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The existence conditions and the number of elastic surface waves on the nonfree boundary of an 
anisotropic medium of arbitrary symmetry are investigated. A class of elastic loadings F 
which are linear in the surface displacements u is considered in both the scalar (F= - yu) and 
tensor (F= - WU) cases, along with that in which the loading system is characterized by 
an eigenfrequency, which permits a resonance to occur. The analysis is based on the use of the 
surface impedance matrix 2 of the crystal, relating the surface displacement wave to the 
external force by 2u=F .  By means of the general analytical properties of the eigenvalues X i  of 
the matrix and the parameters of the force F at the surface, it is possible, using simple 
algebraic criteria admitting of a clear geometrical interpretation, to obtain exact predictions 
concerning the number of surface waves without going through a cumbersome search 
for the explicit solutions of the boundary-value problems involved. It is shown that unlike the 
case of a free surface, at which the existence of a sihgle surface wave is practically 
always guaranteed, at a loaded boundary, depending on the elastic loading parameters, surface 
wave solutions may not exist at a l l -o r  there may be several of them. Examples of 
physical situations allowing three (or even four) surface waves to coexist are given. 

1. INTRODUCTION 

Surface waves in crystals differ in their propagation ve- 
locities and penetration depths, and also in the number of 
partial modes and their polarization. A discovery of any new 
type of surface wave is always an event in crystal acoustics. 
One of the central problems in the theory of surface waves is 
the number of surface waves capable of propagating in a 
semi-infinite anisotropic medium at specific orientations of 
the surface and the propagation direction. The answer de- 
pends on the physical properties of the medium and the type 
of boundary conditions at the surface. Thus, in dielectric 
crystals in any direction (except for some special orienta- 
tions) no more than one surface wave can At 
the same time, it is well known that in piezoelectric materi- 
als, the Bleustein-Gulyaev wave may e ~ i s t ~ - ~  in addition to 
the ordinary (Rayleigh) surface wave (an analogous wave 
also exists in piezomagnetic materials7,'). These statements 
are valid only for the case of a mechanically free surface; on 
a clamped surface (when the elastic displacement on the sur- 
face is zero), either in dielectric or in piezoelectric (piezo- 
magnetic) materials surface wave solutions do not exist in 
principle.2*5.6 On the other hand, in crystals possessing piezo- 
electric and piezomagnetic properties simultaneously, a sur- 
face wave may propagate in a clamped surface as we119'10 (at 
a free surface there may exist two waves in this case). 

In the present work we consider purely elastic (dielec- 
tric) semi-infinite media and discuss the question of the pos- 
sible number of surface waves, without restricting ourselves 
to these two limiting types of boundary conditions (clamped 
surface-no solutions, free surface-no more than one solu- 
tion). There exist a whole series of intermediate boundary- 

value problems amenable to exact analysis. It is known, for 
example, that in the presence of variation near the surface, in 
addition to a Rayleigh wave a surface wave polarized trans- 
versely in the boundary plane may exist, due to the localiza- 
tion of the corresponding bulk shear-horizontal (SH) wave 
(see, e.g., monographs by ~iktorov" and by Biryukov 
et a1.l2). References 11-13 indicate that if a two-dimensional 
defect exists, then at the surface of an isotropic elastic half- 
space as many as three surface waves may occur: a quasibulk 
SH wave and two Rayleigh waves polarized in the sagittal 
plane. The results of Refs. 11-13 were obtained by a direct 
analytical solution of the wave equation with the appropriate 
boundary conditions, the solution being possible only for 
particular highly symmetrical orientations. 

In the present work, we would like to address the prob- 
lem by assuming an arbitrary anisotropy of the medium. In 
this case a "brute-force" solution via the analysis of the 
wave equation is unfortunately impossible since, generally, 
even the wave velocity dispersion relation cannot be written 
down explicitly. In what follows we shall demonstrate an 
alternative approach circumventing this difficulty. The basis 
of this approach is the use of the surface impedance method, 
a technique allowing to take as a key element of the analysis 
the known analytical properties of the surface impedance 
m a t r i ~ , ' ~ , ~  even though the explicit form of this latter is just 
as unknown as is the dispersion equation mentioned above. 

Taking the elastic loading of the boundary of an aniso- 
tropic semi-infinite medium as intermediate (between free 
and clamped) boundary conditions, we will show how natu- 
rally the requirements for the exclusion or existence of one, 
two, three, or even four surface waves can be obtained within 
the surface impedance concept. In particular, the coexistence 
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FIG. 1. Section of the outer cavity of the surface of slownesses (reciprocal 
phase velocities of the bulk elastic waves) by the sagittal plane {m,n} con- 
taining the complex wave vectors of the surface wave partial modes. 

of several surface waves at a boundary "loaded" by a layer 
of implanted heavy atoms is predicted. 

