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We examine an alternative approach to the spectroscopy of hyperfine interactions in molecules 
with C3u symmetry, namely field spectroscopy of the disruption of hyperfine coupling. 
We describe the field dependence of a nonlinear resonance in components of an IR spectrum in 
which the axial projection of the rotational angular momentum K =  1 ; this dependence 
stems from hyperfine parity doubling. In addition, we consider spin-modification conversion in 
these molecules. Explicit expressions are derived for all varieties of the hyperfine 
contribution to conversion, enabling one under certain conditions to determine which tensor 
spin-rotation constants do not contribute to the spectrum. We point out the need to allow for K -  
doubling in the parity of rotational levels with K = 3 when describing conversion. We 
discuss the corresponding field structure of the nonlinear optical spectrum. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

The appearance of the present paper has been facilitated 
by at least two circumstances. The first is the existence of a 
body of anticipatory work geared to a description of the hy- 
perfine structure of field spectra of a nonlinear optical reso- 
nance in spherical top m~lecu les . '~~  One would naturally like 
to extend the types of molecules treated to symmetric tops. 
The second is the availability of experimental data3 on spin- 
modification conversion in molecules with C3,, symmetry 
and subsequent attempts to calculate those modifications 
theoretically: which still await further development. One 
novel aspect of the calculation was that tensor spin-rotation 
interactions were taken into consideration. 

We know that in symmetric top molecules, tensor inter- 
actions of off-axis nuclear spins with rotational angular mo- 
mentum and with on-axis directed nuclear spins result in 
parity doubling of levels for which the axial projection of the 
rotational angular momentum is K= 1 .5 Hyperfine doubling 
is manifested is a specific fashion in the magnetic field spec- 
trum of a nonlinear optical resonance in radiative absorption, 
which can be used to determine the pertinent interaction con- 
stants. It has turned out that not all newly considered inter- 
actions contribute to the spectrum, and there are certain cases 
in which the analysis of spin-modification conversion can 
help fill the gap. 

On the other hand, it has turned out to be necessary in 
considering conversion to allow for the doubling of levels 
with K =  3 due to centrifugal distortions of initially "rigid" 
molecules (Ref. 6, Section 8.3). Information on the magni- 
tude of K doubling is not always available (see, for example, 
the recent work on f l u o r ~ f o r m ~ ~ ) ,  but we will show that it 
can be obtained from the electric-field absorption spectrum 
of a nonlinear optical resonance. 

Rather than occupy ourselves with the foregoing appli- 
cations, we give here the general characteristics of hyperfine 
interactions in molecules with C3u symmetry, starting with 

the assignment of basis elements in irreducible representa- 
tion spaces, and concluding with a calculation of the reduced 
matrix elements of the hyperfine Hamiltonian. 

2. SYMMETRY BASIS ELEMENTS 

The symmetry group for the Hamiltonian of a molecule 
that contains identical nuclei is a direct product O3  8 G,  
where O3 = SO3 8 Ci is the group of arbitrary molecular 
rotations and inversions in the laboratory frame of reference, 
and G is the permutation group of the spatial and spin coor- 
dinates of identical nuclei, which is isomorphic to the spatial 
symmetry group G of the core of the "rigid" mo~ecule .~ The 
group elements ofthe latter are finite rotations and inversions 
relative to a coordinate system attached to the molecule" 
(GCO3). - 

In ihe present paper we consider molecules with C3u 
symmetry (G = C3u and G = S 3 ) ,  particularly the haloge- 
nated methaiies-haTomethane CH3-Hal (methyl halide) and 
trihalomethane CH-Hal, (haloform), where Hal E (F,Cl,Br,I). 
These molecules can all be represented by the chemical for- 
mula XY3Z. 

It is convenient to take the spatial configuration of the 
XY3Z to be that of a right-handed screw. The numbering of 
the Y molecules is then taken to be such that a right-handed 
rotation C3 ,  which leaves the molecule unchanged (C3 
E G) ,  corresponds to a permutation of the Y molecular co- 
ordinates (123)123=321,  -- where ( 1 2 3 ) ~ G .  

Let the origin of the molecule-fixed coordinate system 
(right-handed reference frame) be at the molecule's center of 
mass. The uz axis points along the X-Z bond in the Z direc- 
tion. The orientation of the remaining axes is given by the x 
and y components of the vectors d ' ~ ,  extended from the h 
nuclei (h  E (X,Z)) toward the YP nuclei: 

#P= r h H n " ~ =  - roh~z+roHnP,  r i j =  Jd'J, 

with (nP . uZ) = O,($) the other components2' are 

400 JETP 80 (3), March 1995 1063-7761/95/030400-l5$10.00 O 1995 American Institute of Physics 400 



The point 0 is at the center of the base of the XY3 pyramid 
with vertex at X. 

