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We have investigated the thermally activated motion of flux in the organic superconductor 
K-(BEDT-TTF)~CU[N(CN)~]C~~,~B~~, over a wide range of current densities J ,  and have 
obtained the dependence of the activation energy U for this motion on current 
density. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Whereas in classical type-I1 superconductors flux creep 
is observed1 only at temperatures close to the critical tem- 
perature T+T, , relaxation of the critical current takes place 
over practically the entire temperature range in oxide 
superconductors2 and in the cation-radical K- (ET),X. 
Furthermore, this relaxation also occurs over a wide range of 
current densities, although for the classical superconductors 
it is observed only for J = J , .  Strong relaxation of J, in 
high-temperature superconductors and cation-radical salts is 
associated in particular with small coherence lengths 6, 
which give very small pinning energies Up - ( ~ , 2 5 ~ ) l p ~  
and large penetration depths A for magnetic fields. This in 
turn leads to "softening" of the vortex lattice and facilitates 
depinning of the vor t ice~.~ 

Several models have been proposed to describe the re- 
laxation of screening currents in type-I1 superconductors.6-9 
All of them are based on an Arrhenius relation between the 
hopping frequency v of the Abrikosov vortex and the activa- 
tion energy U: 

the only difference between these models is the different 
forms of the functions U(J). 

The basic relation that describes thermally activated mo- 
tion of flux is the equation for flux conservationlo: 

There exist several methods based on Eq. (1) for "de- 
embedding" the function U(J) from relaxation data. Let us 
discuss one method, proposed in Refs. 11, 12, for the ex- 
ample of a thin film (with thickness h and width w, and a 
length S w )  oriented perpendicular to the field. Assume that 
screening currents flow through the entire bulk of the 
sample, and that the external field satisfies Be = 0 (this 
corresponds to measuring the relaxation of the residual mag- 
netic moment). Then, by integrating Eq. (I), we obtain (as- 
suming that J = const for a given T,t): 

where L = (l lw)ln(wlh).  
Measurement of the relaxation of the residual magnetic 

moment yields (B) P,/V. Then for fixed temperatures T 
[neglecting the dependence J(B)], we find: 

where C = ln(L v o). 
In what follows, this relation will be used to analyze 

relaxation curves taken at various temperatures. The need to 
use relaxation data at various temperatures is connected with 
the fact that for ordinary measurement times (i.e., t,,, 
= lo3-lo4 s), the relative change in J is not large (-10%). 
In this case we must introduce certain scaling functions g(T) 
and f(B) in order to obtain a smooth curve U(J).  

Another method of obtaining the function U(J) is the 
inverse scheme proposed in Refs. 13, 14. However, this 
method is tedious, and its correct use requires a very large 
amount of experimental data. 

One of the goals of this work was to find an alternate 
method for obtaining the function U(J), one that perhaps 
would require less time to implement. 

2. EXPERIMENTAL METHOD 

We obtained crystals of K-(ET),-CU[N(CN)~]CI~,~B~~,~ 
with characteristic dimensions 0.6X0.6X0.2 mm3 by stan- 
dard electrochemical techniques.15 The relaxation of the 
magnetic moment was measured using a SQUID 
magnetometer16 at liquid helium temperatures. The magnetic 
field Be was applied perpendicular to the conducting layer of 
the crystal. Temporal stability of the magnetic field over the 
time of measurement was better than Tls. 

Normally, the relative decrease in the magnetic moment 
seen in relaxation experiments over these time periods is 
=Z 10%. Therefore, to extend the range over which J changes 
we must measure the relaxation over a much longer time17 
( t  -3 .  l o6  s). In order to decrease this measurement time we 
devised the following procedure. 
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FIG. 1. Typical relaxation curves P,(t). The inset shows the relaxation 
curve for small values of J  on an expanded scale. 

The crystal under study was first cooled in zero magnetic 
field from T-25 K (Tc=11.6 K) down to a certain tempera- 
ture T1>4.2 K. The external field was then increased to 
Bm,,=70 mT, after which it was decreased to zero (the re- 
sidual field Be-0. 1mT). Because the maximum field satis- 
fies B,, %=- 2B* (where B*  is the field at which the mag- 
netic flux fully penetrates the sample), we obtain a 
superconductor throughout whose entire volume a current 
flows that is close to the critical current at temperature T I .  
After this, the sample is rapidly cooled (-1-2 s) down to 
T=4.2 K, where it is maintained for five minutes, and the 
relaxation P,(t) is measured over a period of -8000 s. Us- 
ing this method, we can vary the magnitude of the current 
flowing through the bulk of the sample by varying the tem- 
perature T I .  