2. SURFACE IMPEDANCE MATRIX: DEFINITION AND BASIC 
PROPERTIES 

In a semi-infinite anisotropic medium, the elastic wave 
field is a superposition of partial acoustic modes: 

where m is the wave normal, n is the inward normal to the 
surface (Fig. I), and v the phase velocity. The polarization 
vectors A,, and the parameters pa characterizing the local- 
ization of the partial waves, are given by the wave equation 

and by the condition that there be nontrivial solutions to it, 

det (A(")-v2)=0. (3) 

Here 

i. is the tensor of elastic moduli, p the density of the medium, 
and summation is implied over repeated Latin indices. The 
condition (3) is an equation of sixth degree in the parameters 
p a .  For phase velocities v slower than the so-called limiting 
velocity vL (Fig. I), the roots of Eq. (3), pa=pa(v) ,  a= 1, 
2, ..., 6, occur in complex conjugate pairs. Clearly, the roots 
with negative imaginary parts must be thrown away as un- 
physical, so that for v <vL the wave field u consists of three 
partial modes which decay away from the surface according 
to the condition Impa>O, a= 1, 2, 3. 

Each partial wave mode at the boundary r of the me- 
dium gives rise to an elastic force 

where 6, is the tensor of the mechanical stresses associated 
with the given mode, and 

The boundary conditions at the surface of the medium can be 
written in the form 

where F=Foexp[ik(mr-vt)] is the external force per unit 
area of the surface (in what follows we consider "coherent" 
external loadings, which are proportional to the elastic sur- 
face displacement); the sign on the right-hand side of Eq. (6) 
is due to the choice of the inward normal n in (4). From Eq. 
(6), the amplitudes ba are determined. 

References 14 and 2 have introduced, for v c v L ,  the 
concept of a surface impedance, a matrix 2 which relates an 
arbitrary elastic displacement in the wave field at the bound- 
ary, 

to the corresponding surface elastic force: 

Following Refs. 14 and 2, it is not difficult to get a conve- 
nient representation for the 2 matrix. In fact, noting that for 
v c vL the vectors A,, a = 1, 2, 3, are always linearly in- 
dependent (there are no wave solutions satisfying the 
clamped-surface condition A= 0) and expressing the coeffi- 
cients ba in (7) in the fay ba=u,'ui, we have for the 
surface impedance matrix Z the following representation: ( 

With the impedance matrix thus introduced, the boundary 
conditions (6) can be written in the form 

It should be noted that the surface impedance matrix as a 
function of the velocity, i = i ( v ) ,  is determined only by the 
geometry of the problem and the elastic properties of the 
medium and does not depend on the particular form of the 
boundary conditions and the corresponding form of the wave 
solution [as a function of the amplitudes b, in Eq. (I)]. 

The surface impedance matrix for the region v CvL  has 
the following general properties (Refs. 2, 14-16): 

1) the matrix 2 is Hermitian and hence its eigenvalues 
Xi, i = l ,  2, 3, arefeal; 

2) the matrix Z for v=O is positive definite, i.e., 
A,(O)>O; 

3) the matrix di ldv is negative definite, i.e., 
dAi/dv<O; 

4) the real (symmetric) part of the matrix i is positive 
definite for v < vL ; 

5) A , ~ ( V ~ ) A ~  = 0, where ALis the polarization vector of 
a one-partial bulk wave characterized by the velocity vL and 
the parameter p = tan OL (Fig. 1). 
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FIG. 2. Possible ways the eigenvalues of the sur- 
face impedance matrix can depend on the velocity: 
a) A Z ( U L ) > O ,  A 3 ( v L ) < O ;  b) A 2 ( v L ) = 0 ,  
A ? . ( ~ L ) < O ;  C) A I ( ~ L ) > O ,  A ~ ( v L ) = O ;  d) 
X Z , , ( v L ) = 0 ;  in all cases A I ( v L ) > O .  The dashed 
lines correspond to scalar loadings independent of 
the velocity. The coordinates of the closed circles 
correspond to the surface wave parameters. 

The properties listed above1) enable one to prove16 that 
the examples presented in Fig. 2 exhaust the possible ways in 
which the eigenvalues hi of the impedance matrix i may 
depend on the velocity v. 