To describe the structure of the Hamiltonian for spin- 
dependentinteractions we use the two-sided tensor coupling 
operators T: , which are referred to a particular basis of the 

irreproducible representations of the group O3 8 S3 : 

The upper pair of indices As corresponds to the group S3  
= C3,, and the lower, ~ ~ q ,  to O3 (the subscript p corre- 
sponds to its subgroup Ci). In these pairs, the first entry is the 
index of the irreducible space, and the second in the index of 
the basis element in that space.3) For coupling we use the 
two-sided Wigner coefficients, which are products of the cus- 
tomary ones: 

The Wigner coefficients for the groups C3,, and Ci are de- - 
scribed in Appendix A. 

Since the symmetry properties of the Wigner coefficients 
depend on the choice of basis for the representations of O3 
and C3,, it is convenient to make this choice consistently, 
for example on a set of spherical basis fun~tions. '~~" An 
explicit realization of basis:lements can be obtained by pro- 
jecting polar (n) or axial (J= - inxV,) vectors (vector op- 
erators) onto the spaces of the various irreducible represen- 
tations: 

1) Ci-the space inversion group, 

The parity is p = ( -  1)Pj E (x,y,z). 

2) 03-the rotation-inversion group, 

Here the standard transformation matrices are 

The ordering of the indices of ,D is 

3) C3,-the molecular symmetry group, - 

Besides the letter designators of the irreducible represen- 
tations we have used numerical designators here that prop- 
erly reflect the parity of the representation.12.13 The power to 
which the phase factor (- i)  is raised is chosen such that the 
two-sided tensor operators remain hermitian under 
coupling: l4 

Similarly, for the basis vectors u!:, - ulPg 8 uAs of the 

representation of the group O3@S3, 

( U h ~ . ) * = ( - l ) h + l + 4 U A ~ ; ~ U ~ s  lP4 
Ipq 1 ~ 4 '  

We call this the alternative (a) basis, lacking as it does the 
phase factors ( - i)" of the standard (s) basis. The type of 
basis (a  or s) is indicated, as required, to the left of the 
corresponding term at the appropriate sub- or superscript 
level. 

We can obtain a useful realization of the basis for the 
group C3" using the previously introduced vectors nP, 

- 

or the spin operators, if we replace nP with IP. For the sake 
of convenience, as with ,D, we take the transformation ma- 
trices W to be unitary: 

The indices of this matrix are ordered as follows: 

The matrix elements are ~ ,=exp( iu2~/3)=E+ias  where 
a = t l .  

The vectors 

provide an alternative construction if we associate the side 
(plp2)  of a right triangle with vertices at the Y nuclei with 
the vertex p3 according to the rule p3(plp2) 
E {1(23),2(3 1),3(12)). 

Other concepts will be introduced as needed. 
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TABLE I. E Representation Matrices for C1,. 

3. HYPERFINE INTERACTION HAMlLTONlAN 

Hyperfine interaction components, in a general discus- 
sion, are transformed to an invariant coupling form in two- 
sided tensor operators. The required expansion in irreducible 
components of the second-rank tensors of the groups SO,  
and S3 is described in Appendix B. We further propose a 
perfectly well-defined ordering of the spin subsystems, J 
@ I @ = F ~ .  

3.1. Spin-rotation Hamiltonian 

3.1.1. Since the angular velocity SZ of a molecule with 
C3u symmetry may !ot point in the same direction as its 
angular momentum f i  J = I . SZ (I is the inertia tensor in the 
center of mass system), the spin-rotation interaction can be 
written out in two ways: 

A colon denotes contraction over corresponding (Cartesian) 
indices of the 0, tensors, yielding a scalar. The tensor R(P) is 
dimensionless. 

In the first case, the tensor is not symmetric (MP 
# bIpT), but to make up for that, J is diagonal in J. In the 
second case, RP is symmetric, but the matrix elements of the 
operator 6 are not diagonal i? J. The asymmetry of MP is 
due in general to the fact that J is tied toA the center of mass, 
which lies outside the nuclei p, while S1 is coordinate-free 
and can be translated to any of the nuclei unaltered. 

C3, symmetry yields the following: 

Here the Cartesian components of the two-dimensional col- 
umn vector d' are defined in Eq. (1). The matrices a{ in 
Cartesian (A:,,) and spherical (AE) bases are given in Table 
I. The right-hand side of (12) is given in terms of the con- 

ventional nuclear (n) and electronic (e) components of this 
tensor, with 

The electronic component depends on rotational excitation of 
the valence  electron^.'^ Using the two-sided tensor operators 
introduced above, we can write the same Hamiltonian in 
invariant-coupling form: 

The significance of the tilde over a tensor is that, for ex- 
ample, M: = J ~ M : .  Hereafter, symbols in brackets 
(e.g., [A]) correspond to the dimension of their respective 
representations.4) The spherical components of tensors (a is 
the alternative basis) can be expressed in terms of Cartesian 
components: 
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Four constants are required for a description of spin-rotation 
interaction; only the scalar constants (A ])are usually known. 
example, in 1 2 ~ ~ 3 ~  (Ref. 16), 

A M 2 = 0 . 8 2 1 . 5  kHz, M:'= 14 .6620 .7  kHz. 
- 

3.1.2. For on-axis spins, the corresponding structure of 
the spin-rotation interaction has only scalar ( A  I )  compo- 
nents: 

Here 

For example,,in 1 2 ~ ~ 3 ~  (Ref. 16), 

M Y 1 = 4 . 0 2 1 . 9  - kHz, 

M r l = - 5 1 . 1 2  1.3 kHz. 