3. RESULTS AND DISCUSSION 

Typical relaxation curves are shown in Fig. 1. It is clear 
that as the quantityP,aJ decreases, the relaxation becomes 
nonlogarithmic. A similar deviation from the logarithmic law 
is observed for Y-Ba-Cu-0 (Ref. 17) when the long-period 
relaxation (t= lo2-3 .10~  s) of the critical current is mea- 
sured at a temperature T=70 K over a time t>105 s. It is 
noteworthy that for j-5. lo2 AJcm2 we observe no decrease 
in the magnetic moment (AP, - 4 . lo-" ~ . m ~  within 
experimental error) when P,(t) is measured over -3.10' s. 
Thus, the rate of relaxation for J -5 .10~ A/cm2 is smaller 
than for ~ - 1 0 - l ~  ~ . m ~ . s - ' .  

In order to use Eq. (1) to analyze the relaxation data, we 
assume that C = const for T = const. If we measure the 
activation energy from the level U' corresponding to the 
maximum relaxation rate observed in experiment, Eq. (1) 
becomes 

where U' is the activation energy for the corresponding re- 
laxation rate dP;(tr)ldt at time t '  . Note that the choice of 
U' does not affect the shape of the curve U(J)/kBT. 

FIG. 2. The function U ( J ) / k , T .  For the dashed curves see the text. J," 
= 5 . 1 0 ~ ~ / c m ~ .  

In order to obtain the absolute value of U(J), it is con- 
venient to take for dP;(tr)/dt and P;(tr) the residual value 
of the exact magnetic moment for the corresponding "true" 
critical current Jco(T), because U(JCo)=0. The characteris- 
tic time for the beginning of flux creep tFC was estimated in 
Ref. 18: 

Substituting kBT/Uc - Eclp ,  = 1 0 ~ A J c m ~ ,  d - 1oP4m, dB,ldT = l o - '  Tls, we obtain tFc - 
In what follows, by approximating the initial segment of 

the relaxation curve as a power-law function P m ~ t C S  and 
extrapolating to t '  - tFC we obtain C - 1n(Sltr) - 1 0  and 
vo-w~l t '=103mls ,  ~ ~ ~ - 5 . 1 0 - ' A J c r n ~ .  In view of the 
logarithmic accuracy of Eq. (3), this method is rather accu- 
rate. 

The function U(J)IkT we obtained is shown in Fig. 2. 
Clearly, two segments of the function U(J)IkT can be iden- 
tified: the first in which the activation energy depends 
strongly on the current density (I), and the second with a 
rather weak dependence (11). These results can be interpreted 
within the framework of three-dimensional collective 
creep.'' According to this theory we have U(J) J P p ,  with 
,u = 117, 312, 719 for creep of individual vortices, weak cou- 
pling between vortices, and strong coupling between vorti- 
ces, respectively.1' Regions I and I1 can be described by 
algebraic functions of the form J-p with ,u - 0.11 and 0.5 
for the first and second segments, respectively. The value of 
p for segment I is close to the theoretical 117 (creep of indi- 
vidual vortices). The value of p for segment 11 is in good 
agreement with the value we obtained in Ref. 4, where we 
investigated the functions S ( T )  and Jc(T).  If we estimate the 
average distances (a,) between vortices (since 
(aO)-(@ol(B)"2, (B)= PzmlV), we find that the kink point 
in Fig. 2 corresponds to (a,)-500-600 nm, which is close 
to the value of the penetration depth for K-(ET)~ 
Xi-500-600 nm.20-21 It is probable that the observed be- 
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havior of U(J) may be connected with the fact that the in- 
teraction between vortices decreases as the quantity ( ao )  in- 
creases. 

4. CONCLUSION 

We have proposed a new method for obtaining the func- 
tion U(J), one that requires only a single fitting parameter 
and the experimentally appropriate measurement time t ,  . 

Using this method, we have obtained the 
function U(J) for the organic superconductor 
K- (ET)2Cu[N(CN)*IClo.sBro.s. 

We have established that the function U(J) has two seg- 
ments, which may both be described by functions of the form 
J -p ,  with pzO.11 and 0.5 for J<J1 (region I) and J>J' 
(region 11), respectively. The value of p for region I is close 
to p = 117, as predicted by the cooperative flux creep model 
for the case of creep of individual vortices. The value of p 
for segment I1 is in good agreement with the value we ob- 
tained in Ref. 4, where we investigated the temperature de- 
pendence of the relaxation rate. 

We acknowledge with pleasure and gratitude our debt to 
I. F. Shchegolev for his critical remarks, and A. V. Kuznetsov 
for assistance in discussing the results of this work. 
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