In the Appendix is given, as an illustration, the explicit 
form of both the impedance matrix i ( v )  and its eigenvalues 
calculated for a monoclinic medium with axis 2 orthogonal 
to the sagittal plane {m,n}; and for a transversely isotropic 
semi-infinite medium for two different orientations of the 
symmetry axis 6, perpendicular to the sagittal plane of the 
medium and perpendicular to the surface. The corresponding 
curves hi(v) for the case 61{m,n} are given in Fig. 3. We 
will also show how these results can be applied to rhombic 
crystals (propagation along the axes of the standard coordi- 
nate system of such crystals, in surfaces parallel to the coor- 
dinate planes). 

3. MODEL EXAMPLE OF THE ELASTIC LOADING OF THE 
SURFACE 

As an illustration of the idea we are discussing, consider 
the loading of the surface by the external force 

F= - yu, (10) 

where u is the displacement of the surface and y is a scalar 
factor. Clearly, the boundary condition (9) for such a "sca- 
lar" loading reduces to the equation 

i.e., the required solutions of the boundary-value problem 
(surface-wave phase velocity values v<vL) are determined 
simply as the points of intersection of the curves of the im- 
pedance matrix eigenvalues, Ai(v), with the horizontal inter- 
secting the vertical axis at the corresponding value - y (see 
Fig. 2). For a mechanically free surface (y=O), when the 
Rayleigh wave phase velocity vR<vL is determined as the 
point of intersection of the curve Ai(v) with the abscissa, 
Fig. 2 illustrates the theorems of existence and uniqueness 
for the Rayleigh surface waves: a) the solution vR<vL al- 
ways exists if hi(vL) f 0, i = l ,  2, 3; b) the solution 
vR<vL is always unique1p2 (there cannot be two solutions 
present in the region v<vL ,  not even for the case 
Ai(VL) = 0). 

Consider the case y> 0.  Obviously, the simplest physi- 
cal model for this case is a system of springs between a 
surface and a perfectly rigid platform, the stiffnesses of the 
springs being chosen so that a spring responds in the same 
way to the normal and tangential surface displacements, and 
the separation between the springs being assumed small 
compared to the wavelength. If a Rayleigh wave exists at the 
free surface, then the elastic loading (10) with a sufficiently 
small stiffness y [0< y< - Ami,(vL)] leads to a change in 
the wave velocity (vR+vS) at the loaded surface (Fig. 2a). 
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FIG. 3. Branches Ai(u) in hexagonal crystals: a) g=cM/c l l  = 0.1, 
u,= 1 . 1 ~ ~ ~  [degeneracy, see Eq. (A.25)]; b) g=0.75,  u,= 0 . 9 ~ ~ ~ ;  c) 
g=0.1,  u1=0.9u,~.  In the cases a, b, and c the relations for A,(uL) are the 
same as in Figs. 2a,b,c, respectively. 

For y= - Amin(vL), one of the partial waves of this solution 
becomes a bulk wave.2) But for y> -Amin(vL), the exist- 
ence theorem does not hold for such a loaded surface be- 
cause in this case there are a priori no surface waves in the 
region v<vL,  even if Ai(vL) # 0, i = 1, 2, 3. Thus we 
see that the surface wave solutions disappeare long before 
the the surface is totally clamped (for y= + m )  and takes 
places even for y = - Amin(vL). 

If we have y<O, then for not too large values of I yl the 
existence of at least one surface wave solution is clearly 
guaranteed. In this case the uniqueness theorem may be in- 
validated for an infinitesimal loading of the surface of the 
elastic medium. In fact, from Figs. 2b,d and 3b it is seen how 

for y<O two surface wave solutions, vsl,  vS2<vL, are 
obtained; in Fig. 2d both the waves are quasibulk waves for 
I yl small (weakly decaying inward because of the small 
value of y), while in Figs. 2b and 3b one of the wave solu- 
tions is quasibulk and the other is a Rayleigh wave. For a 
sufficiently large value of the parameter I yl ( y<O)and pro- 
vided Amin(0)>A,,(vL), three surface waves may exist in 
the region v < v (see Fig. 2c). 