3.2. Spin-spin Hamiltonian 

We assume here that spin-spin interaction are mostly 
direct (nuclear). Interactions mediated by electron spins are 
cited for completeness, but are not taken into consideration: 
( , ~ S ' l P 2 ~ 0 .  

3.2.1. Spin-spin interactions between off-axis spins 
(p E (1,2,3)) and on-axis spins (h E (C,Z)). 

This tensor has structure similar to RP, and 
- 

Here we have employed the alternative structure (10) in the 
vectors m P 3  = ,,PlP2: 

3.2.3. Interactions among on-axis spins (hl f h2) and quad- 
rupole interactions (h , = h2): '' 

4. WAVE FUNCTIONS 

Rotational and spin wave functions can be transformed 
to symmetry-adapted form using the projection operators for 
finite groups (C3v and S3, respectively). - 

4.1. Rotational wave functions 

The rotational wave functions of a symmetric top can be 
defined in terms of the elements of the orthogonal matrix 
C E 0 3 ,  as described in Ref. 10: 

In these equations, DJ,",(c) = (det C) ". D;,(c). 
The results of operating on these functions with the an- 

gular momentum operators and al, have the same 
form, and the inversion operator I,, is diagonal: 

3.2.2. Interactions among off-axis spins 2101$~)a=  ( - i ) ~ ~ $ M ) a ,  
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and p = ( - I)'= ( - " is the parity. The representation of 
O ,  in symmetric-top function can be written in terms of the 
D functions of Ref. 9: 

When there is no inversion, 24 reduces to 

.k(a,~,~)=.A~(a)..k~(~)..k~(~), 

.k,(cp)=exp(-id,) ,  j E ( x , y , z ) .  

Similarly for O3 - , 

~ ~ ( C I $ ~ ) = ( C ? ~ ~ ) = ( ~ - ~ ~ I ~ ~ )  

Here - C =  C-  ' . With no inversions, ?G - reduces to 

.A(a ,P ,  - y)= .Hz(a )  - ..A!-@) .AZ( - y), 

.&(cp)= exp( - i d , ) ,  ( x , y , ~ ) .  
Symmetry-adapted functions can be obtained using the rota- 
tional projection operator5) 

E-representation matrices A ~ ( ~ )  for ~ E S ~  and the corre- 
sponding action of & on the rotational wave functions are 
given in Table I (where dots denote vanishing matrix ele- 
ments): 

v E  (g,u). (33) 

Here and elsewhere K =  [MI, and the subscript r = r 3  
= Rest(K13) is the remainderafter division. The transforma- 
tion from the standard to the alternative basis is 

( c I  (Kr);>)a= ( - i ~ ~ + ~ ( c I  (Kr);>)s. 

Complex conjugation of the wave functions is consistent 
with hermitian conjugation of the two-sided operators de- 
fined in (7): 

1(~~)~~>)",):(-1)'+~+~l(~r)\%)a~ (34) 

It is assumed here that Ip) * = lp). 

4.2. Spin wave functions 

We employ the alternative choice of phase for the spin 
wave functions and spin operators of the nuclei p: 

IIP,MP),= ( -  i ) l p l l p , ~ p ) s ,  

, @ o l l p , ~ ~ ) , =  ( -  i)MPIIP,MP)a, 

x J ( I~TM~)( IP+MP+ l))IP,MP-+ l) , .  

(35) 

Here MP is the projection of i p  on the q axis, which is fixed 
in space. 

Let I P =  112 and MP= uI2, where a= + 1.  For the non- 
symmetric wave functions of the three equivalent nuclei we 
use the shorthand notation 

The spin-projection operator acting on these wave functions 
yields the symmetry-adapted functions 

Here the g are the spin arguments of MP," SO the action of 
the spin projection operator is consistent with that of the 
rotation operator. As a result, we obtain the symmetrized 
combinations of wave functions 

The phase factor 2 M  = q1 is reguired in the last equation for 
the total spin operator, ,I=ZPsIP to act in standard fashion: 

Symmetrized spin operators can be obtained similarly, in ac- 
cordance with (9). 
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4.3. Total wave functions satisfying the Pauli exclusion 
principle 

The Pauli exclusion principle requires that 

Using Appendix A, we obtain 

The total wave functions behave as before under the opera- 
tors J I 4 ,  . i la,  and in , ,  but not jI4 and Ai. The possible 
rotational states with various K for the electronic and vibra- 
tional ground states of XY3Z molecules are analogous to 
those of NH3 discussed by Landau and ~ i f s h i t z . ' ~  On ac- 
count of the Pauli principle, XY3Z molecules have no states 
corresponding to those of atoms. Indeed, atomic states must 
have parity p = ( - and are obtained with K = 0, but in 
the present case we have v = 1, i.e., p = ( - I ) ~ + ' .  

