+cos ($ ( t -  r)jCos (A(t+ r ) )  

+~n , [ s in  ($ ( t+r ) )s in  (A( t+ r ) )  

-sin ($ ( t -r)Is in (A(t-r))  . I I 
As usual, terms describing approaching isochromats at 

t = r  (time is reckoned from the second pulse) 
cos [(we/2)(t- r)]cos [A(t- r)] correspond to the echo sig- 
nals. The product cos [(we/2)(t + r)]cos [A(t + r)] repre- 
sents the free precession signal after the first pulse. Terms 
representing converging isochromats with frequencies w,/2 
and diverging ones with frequencies A, and vice versa, also 
appear in Eqs. (18) and (19), due to the existence of we 
commuting mismatch operators. 

The complete result of evolution along trajectories 1 and 
2 gives the expression 

a P ( l , Z ) ,  - 
Y 2 sin + , ( [ ( I  +n:)cos ($ ( t+  ill 

+2n, sin ( $ ( t + r ) ) s i n ( A ( t + r ) )  

+ 2n, sin ( $ ( t  - r )  ) Sin (A(t - r ) )  sin2 - ] : 7  

from which it can be seen that the maximum value of the 
echo signal in this case is 

1 'h2 
- (l+n:) sin @, sin2 - 
2 2 

and can only reach the same magnitude as the free precession 
signal when n,= 1.  This occurs when the local field vanishes 
(w, = 0) and the principal x axis of the EFG tensor points in 
the direction of the r.f. field vector. 

The result for the evolution along trajectories 3 and 4, 

+ (n?+n;)cos (A( t+  7)) + n,ny sin (A(t 

+[(n:-~;)COS ( ~ ( t  - 7)) -(n:+n$) 

xcos (A(t+ r))+n,ny sin (A(t-r))I  

shows that an echo signal of opposite polarity is produced 
along each trajectory, and these cancel. In order for them to 
add, it is necessary to apply a pulse in q subspace, i.e., to use 
crossed coils. Another feature of the evolution along trajec- 
tories 3 and 4 is the combination of isochromats at frequen- 
cies we, which would be suppressed by a frequency offset A. 

Analogous contributions to the observed signal come 
from evolution along the trajectories: 
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One feature of these signals is their appearance 27 after 
the second pulse, since the isochromats diverge in "r" sub- 
space with frequency we, while they approach in "pq" sub- 
space at half that frequency. Both signals are attenuated be- 
cause of the spread in A, and can only be observed if the 
spread in A is appreciably less than that in we. 

The process of magnetization transfer in "r" subspace 
and the formation of the echo signal in it can also be repre- 
sented clearly in Fig. 1. Consider the evolution along trajec- 
tories 

The density matrix describing the evolution along these tra- 
jectories contains a term corresponding to the echo signal: 

$1 $2 r(8,9,10)= sin2 - 
a, 2 

sin4 - ( 1  cos [we(t- T ) ] .  
2 

Since the operator S: -S,4 commutes with all operators of the 
r subspace, the spread of frequencies A does not appear dur- 
ing formation of the echo (Eq. 24). This signal is only ob- 
servable after the third (90") pulse. The first pulse must be a 
180" pulse and the second pulse a 360" pulse. Such a se- 
quence of pulses is somewhat reminiscent of Jeener and 
Broekaert's experiment.8 In essence it also involves transfer 
of magnetization to an unobservable reservoir with subse- 
quent use of a "revealed" pulse. 

Our method can also be used to calculate the stimulated 
echo. It is sufficient for this to consider evolution along the 
trajectory 

- n , )  cos - ( t  - 2 I  W2E 

In this case an echo signal is produced, as well as free pre- 
cession signals proportional to ( 1  + n i ) ,  plus signals deter- 
mined by the reduction in the spread of frequencies w, in the 
free precession signal background and in the spread of fre- 
quencies A and vice versa, which are proportional to 
(1 -n : ) .  All three should be 90" pulses. 

4. CONCLUSIONS 

The conditions for the formation of an echo signal in 
systems with initial state described by an alignment tensor 
are considered for the example of NQR of 1 4 ~ .  The free 
evolution (in the absence of a pulse) proceeds independently 
in the two subspaces (vector and tensor). Radio-frequency 
pulses produce a transfer of coherence from one subspace to 
the other. In a three-level system with three transition fre- 
quencies, inhomogeneous broadening is characterized by two 
independent quantities, conveniently expressed by a dis- 
placement (shift) of the mean frequency and splitting of the 
levels. Evolution in the vector subspace is only determined 
by the splitting, while in the tensor subspace it is determined 
by the splitting and the shift. The transfer of coherence leads 
to a phase advance confined to one subspace, uncompensated 
in the other subspace. As a result, echo signals corresponding 
to convergence of the isochromats is formed with a spread, 
for example, of splittings against an attenuation background 
with a frequency spread, and vice versa. For these reasons, 
two-stage attenuation of the echo signal is possible relative 
to the free precession signal. 