Note that unlike the mechanically free surface of an elas- 
tic half-space, which admits of no one-partial wave solutions 
for v<vL (Refs. 17 and 20), at the loaded boundary a sur- 
face wave may also be one-partial, i.e., we may have ullA, 
for v<vL [see Eq. (I)]. The localization of the horizontally 
polarized wave (A3(l[mn]=t) may be mentioned as an ex- 
ample (see the Appendix and Figs. 3b,c). Note also that the 
presence in Fig. 3a of the velocity vd, for which 
A2(vd) = h3(Vd)~Xd holds, implies that for the scalar load- 
ing (10) with the stiffness coefficient y= - Ad<O, there may 
exist, in a transversely isotropic medium, a degenerate sur- 
face wave having a velocity vd and an arbitrary orientation 
of the complex elastic displacement vector u [provided only 
that ueT(vd) = 0,  where the vector e,*(vd) is complex con- 
jugate to that eigenvector of the matrix i(Vd) corresponding 
to the nondegenerate eigenvalue A1(vd) # Ad]. 

The relevant question here is the physical realizability of 
the loading (10) with the coefficient y negative, a loading 
from which additional wave solutions arise. Clearly, in the 
above spring model the value of y (spring stiffness) is essen- 
tially positive. Nevertheless, it is readily seen that even a 
slight modification of the model immediately leads to a sca- 
lar loading of the form (1) with a coefficient y' <O. In the 
discussion above we assumed that at the end of every one of 
the springs there is a heavy platform fixing the reference 
point for the displacement of the spring from its equilibrium 
position, so that the displacements of the surface of the elas- 
tic medium under study exactly determine the tension or 
compression of the spring. Now suppose that at the ends of 
the springs there are minute loads distributed with a surface 
density (mass per unit area) p, and possessing their own 
degrees of freedom (displacements u'). This loading of the 
crystal surface is resonant: all of the springs have the same 
eigenfrequencies that are determined by their stiffness and 
mass. Then, instead of the equation i u =  - yu one should 
solve the system which determines the correlated displace- 
ments u and u' at both ends of the springs, 

Eliminating u' from (12) we arrive at the equation 

where w = v k is the wave frequency and w,= the 
resonant frequency. The quantity y' is a function of the ve- 
locity and may be either positive or negative. It is essential 
that the change of sign of the coefficient y' at 
v = v,= w, lk be resonant and occur via an infinite disconti- 
nuity (see Fig. 4). As seen from Figs. 4a and 4b, for 
v,<vL (i.e., for k>w,lvL) the existence of three surface 
wave solutions is guaranteed. What is more, for 
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FIG. 4. Surface wave solutions in the case of a resonant 
loading on the surface: a, b, c and d correspond to the 
existence of four, three, two, and one solution. 

- Y ' ( V ~ ) > A , ~ , ( V ~ ) ~ - C ~ ~  (cL>O is of the order of the ko=w,lv~-but only as 10% as k < k ~  7 Eq. (14)- For 

elasticity modulus, see the Appendix), that is, for k>kc,  four simultaneous surface waves must exist in the 
system, generally of different polarization. 

(14) 

4. ELASTIC MEDIUM VARYING NEAR THE SURFACE 

a fourth solution must emerge (Fig. 4a). 
It is easily understood (see also Figs. 4c,d) that for 

vr>vL one surface wave at least is guaranteed, but we may 
actually have two or three of them. The last case occurs, 
obviously, for - ~'(v~)>Xrnax(v~) 'C~k 
(CL>O, CL-cL), when 

Clearly, this is a less stringent inequality than the condition 
k>wr/vL,  which is equivalent to the requirement vr<vL.  
In other words, as the wavelength is decreased, one, two, 
and, for k>Kc [see Eq. (15)], three waves are successively 
excited at thresholds; they also persist beyond the point 

In this section we will show how the surface impedance 
concept works in determining the number of surface waves 
under conditions where a semi-infinite elastic medium is 
characterized by nonuniformity near the surface. The nature 
of this nonuniformity may vary widely. Even in a perfect 
crystal, the elastic properties and density of the medium in a 
layer several interatomic separations thick near the surface 
differ appreciably from those in the bulk. Still greater bound- 
ary effects may be associated with "surface membranes," for 
example with adsorbed layers of heavy atoms or technologi- 
cally treated (say, polished) surfaces. In the latter case a 
modified layer with irregular behavior forms, whose thick- 
ness may be of order 100A. The question of the boundary 
conditions for such a boundary has been discussed in detail 
in the literature (see, e.g., Refs. 12, 13, 21-26). In the 
"strong coupling" case, when the elastic displacement field 
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u given by Eq. (1) is considered continuous near the surface 
( X ~ - + O ) , ' ~  these boundary conditions may be written in the 
form (6) with the external force 

where i is the residual stress tensor, p, is the surface density, 
i is the surface elastic modulus tensor, and Sij is the Kro- 
necker symbol. 