5. MATRIX ELEMENTS OF HYPERFINE INTERACTIONS 

Below we make use of the following factorization of 
matrix elements of two-sided tensor operators (the Wigner- 
Eckart theorem):I4 

If the operator is hermitian, then its reduced matrix element 
satisfies 

All required applications of the Wigner-Eckart theorem can 
be found in Ref. 10. One need only note that the reduced 
matrix element defined in the latter is 

It is straightforward to adapt the discussion to C3, . 

5.1. Auxiliary spin matrix elements 

r -A r1 - . ~ l J l l ~ l ' l l I  I- 46+lA,+ 6rIE), 

I:/~II~:II;'I=~~( s r , ~ ,  + a r I ~ ) .  

Note that according to (9), jA10 = il&, while the ro- 
tational angular momentum is jA10 = j. 

5.2. Auxiliary rotational matrix elements 

The matrix elements for the D functions are 

The D functions relate irreducible tensors in spatially fixed 
(uj) and molecule-fixed (u:) coordinate systems: 

M , ~ ( C ) = C  D ~ ~ ' ( C ) M , ~ ~ .  44 

4 

Here Cji= (uj .uf) ,  with C E 0 3 .  
The matrix elements for rotational angular momentum 

are 

[ ( K ~ ) ~ I I ~ J ~ ~ I I ( K O ) ~ I ~ =  P ~ ~ J ~ I . J I ~ I J I ~ ~  

[ J ( I , J ~ I I J ] , = ~ J ~ ,  [ J ] = 2 J +  1. 

5.3. Diagonal matrix elements (J,K,I H+ I  J,K,) 

[(K~)::IIM;~ ~ ) K I I ( K ~ ) ; ~ I  

= 6, 'KO+ 'K2) ~ n ; l f ~ ~ ) K o ( ~ p ' ~  '+OJpK 

Here 

The discussion of diagonal matrix elements has been or- 
ganized in accordance with the foregoing description of the 
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hypefine interaction Hamiltonian. Besides the reduced ma- ( r r  A ( r ~ r 1 ) A 2 ]  [(Kr)(JiI{21 2\l'ss\l ( K r ) ( J p I ) F I  
trix elements, an equivalent operator form comes into play. 

5.3.1. Spin-rotation matrix elements 

Off-axis spins: X ~ ( ~ ~ ) ~ ' ~ ( J # ~ ~ + O J # ) ,  (11120 (50)  

Interaction of on-axis spins with one another ( h l Z  h 2 )  
and quadrupole interaction ( h  = h  2 )  : 

( ~ J T I ) A ~  A hh ( ~ J ~ I ) A ,  

2 1 1  [(Kr)(JpIh)Fh IIHss II(Kr)( Jpl*lFi I 

J  Ih Fh  

Ih J 2  

~ ( J ~ K I ~ + O J ~ K ) [ ~ ~ ~ I [ ~ ~ ~ ~ ~ I Z ~ ~ ~ ~ I ~  (52)  

On-axis spins: 5.4. Off-diagonal matrix elements (J ;K;~  H + 1 J,K,) 

5.3.2. Spin-spin matrix elements 

Interaction of on- and off-axis spins: 

( ~ J ~ I ) A ,  A W J ~ I ) A ~  (54)  
[ ( ~ r ) ( (  j p ~ ) F ~ ~ h ) F h l l ~ ~ ~ ~ l ( K r ) ( ( ~ p ~ ) F I ~ h ) F h  I 

Here r = J + v ,  p = ( - I ) ' ,  AFT'-?. 
= JIh(Ih  + 1  ) [ I h ] [ F h ]  

I 

Interaction of off-axis spins with one another: This matrix element can alternatively be written 
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Here 

and we also make use of the fact that 

6. SPECTROSCOPY 

The field spectrum, discounting hyperfine interactions, 
can be constructed in the same way as the frequency spec- 
trum for both linear and nonlinear absorption of light.20 
When linearly polarized radiation propagates in the direction 
of the swept magnetic field, the field structure of the nonlin- 
ear optical resonance corresponds to the frequency structure 
of the resonant interaction between the orthogonal circularly 
polarized components of that same radiation in a coordinate 
system that tracks the precession of the molecule's magnetic 
moment. One consequence of this analogy is, for example, 
that the frequency and field resonances display the same col- 
lisional structure. For circularly polarized radiation nad the 
same field geometry, only the Doppler structure of the field 
spectrum is preserved. 