A radio-frequency pulse produces polarization in the 
vector space, which makes it possible to observe an echo 
signal at zero carrier frequency. 

It is convenient to analyze multilevel systems with the 
aid of a graph, with which one can trace the evolution of the 
system along different trajectories corresponding to the 
transfer of coherence between different pairs of levels. 

The authors hope that the calculations carried out above 
can also be useful in other areas of spectroscopy where the 
echo signal technique is used, for example in nonlinear op- 
tics. 

The work was carried out with financial support from the 
Russian Foundation for Fundamental Research, grant no. 93- 
02-2282. 
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APPENDIX 1. DEFINITIONS OF FICTITIOUS SPIN-1R OPERATORS AND COMMUTATION RELATIONS BETWEEN THEM. 

S f  = $I,, s $ ( I ~ I ~ + I ~ I ~ ) ,  s;= $(1;-1;),  

s," = ;I,, s; = ;(zxzz + ZZIX), s; = +(I: - I ; ) ,  

s:= +I,, s = $(IYIX + I ~ I )  s;= ;(I; - I ; ) ,  

[Sf  ,S,"] = - [ S P  Y '  S q ]  Y = +is : ,  [Sf: ,S;] = [ S c  ,S,"] = ; is; ,  

[ S f :  , S ; ] = [ S c  , S ; ] =  $is; ,  [ S r  , S r ] =  ( m = p ,  q, r and a ,  b, c = x ,  y,  z plus cyclic permutations). 

APPENDIX 2. SUPERMATRIX OF TRANSFORMATIONS CORRESPONDING TO THE 
ACTION OF A RADIO-FREQUENCY PULSE. 

APPENDIX 3. SUPERMATRIX OF TRANSFORMATIONS CORRESPONDING TO A PERIOD OF FREE EVOLUTION.. 
I I1 I I Tp -. 

Operators 

1 
- (s:-S,Q) fi 

s : 

s; 

s; 

SY" 

S,P 

S: 

i Sz 

s: 2nf sin2 'if! + 2 n y n z  sin2 - 211% n, sill1 y i 
+cosw,l -n, sinw,l +n, sinw,l 

1 
- (S,P-S,Q) J5 
1 
- ( 1 + 3 c o s ~ )  
4 

- sin2 
2 2 

0 

0 

J5 -- 
2 

sm@ 

0 

o 

o 

: Operators 

2nyn ,  sin' ?+ 
+n, sinwet 

2nyn ,  sin' + 
+ n y  sinw.1 

S; 

J5 2 ? L '  - sin - 
2 2 

l ( g +  cosyl) 
4 

0 

0 

1 
- sin li, 
2 

0 

o 

o 

(SI-s:) - 
Js 

2 4  sin2 y +  2nZt1, sin' w+ - 
- 1 1 ~  sin wet 

271, try sln2 y + 2 n i  sin2 * + 
+n, sinw.1 +cosw.l + 
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s; 

0 

o 

cos - 
2 

0 

0 

0 

$ sin - 2 

o 

s: 

cos '+cos~l+ - c o s ~ s i r ~ a f +  - (n, cos ~t - - (11. s ~ n  d t  + 
+n, sin y s i n ~ t  +n,  sin 9 COSAl  -n, s i n ~ l )  sin + ++I,, c o s ~ l )  sill X+ 

+ n , s i n ~ t )  sin + f?+n, c o s ~ t )  sin =+ 
I 

s; 

0 

0 

0 

L' 
c o  - 

2 

0 

0 
- -- 

o 

- sin I U: 

s; 

- (n. sin At+ 

+rr, c o s ~ t )  sin y 

s: 

COS COS At - 
-n, sin 'if! sin AI 

s; 

Js. -smu! 
2 

I 
--sin$ 

2 

0 

0 

cosy) 

0 

o 

COS y sill A1 + 

Sip 

0 

0 

0 

0 

0 1 0  

s; 

0 

0 

U' 
0 - s i n -  

2 

0 

0 

Y o c o s -  
2 

o 

s: 

(-n, sinAl+ -(n, cosA1- - cos s ina l -  cos ri;l cosAt- 

+ray c o s ~ l )  sin + -rt, s i n ~ l )  sin + -11, sin =+ cOsA1 -uZ sin w+ si11~1 
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s: 

0 

0 

0 
1 

L' 
sin I 

0 

O I 
0 1  

cosxj 7 
- I 

S,P s; s: 
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