As mentioned in the Introduction, the influence on elas- 
tic wave propagation of nonuniformity near the surface has 
usually been treated11-13,23,27 for highly symmetric media 
(mostly isotropic or transversely isotropic) by explicitly solv- 
ing an equation of the form (6), (13). The topics discussed 
were SH-wave localization, the change in Rayleigh wave 
velocity, and the occurrence of an additional Rayleigh mode. 
In particular, Ref. 27 shows that at short wavelengths in a 
model hexagonal crystal with a plane defect at the surface, 
two surface waves polarized in the sagittal plane may exist. 
Clearly, for the general case of an arbitrarily anisotropic me- 
dium, to determine the number of solutions to the boundary- 
value problem (16), i.e., the number of surface waves at the 
loaded surface, appears to be very complicated to attack 
head-on, by solving the boundary-value problem (6), (16) 
directly. It turns out, though, that the answer can be obtained 
in one fell swoop and with no calculation, by writing the 
boundary conditions with the aid of the surface impedance 
matrix and then using the properties of the matrix. 

Using the definition (7) of the surface impedance, from - . . 
the boundary condition (6), (16) we obtain the surface-wave 
velocity dispersion relation of the form 

where in terms of the coordinate system with xlllm, x211n, 
the matrix w has the form 

(from now on the components of the tensor h are given in the 
two-index notation). Cases of different interrelations be- 
tween the surface parameters will next be considered. 

Clearly, if in (18) one formally sets Igl1lS-lhapl, pSv2, 
then Eq. (17) reduces to Eq. (11) with a wavelength- 
dependent scalar loading, y = kZg ll . For gll> 0, it was 
shown in the preceding section that in the region v < v~ there 
is no more than one surface wave, whereas for gll<O the 
number of surface waves, which is determined by the num- 
ber of points where the straight line with intercept - y inter- 
sects the Ai(v) curves, may reach three (see Fig. 2c). zif we 
take into account the frequency dispersion [ymk2, Aimk; see 
Eqs. (5) and (8)], surface waves may appear or disappear in 
a passage through a certain threshold value of wave vector k. 

However, the limiting case we have considered, which 
assumes the residual stresses gll  in the layer near the surface 

to exceed the elastic moduli hap, is hardly realizable. At the 
same time, another limiting case, p , v 2 ~  lglll, IhapI appears 
to be fairly realistic. It corresponds, e.g., to a layer of heavy 
atoms adsorbed at the surface of a light substrate (assuming 
the elastic moduli and residual stresses in the layer are not 
abnormally high). In this limit, the tensor boundary condition 
(13), (18) clearly reduces again to the scalar loading (10) 
with a constant y= y, which depends in addition on the ve- 
locity: ?(v) = - kZp,v2. Note that ?(v) is identical to the 
expression for yl(v) ,  Eq. (13), if this latter is treated in the 
strong coupling limit ( y ~ k ~ ~ , v ~ ) .  Figure 5 displays some 
examples of the graphical solution of the equations 
Ai(v)= - ?(v) ( i=  1, 2, 3) for various values of the pa- 
rameter kp,. It is seen that the number of surface wave 
solutions, depending on the wavelength, the density p, , and 
the behavior of the functions Ai(v) at v<vL (see also Fig. 
2), varies from one to three. In situations corresponding to 
Figs. 5a,c the minimum number of solutions is one, whereas 
in cases corresponding to Figs. 5b,d there are always at least 
two surface wave solutions. In all cases, for 

three surface waves can propagate.3) 
Now consider the general case, where all the surface 

parameters, pSv2, i, and A, are comparable. We assume the 
sagittal plane to be coincident with the plane of symmetry of 
the monoclinic medium. We further assume that the surface 
defect does not break the assumed symmetry. Then in the 
chosen coordinate system we have h15=0, and for a horizon- 
tally polarized (SH) wave the dispersion equation (17) re- 
duces to the condition 

where 

[see Eq. (18) and Eq. (A.l) of the Appendix, respectively]. 
The solution of Eq. (16) is clearly the point of intersection of 
the curves A3(v) and - W33(v). Such a solution, corre- 
sponding to the localization of the SH wave at a "defect" 
boundary, arises if 

As regards the waves polarized in the sagittal plane (coincid- 
ing with the symmetry plane), to study them within our 
model taking into account the component hll is a more com- 
plicated problem, which does not reduce in principle to the 
analysis of the intersection of the curves Al(v), and Az(v) 
with the Wll(v)and Wzz(v) curves. In fact, in the coordinate 
system xlllm, xzlln, in which the matrix w is diagonal, the 
matrix Z has a decoupled component z33= A3(the eigenvalue 
for the real eigenvector of SH orientation, i.e., parallel to 
t = [mn]), and a generally nondiagonal upper 2X 2 block. At 
the same time, one would expect that the equation 
det(Zij + Wij) = 0, i ,  j = 1, 2 [see Eq. (17)], unlike the stan- 
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dard equation detZij=O valid for the homogeneous half- 
space, may have more than one solution, i.e., in this case 
several Rayleigh surface waves with sagittal plane polariza- 
tion may in principle exist. 