The experimental results reported in Refs. 21 and 22 
were obtained under conditions in which hyperfine interac- 
tions could not be neglected, inasmuch as in the absence of 
collisions they affect the structure of the field spectrum much 
more significantly than that of the frequency spectrum. An 
analysis of the s i t~at ion ' ,~  shows that for linearly polarized 
light, the hyperfine structure of the field spectrum is related 
to the crossing of magnetic sublevels with AMF = 2 2 in 
zero field and as the field builds up. The difference between 
the field spectra and the frequency spectra in this case is due 

mainly to the nonlinear magnetic field dependence of the 
splitting of M levels, rather than the field dependence of the 
absorption probability. For a circularly polarized light wave, 
it is precisely the field dependence of the absorption prob- 
ability amplitudes in hyperfine transitions that leads to the 
onset of resonance. The contributors are magnetic sublevels 
with AMF=O that undergo anticrossing in an external field. 
This resonance owes its very existence entirely to hyperfine 
interactions. Whereas hyperfine interactions can couple the 
spin and rotational angular momentum vectors, a field inter- 
action that is turned on gradually can disrupt it. This then 
makes it feasible to carry out spectroscopy of the disruption 
of hyperfine coupling by an external field. 

The interaction between light and a medium in the pres- 
ence of hyperfine interactions can be described in terms of 
transition probability amplitudes in four-level subsystems. 
~ o ~ o v ~ ~  has described a similar situation in a discussion of 
polarization-based methods of nonlinear two-level spectros- 
copy neglecting hyperfine interactions. Thus, consideration 
of other than the degenerate case in the parameters of the 
medium or the radiation makes it necessary to distinguish 
among interactions of light with two-, three-, and four-level 
subsystems. One outstanding feature of field structures asso- 
ciated with hyperfine interactions is that they show up solely 
in the imaginary part of the susceptibility, which suggests 
that the given situation lacks any field analogs of the disper- 
sion relations considered in Ref. 23. As a result, similar 
structures are usually observed via field-spectroscopy meth- 
ods for studying saturation. 

In going from frequency spectroscopy to field spectros- 
copy, we are still left with the problem of discriminating 
among the various hyperfine contributions to the nonlinear 
optical resonance amplitude, which corresponds to crossings 
and anticrossings in zero field.24 We shall assume that this 
problem can be resolved through additional measurements of 
the relative amplitude of field resonances in various already 
identified (;F') fine-structure components of molecular in- 
frared spectra. 

We now continue our analysis of field spectra, examin- 
ing external fields oriented perpendicular to the light-travel 
direction, in which both the magnetic field BO and the elec- 
tric field EO can be swept. We restrict our attention to the 
resonance associated with the anticrossing components of the 
hyperfine structure, which arises when the field parallel to 
the linear polarization vector of the light is the one being 
swept. 

The Hamiltonian has the structure 

The zeroth approximation corresponds to a two-level system 
whose levels are degenerate in the projection M j  of the ro- 
tational angular momentum in the direction of the constant 
field (the quantization axis u, is chosen to point along the 
field), as well as in the parity p: 

The frequency difference w,, = w, - o, lies in the optical 
range. The degeneracy is lifted by taking 
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which incorporates the internal (hyperfine) and external 
(field) interactions. Thus, with no external fields, we would 
have 

where F is the total angular momentum. Including a constant 
field, 

where we will call F the quasimomentum, since F is in fact 
not conserved. If we are dealing with an electric field, then 
iff is an operator that is not diagonal in p. 
FMF 

The last term takes into account the electric dipole inter- 
action with the light: 

d =(-1)AJ. * 
s nm sdmn . 

Here we have used the standard tensor operators 

These are related to the components in the alternative basis 
(for entire representations): 

.T:;=(- i)Jm+K+Jn . J:;. 
The electric component of the traveling light wave is 

E(r, t)  = Re(E(*)exp[- i(wt - kr)]), E(")I k ( k =  wlc), 

where e is the unit polarization vector of the light. 
We make use of the equation for the density matrix with 

relaxation R and pump Q: 

[ k  b m n )  A (wm+Lm e m n * )  b=  A +  , H =  
Pmn Pn QLn wn+hn  ) 

The molecules have a Maxwellian velocity distribution, and 
k c  9 r. We assume that the gas medium in question is 
inherently isotropic, and that any anisotropy is due to non- 
linear interactions with the laser light. 

The equation in the interaction picture, 

where 

b r ( t )  = exp[it(H(')+ H(')); exp[-  it(^(')+ H('))], 

can be solved approximately by iterating on 

P r ( t )  
A 

0 Vmn(t)exp[- i ( f l t +  kr)]  

= ( +Ln(t)exp[i(flt+ k ) ]  0 

(65) 

Here 

We seek a solution in the operator form 

b ' ( t )  

We ultimately obtain the polarization of the medium at the 
frequency of the light: 

where where the contravariant components take the form 
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P:'= 2 ~ r ~ ( i y ~ ( f i ~ , ) , )  

= ~x$(w)[x(! )e  W )  2 (3) 
991 41 -21G' I X,pl,2,,e,,e;2eq31. 

(68) 

Here 

Nn Nm N j  - Q j  N =--- 
"" [n] [m] ' [il-q ' 

The last expression results when we have kii%(iin) and the 
normal Zeeman effect (Ay= A;).The linear response (sus- 
ceptibility) of the medium has been reduced to 
w((+ iO)-the probability integral of a complex argument.20 
In general, the argument contains a linear combination of 
frequency and field terms, but in the present (transverse) field 
geometry, q = 0.  

All of the field structures of interest here are confined to 
the nonlinear supplementary term, which after velocity aver- 
aging looks like 

or, if 2 r = r m + r n ,  

where 

Proceeding further, we can individually consider two 
types of doubling: 

1) K =  1-hyperfine doubling [see (46) and (49)], 
. "  H!,"~=Z;~= - ( a h l 2 +  a:6z)j'.i, j E (m,n), (73) 

2) K =  3-K doubling due to centrifugal distortion [see 
(9111, 

~f )I = r;;,,i,= - -.J " zaz. (74) 

Here the Pauli spin matrices 6 are evaluated in states j, of 
opposite parity, p = + 1 : 

&zlp)=plp). 

The field interaction is evaluated in these same states: 

where the electric and magnetic dipole moments correspond 
to J,K levels 

The light couples pairs of levels (m + ,n -) and (m - ,n +): 

Let us start with the first case, and so as to carry the 
calculation through to the end analytically, let us assume that 
J S I .  The matrix elements of interactions with the orbital 
angular momentum simplify in the split basis IJp,MF 
- MI) @ I  lM1): 

A A 

j Z = ~ . l I - ~ , ,  MGM,, 

( j ' i ) M = ~ . j z f  JJ(J+ 1 ) -M2 . j x ,  (77) 

~Y;(M)=T;~"(M).~,-~~T~;(M). j, 

Here 

AJ=Jm-J , ,  cos 8 = M / J J n ( J n +  1).  (80) 

We next consider the situation in which we have a swept 
magnetic field aligned with the linear polarization vector of 
the light, B(O)II E(")I k. We have 
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To facilitate the calculation, set 
A A hrTwr1=hm(+) (MI, 

.. A 

h = & x h " ( ~ ) & x =  w ~ = h " ( - )  (M), 

where 

~ I ( ~ ) ( ~ ) = ( ~ I * A G I ) . ~  
. . a .  A A A 

= - ( ~ / o ? a i & , ) ( J ~ ' I ) ~ -  4 .1~ .12 .  (82) 

Everything reduces to the calculation of a single component 
when all q,  = 0: 

x a , b 0 ( r r l r ) = ~  Tr Ip ( f~ ,  exp( - i r rh r ) f10  
M 

xexp( - i rh ) f fO exp( i r rh t ) f10  exp(iTh)). 

(83) 

For the calculation we have used the relation1' 

~ r , [ ( m i ) e x ~ (  - i gni)  (mi)exp(i $nil 

= [(mn)2+[m]2 cos $]Tr,j;, 

where ~ r ~ i ; =  I(I+ 1)[1]/3, n=w/w, @= wr. 
A rotation of /3 about the uy axis will diagonalize h: 
exp[- ipi,](wxix+ wzi,)exp[ipiy] = wi,, 

sin P= -nx ,  cos p = n , ,  w= Jm. 
Since A p =  Pr - P G  1,  we can assume that 

r r  AP=sin AP=[nrn]y=n:nx-n,nx, n Y =ny=O. 

For example, when J,=Jn (the Q-branch) and wit) 
= wk? A u k ,  we have from (82) that 

The first two terms in square brackets in the resulting expres- 
sion are independent of the field and will not be considered 
any further. The next two negative terms have exactly the 
same form as in the transverse-field geometry of Ref. 2. The 
temporal averaging integral reduces to two expressions: 

Here the cosine and sine functions on the left-hand side cor- 
respond to the plus and minus signs, respectively. The Lor- 
entz function %(x) = %' (x) + i Y r ( x )  = 1/(1-  i ~ ) .  

When levels m and n have the same characteristics, we 
finally obtain 

The first term in square brackets accounts for the symmetry 
of the double-peaked structure responsible for hyperfine dou- 
bling. The second resonance structure-a linear combination 
of the Lorentz function and its square--corresponds to the 
scalar part of the hyperfine interaction, and is independent of 
the field geometry. We can say that for J B  1 ,  the second term 
is small compared to the first. 