In concluding this section we consider an extension of 
the above boundary-value problem to include the degrees of 
freedom (or displacements u') of the near-surface defect it- 
self. In this case, following Ref. 13 we have instead of the 
strong coupling boundary condition (16), the system of equa- 
tions 

where the tensor i' describes the elastic coupling of the de- 
fect with the substrate. Eliminating u' from Eq. (24) we are 
led to a boundary-value problem physically analogous to the 
boundary condition (13), 

jju= -w',,, t i . '=(j+$rf-l)- 'w, (25) 

where j is the unit matrix. In fact, setting in the simplest case 
r i j=ySi j  and returning to the limiting case 
psv2% l g l l l ,  I h ,@I, which corresponds to the near-surface 
defect problem for a layer of adsorbed heavy atoms, one 
easily obtains that 

FIG. 5. Surface wave solutions for the case of loading pro- 
duced by a layer of surface-absorbed heavy atoms (strong 
coupling approximation). Relations for Ai(vL) in the cases 
a, b, c, and d are the same as in Figs. 2a,b,c, and d, respec- 
tively. 

in particular that, for high enough frequencies, the maximum 
number of surface waves at a boundary with a heavy atom 
absorption layer on it may, in principle, reach four. 

Let us estimate, for this case, the threshold frequencies 
v3 and v4 corresponding to the excitation thresholds for 
three and four waves respectively. From Eqs. (14) and (15) 
we have 

where the parameter y,-,-4p2v~lps. For y% yo, the quantity 
v3 is independent of y to lowest order, 

and the frequency v4 is linear in y, 

v4= y12mpvL. (29) 

In the opposite extreme y e  yo, the frequencies v ~ , ~  differ 
little and are proportional to A: 

w!.= y'S.. 
11 11 (26) Let us make a numerical estimate for the frequencies 

where the parameter y' is identical to that in Eq. (13). v ~ , ~  in the intermediate case y= yo. Setting ps-p'd (p' is 
Clearly, the larger p,, the less justified appears the strong the bulk density of the adsorbed layer and d its thickness), 
coupling approximation k2pSv2e y used above. This means pr/p-  lo2, d - lo-' cm, and vL - 2 .  lo5 cmls in Eq. (27), 
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we find the desired estimates v3-2 GHz, v4=10GHz. 
Thus, in the light of this estimate the possibility for the ex- 
citation of three or even four different surface waves looks 
realistic in the system discussed. The appearance of new sur- 
face modes in crystals with coatings is indeed observed ex- 
perimentally.28 0 31 % =!! v 

5- APPLICATION OF THE SURFACE IMPEDANCE CONCEPT FIG. 6. Appearance of the family of transverse surface waves in the Love 
TO THE LOVE PROBLEM problem (a layer at the surface of a monoclinic crystal). 

As another example of the elastic loading of the surface 
of a semi-infinite medium, let us consider the Love problem 
for a finite-thickness layer rigidly connected with a half- 
space (substrate) using the classical formulation, when it is 
further assumed that the sagittal plane is a plane of symmetry 
for both the layer and the substrate. If the layer is "softer" 
than the substrate (more precisely, if the transverse bulk 
wave in it is slower than in the substrate) then, as is well 
known, in such a structure an SH Love wave can propagate, 
which corresponds to the waveguide solution in the layer and 
to the surface (localized) solution in the substrate. In this 
section we will show that the use of the surface impedance 
concept yields a clear physical picture in connection with the 
question of the number of Love modes in the region 
v<v,  (v, the velocity of the transverse bulk wave in the 
substrate). We also demonstrate how a limiting process can 
be made to recover the surface defect problem above and the 
Stoneley wave localization problem for the interface of two 
half-spaces. 

We introduce the scalar impedance A '  for a bipartial 
field of an SH wave in a monoclinic (2((t) layer of thickness 
d as minus the ratio of the elastic force to the elastic dis- 
placement at one surface of the layer (x2=nrr=  0, n' = -n  
is the inward normal to a given surface) under the condition 
that the other boundary of the layer (x2= - d) is free. After 
straightforward calculation we find 

where the parameter K' is defined by Eq. (22) with p, v,, 
and cap primed (i.e., referred to the layer). 