Consider now the second case when ~ U B ( H , ~ , ~ ~ )  
B(t jhf) .  It is necessary to use the electric field instead of the 
magnetic field, and to orient it in the direction of the linear 
polarization vector of the light: (E(O)IIE(")I k): 

Here we assume an interaction that is even somewhat more 
max A P = A P I s Z = a , , m =  . general-violating parity conservation-than the one in (74): 

6, 
= ( &, &, 4). Once again we put 

The result of the calculation is then 
i r =  w r . & / 2 = h m ( M ) =  -(G:(O)M+ qf,77r,?lT)&, 

~ b 3 d , , ( r ~ 1 r ) = 2 x  I T ~ ~ T ~ ~  and 
M 

2 n A  
W T  dMT h = w. &/2 = & x h n ( ~ ) & x =  - (G:("M + r]:, - 77; ,- rl,-cr. w r r  

[nrn]: sin2 - sin2 - + 
2 2 Using 

where 

and 

w=(wx,O,o,)= - (aoJJ ( J+  1)-M2,0,aoM+ 8,). and integrating over time in (83), we obtain 
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a 2[1] Here r = T j t K t , j K =  ( r J t K ,  + T JK)/2. Relaxation of possible 
P [ , )  mz T i 4  disequilibrium spin modifications becomes possible by virtue 

of external perturbations that destabilize the system of rota- 

1 [Co10]* tional levels ] (871 2 m .  
l'~)l(a)J,K,)= I(a,)JK,). 

Now, when levels m and n share the same characteristics, 
The emptying of these levels is described by the constants 

~ ' J K .  
For the rotational spectrum WJ-K, we must use an ex- 

Y 

pression that takes account of fourth- and sixth-order cen- 
~(GLO'M + 711) d$+ trifugal corrections: 

x [' - [ ( r / 2 l 2 +  q$+ T:+(G?)M+ vx)2 

(88) WJ K =  (H;, + H;, + H;!'+ ~ ; t ~ ~ ) ~ ~ ~  

In particular, for 77, = r?, = 0, we again obtain the typical =B, - J ~ + ( B , - B ~ ) K ~ - D ~ J ~ - D ~ ~ J ~ K ~ - D ~ K ~  - - 

double-peaked structure responsible for K doubling. The 
general case is a simple extension of the foregoing deriva- + F , J ~ + F J ~ J ~ K ~ +  F K J J ~ K ~  +FKK6 + s ~ , ~ F S ~ ' ~ ~  

7. CONVERSION 

The sixth-order correction allows for K doubling of levels 
with M - = ? 3(K= [MI). - Levels for which K = 3p/2 is an 
integer when p is an integer are split, i.e., K=3,6,9 ,... (Ref. 

In considering spin conversion of a specific type (mol- 6). 

ecules with Cfu symmetry have only A l++E), it is necessary 
Level populations are governed by the Boltzmann fac- 

tors 
to take account of quasidegeneracy of the vibration-rotation 
spectrum in cluster structures of the corresponding type 
(A2 + E in the present case), which shows up at sufficiently 
large J . " ,~~ In the present work, cluster quasidegeneracy was PyB(JiK:) = exp ( - - /Q!:/2), 
only partially allowed for via centrifugal corrections respon- 
sible for a shift (convergence) in the A, and E rotational 
levels and (parity) splitting of the A2 levels. This was ~ U J ~ K , ,  

deemed adequate at low enough temperatures, for which the r B ( J p K o )  = exp [ - --- kBT ) /Q::l2)? 
population of high-J levels is small. - - 

The evolution of both spin subsystems toward equilib- 
rium can be described by a single exponential, where the rotational partition functions incorporate the sta- 

tistical weights of all of the nuclei: 

~ l ( t )  - pLoo) 
= exp[ - yct1, pLoo) = YI,N/Y~,  

PI(O) -  PI(^) 
Q l : " = ( 3  [Ih1])[1/2]?: [J1] Z 2 

J' where IZI1 ,  K'3='2.23 

( hi?) Xexp -- , 

The total population of spin states, N=Z,p,(t), is con- 
served. The expression for the conversion rate is similar to ) =  [ [Ih1]) 3 / 2 1 Z  [J] 2 (2- & K , O ~  

that employed in Ref. 4: J Krl=o, 

2r[2PfB(JAK;) + !PfB(JpK0)] 

''= ' r2+(~JAK;-~JpK,,)2 
~ 6 ~ 5 0  

JpK, = 0 

In the present case, ~ 5 : ' ~ )  = ~ 9 : ' ~ ) .  
X 2 I ( ( ~ ' ) J ~ K ' I ~ ~ ~ ( ~ ) J , K ~ ) I ~ .  (90) Making use of the previously calculated off-diagonal hy- 

(ar ) (a )  perfine interaction matrix elements, we obtain 
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Here A K = K '  - K =  IAK\(-  I ) " ~ ~ .  
Parity doubling of the K  levels need only be taken into 

account for KO = 3 .  In all other cases one can sum over p, 
but since the range of p depends on whether KO is zero, it is 
convenient first to identify the corresponding term: 

We obtain as a result the single common factor 2, since it 
still applies in summing the first term, and it now appears in 
the second. 

In accordance with Eq. (92), Table I1 shows the distribu- 
tion of hyperfine contributions to conversion transitions. 
Nonvanishing contributions are marked with a plus sign. 

TABLE 11. Hyperfine interaction contributions for conver- 
sion transitions. 

8. CONCLUSION 

We have carried out a theoretical calculation of hyper- 
fine interaction matrix elements both between spin modifica- 
tions and for each individually. In contrast to the previous 
work of ~ h a ~ o v s k i , ~  the expression for spin-modification 
conversion contains two additional terms corresponding to 
the two hyperfine tensor spin-rotation constants, and it 
yields a complete description of conversion. The complete- 
ness of that description makes it possible to invert the prob- 
lem when information about the tensor spin-rotation con- 
stants is lacking. The uniqueness of the information thus 
obtained is due to the fact that, as shown by an analysis of 
the matrix elements, spectroscopic measurements cannot 
provide information about all of the hyperfine constants, as 
one of the tensor constants drops out. We have examined an 
alternative approach to spectroscopic measurements of the 
remaining hyperfine constants-field spectroscopy of the 
disruption of spin-rotation coupling. Spectroscopy of the hy- 
perfine interaction and the spin-modification conversion phe- 
nomenon complement one another. A description of conver- 
sion requires that one take account of the splitting of 
rotational A 2  levels, which can be determined from electric 
field spectra. 

As a possible application of this approach, consider an 
example based on the isotopic pair 1 2 c ~ , F  and 1 3 ~ ~ 3 ~ .  The 
first step is the experimental determination of K  doubling via 
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the electric field spectrum. To judge by Ref. 4, this is neces- 
sary for 1 2 ~ ~ 3 ~ ,  and is not required in practice for 1 3 ~ ~ 3 ~ .  

Since the conversion rates are known for these isotopes, the 
next step would reduce to deriving and solving a system of 
two equations in the two unknowns (R:)~ and (R:)~, as- 
suming both to be independent of the isotopic composition of 
the molecules. After calculating the tensor constants IR:~, 
hyperline doubling can be observed experimentally by means 
of the magnetic field spectrum to provide an independent 
check and improvement. 

I thank A. E. Bakarev for the use of his personal com- 
puter in preparing this paper for publication. 
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Fund for Fundamental Research (Grant No. 93-02-15084). 

APPENDIX A 
WIGNER COEFFICIENTS FOR THE GROUPS C, AND Ci 

To construct matrices for irreducible representations, it is 
convenient to consider active transformations of the contro- 
variant components of a vector by elements of the group 
C3" - 9 

'TI 

scu= (xU)g= C Aru1(g)  . g l ,  

or transformations of the covariant basis vectors, 

These induce transformations of the functions 

'J 1 

? d g ( x l r u ) = ( s ; l x l r u ) = C  ( ~ l r a l ) . ~ : ~ ~ ( g ) ,  

and corresponding transformations of the tensor operators 

The E  representation matrices for Cartesian (x,y) and 
spherical (+,-) bases are given in Table I. We assume that 
& = & + = C + ~ S .  

The Wigner coefficients depend on the choice of irreduc- 
ible representation matrices: 

We use the E  representation matrices in the spherical basis: 

The rest of the coefficients can be obtained by using the 
analog of the symmetry relations for  SO^," except that a 
(the analog of m) need not enter into the phase factors. 

The relationship with the 3 r  symbols takes the form 

The Racah coefficientsl"o not depend on the choice of 
irreducible representation matrices: 

E E E  E E E  E E  1 

( (A2  E  E l = [ : :  E  E l = ? '  

The Wigner coefficients for C i  are (plprp") 
- 
- a p + P ) + p ) f , g .  

APPENDIX B 
SPHERICAL COMPONENTS OF THE SECOND-RANK 
TENSOR FOR SO, @ S, 

Consider the expansion of the two-sided tensor operator 

I 1 1 2  K q  

The first sum (p1p2) is ordered in accordance with (10) and 
(23). Here we have used the two-sided contravariant spheri- 
cal basis 

P 

u;;= C quprvjd.  
I 

The "U and .D matrices are defined in (9) and (5) .  The 
general form of component coupling in the various bases is 

Here p1p2 are independent, so we have provided the factor 
of 112. The individual components for SO3 are26 

- Ti,+ T j i  
S..=-- 

1 

" 2 ( f )  a;, , ( f )  = - ~ r ( f ) ,  3 
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" ~ r o m  this point on, an underscore denotes this coordinate system. 
2 ' ~ e r e  and in some instances further on, an overbar is used instead of a 

minus sign. 
"A covariant index is signified by a dot above a letter, a contravariant index 

by a dot below. 
4 ) ~ n  the case of S O ,  we have [ K ] = ~ K + I .  
"square brackets denote either the dimensionality of the representation r or 

the number of elements in the group G. 
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