The continuity condition at the layer-substrate interface 
x2= 0 for the SH Love wave may be written in impedance 
language as 

where A, is the corresponding eigenvalue of the impedance 
matrix of the monoclinic substrates [see Eq. (21)l. Clearly, 
the solutions of Eq. (32) are the intersection points of the 
- Ar(v) and A3(v) curves (see Fig. 6), and occur only in the 
velocity interval v: < v < v, , where each such solution speci- 
fies the Love wave velocity vsi. It is readily seen that at 
least one solution always exists, and that the total number of 
solutions, accounting for waveguide modes of different order 
in the layer, is determined as the maximum number n satis- 
fying the inequality 

We next consider the limiting cases which arise from 
taking the layer thickness d as the parameter. For d+O we 
normally have A1+O, so that the Love wave ceases to be 
localized and turns into a standard homogeneous SH wave, 
with velocity v,, satisfying the condition of the half-space 
surface being mechanically free. At the same time, if for 
d+O the quantities chd,  p'd are taken small but finite, 
then A ' +  W3, [cf. Eqs. (31) and (21)] and the slowest Love 
mode survives the limiting process in the form of a solution 
to Eq. (20), as a surface SH wave localized on a defect near 
the surface with the parameters 

For d+w, the Love problem goes over into the Stoneley 
problem for two half-spaces each of which may be consid- 
ered as an elastic loading on the surface of the neighboring 
one. In this case for the SH wave in Eq. (32) A ' +A; [see 
Eqs. (31) and (21)], where A;=kc;,~'(v*) is the correspond- 
ing eigenvalue of the impedance matrix Z' of the half-space 
with an inward normal n' = - n. Since the quantities A3 and 
A; are complex for v > v,  , v: and since for v <v, , v: they 
have the same sign (positive), a SH Stoneley wave for v, 
# v: is not possible. We note that this result is a consequence 
of the general theory of the Stoneley waves developed in 
Ref. 29. 

We are grateful to M. I. Kaganov and Yu. A. Kosevich 
for helpful discussions. This work was supported in part by 
the International Science Foundation under Grant No. 
M19000. 

APPENDIX 

Al. SURFACE IMPEDANCE FOR MONOCLINIC CRYSTALS 

Consider for simplicity the case in which the sagittal 
plane is coincident with the plane of symmetry of the mono- 
clinic crystal. In this case two waves can propagate along the 
free surface independently of one another, a surface wave 
formed by the waves of the I- and t ' -  branches and a 
transverse (t) bulk SH wave. As a result, the general prob- 
lem of evaluating the three-dimensional impedance simpli- 
fies: the three-dimensional 2 matrix reduces to a two- 
dimensional and a one-dimensional matrix, 
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where @ is the diadic product sign, t= [mn]llx3, and the 
eigenvalue h3 is determined by the expressions (21) and 
(22). This quantity corresponds to the force produced by the 
split-off SH wave for which 

where the function K(U) is given by Eq. (22). 
We now turn to the two-dimensional matrix zab [see Eq. 

@)I: 

In accordance with Eq. (9, the forces J, are expressed in 
terms of the polarization vectors A, 

where 

Combining the Eqs. (A3)-(As), it is a simple matter to rep- 
resent the matrix f in the form 

where I is the determinant of thematrix A ,,. Knowing the 
matrix (A6), one can express its eigenvalues in terms of 
the matrix elements, 

Here and below the upper sign refers to the first of the quan- 
tities. 

The polarization vectors A, determining the matrix f of 
Eq. (A6) and its eigenvalues (A7) may be expressed as func- 
tions of the parameters p a ,  

where a, b and c are the following vectors: 

We omit from (A8) the normalization factor, which is of no 
significance in the calculation of f [see Eqs (A3), (A4), and 
(A6)I. 

The parameters pa in Eqs. (A5) and (A8) are determined 
by the condition Imp,>O as two of the four roots of the 

equation 

Here 

Equations (A8)-(All) determine the dependence of the sur- 
face impedance matrix (A6) and its eigenvalues (A7) on the 
velocity v. Specifying this dependence, after some manipu- 
lation we have 

Here the matrices M, and M, are defined by Eqs. (A5), the 
matrix ? is of the form 

and the matrix 

is the inverse of the matrix F :  

p=(p2[a@(p2a- c)+ b@(2qa+ b)] 

+ ~ @ [ ( 4 q ~ - ~ ~ ) a + 2 g b +  c ] } ~ ,  (A13 

where we have introduced the notation 

( p  is the geometric and q the arithmetic mean of the param- 
eters pl and p2) .  

From the hermiticity of the matrix f ,  Eq. (A12), it fol- 
lows that z12=z& Explicitly, these properties as well the 
reality of hl,2 in Eq. (A7) and of zll and zz2 can be estab- 
lished by a rather lengthy procedure similar to that carried 
out in Ref. 30 in the analysis of the Rayleigh wave disper- 
sion relation. The basis of the proof is the use of the Vieta 
theorem for the roots of Eq. (A10). 

If not only the sagittal plane but as well the crystal sur- 
face turns out to be a symmetry plane, the relations obtained 
are simplified considerably. This may occur in rhombic, te- 
tragonal, hexagonal, and cubic crystals. Thus, even in the 
case of rhombic crystals c ~ ~ = c ~ ~ = c ~ ~ = ~ ,  and Eq. (A10) 
becomes biquadratic [in Eq. (All), d l  = d3 = O)]. Let us con- 
sider the simplest of all those cases cited above. 
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A2. SURFACE IMPEDANCE FOR HEXAGONAL CRYSTALS 

A2.1. Sagittal plane perpendicular to the principal 
symmetry axis 

In this case the sagittal plane is clearly the plane of 
transverse isotropy. The expressions for the parameters p, 
and the vectors A, are especially simple: 

Here I, v,,, v, is the conventional notation for the velocities 
corresponding, respectively, to the quasilongitudinal and 
quasitransverse branches of bulk elastic waves. 

Using these relations we obtain 

For the eigenvalues we then have 

Here 

The Rayleigh velocity vR is the root of the equation f (v) = 0, 
equivalent to the condition X ~ ( V ) = O . ~  

Qualitatively, the character of the monotonically de- 
creasing functions Ai(v) in Eqs. (A21) is clearly understood 
(see Fig. 3) if one has their values for v =0, v , ~  and v,: 

In these relations, 7 p = ~ ~ ~ / ~ ~ ~ .  Using the relations (A23) and 
(A24), one can formulate the conditions for the intersection 
of the A2(u) and A3(v) branches [see Fig. 3a]: 

2 2 where A =vRlv,, , B=2(1- ?])/(I + 7). 

A2.2. SURFACE PERPENDICULAR TO THE PRINCIPAL 
SYMMETRY AXIS 

In this case the orientation of our coordinate system dif- 
fers from that assumed everywhere before: whereas before 
we had xlllm, now we have x211t, x311n. For the split-off SH 
wave we have 

The parameters p1 and p3 for the two remaining branches 
are found from the condition 

where 

To the waves of these branches there correspond the two- 
dimensional surface impedance matrix zab, where a ,  b = 1 ,3  : 

where p and q are the geometric and arithmetic means of the 
parameters ~ 1 ~ 3 .  The eigenvalues hlr3 of this matrix are 
found from Eq. (A7) in which all the '2' subscripts must be 
replaced by '3'. 

A3. SURFACE IMPEDANCE FOR RHOMBIC CRYSTALS 

The relations (A26)-(A29) are also directly applicable 
to the rhombic crystal for propagation along the xl axis in a 
surface parallel to the x l  and x2 axes. If the propagation 
direction is the same (xl) but lies in another surface ( 
x l ,  x3), the results are updated by simply renaming the co- 
ordinate axes, ~ 2 2 x 3 ,  with a resulting change in the indices 
of the elastic constants: C33-'C22, C13+C12, c ~ ~ + c ~ ~  (the 
c~~ modulus is unchanged). Exactly the same kind of argu- 
ment applies to the propagation directions x2 and x3 lying in 
two mutually orthogonal surfaces. The necessary changes ac- 
tually reduce to a cyclic permutation of the indices on the 
elastic constants. Thus, six geometrically different cases are 
here covered. 

'~eferences 14-17 also discuss the more subtle questions of the definition 
of the impedance matrix in the case of degenerate parameters p,, in par- 
ticular for v = v L  . The properties of the surface impedance for inhomoge- 
neous media have been analyzed in Ref. 12. 

'such a solution, in contrast to the case of free-surface bulk ~aves , '~~ ' ' . ~~ ,  is 
not generally one-partial. 
 he present surface wave solutions, found by direct calculation for the 
isotropic medium1' and for a transversely isotropic model medium2' are 
precisely of this latter type. 

4 ~ h e  hermiticity of the matrix zab in (A 20) and the reality of its eigenvalues 
(A21) are in this case evident. 
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