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Nonlinear periodic solutions of the Vlasov-Maxwell system of equations are found, describing 
the collisionless damping of a Langmuir wave in a plasma with small longitudinal density 
gradients, assuming rapid phase mixing of the resonant particles. By means of the adiabatic 
approximation the spatial evolution of the wave and the deformation of the distribution 
function near the Cherenkov resonance are treated. The nonlinear dispersion relation for the wave 
is found, taking into account the contribution of the phase-space structures (electron voids 
and beams of trapped electrons) that develop in the resonant interaction process. The propagation 
and transport of the energy of a wave perturbation are discussed, taking into account the 
interaction with the resonant particles. 63 1995 American Institute of Physics. 

1. INTRODUCTION 

The exchange of momentum and energy between waves 
and resonant particles is frequently the dominant mechanism 
of wave dynamics in the plasma. The collection of physical 
phenomena for which the wave-particle interaction plays the 
dominant role is exceptionally diverse. It ranges from beam- 
plasma interactions in devices for controlled thermonuclear 
fusion and plasma electronics, all the way to artificial geo- 
physical phenomena and active space experiments. In recent 
years studies in this area have also been stimulated by the 
search for new techniques for accelerating charged particles1 
and the progress in nonlinear (chaotic) dynamics.2 

Two interaction regimes can be distinguished, depending 
on the intensity of the plasma waves. In the linear regime, 
when the wave amplitude E ,  is small enough that y l o b S  1 
holds, where y is the Landau damping rate and ob 
= is the characteristic (bounce) frequency for elec- 
trons in the potential wells of a wave with wave number k, 
the wave damps exponentially. As is well known, collision- 
less damping is described by perturbation theory, where the 
Vlasov-Poisson system is first l ineari~ed.~ Van ~ a m ~ e n ~  
(see also Refs. 5 and 6) has given an elegant interpretation of 
Landau damping in terms of the spreading of a superposition 
of time-independent eigenmodes of the plasma (Van Kampen 
modes) making up the initial wave perturbation. 

In the nonlinear regime (y/wb< 1 )  the resonant particles 
undergo rapid phase mixing. The waves do not damp signifi- 
cantly, but close to resonance (V=U= o l k )  the modulated 
plateau which is characteristic of waves of finite amplitude 
develops on the distribution function. Since the wave ampli- 
tude has barely changed, the initial-value problem to first 
order reduces to the self-consistent solution of the kinetic 

Besides confirming the results of theory, experi- 
mental studies of wave dynamics in the nonlinear regimelo'" 
have revealed a nonlinear frequency shift and satellite 
instability-phenomena which are also due to the resonant 
particles.'2"3 

The details of the wave-particle interaction in a weakly 
homogeneous plasma are related to the spatial dependence of 
the phase velocity, as a result of which the ratio y(u)/wb can 

vary over a wide range for essentially any wave amplitude. 
Consequently, the wave damping can easily pass from one 
regime to the other. This important property is closely related 
to the continuous renewal of the resonant region, which com- 
petes with the phase mixing of the resonant particle.'4"5 In 
addition, in the limit y / o b <  1 beams of accelerated trapped 
particles can d e v e l ~ ~ . ' ~ ~ ' ~ - ' ~  The corresponding wave- 
damping mechanism is very different from Landau damping 
and cannot be described in linear theory. 

In the present work we consider the spatial evolution of 
a Langmuir wave propagating in a collisionless plasma with 
small longitudinal density gradients. We will be primarily 
interested in nonlinear phenomena which are specific to in- 
homogeneous plasmas and are not describable by perturba- 
tion theory, even though the wave amplitude is small. These 
include the irreversible deformation of the resonant particle 
distribution, the formation of voids and beams of trapped 
electrons in the resonant region of phase space, and also the 
corresponding wave-damping mechanisms associated with 
negative and positive density gradients. The ultimate goal of 
this work is the derivation and analysis of a closed set of 
equations that self-consistently describe the spatial evolution 
of a wave including these effects. 

The method employed below, which is based on the 
adiabatic approximation,19-25 operates on the electron distri- 
bution function over the whole range of velocities, including 
the nonresonant region (thermal  electron^).^^ In contrast to 
previous work on closely related problems,14-18 we can 
therefore perform a rigorous calculation of all the moments 
of the distribution function of interest and identify the con- 
tributions of the resonant and nonresonant components of the 
plasma. This provides a transparent physical picture of the 
propagation and transport of wave energy, and also the pro- 
cesses by which momentum and energy are exchanged be- 
tween the wave and the resonant particles. In solving this 
rigorous self-consistent problem we also touch on questions 
regarding the role of anharmonicity in the plasma oscilla- 
tions which are normally left out of consideration. 

The process of phase mixing of the resonant electrons in 
a weakly inhomogeneous plasma implies that a time- 
independent periodic wave is closely related to the well- 
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known Bernstein-Greene-Kruskal (BGK) waves.27 Conse- 
quently, the problem posed in this work can also be regarded 
as dealing with the dynamics of BGK waves in a weakly 
inhomogeneous plasma. Note, however, that even the class 
of periodic BGK waves is quite broad, since the form of the 
distribution function in the coordinate frame comoving with 
the wave and the self-consistent field are far from uniquely 
determined (attempts to narrow the category of BGK solu- 
tions were undertaken, e.g., in Refs. 28 and 29). It is signifi- 
cant that in the solution of the problem of the wave evolution 
(the initial-value problem) this uncertainty is removed in a 
natural way, and those BGK solutions which actually arise 
are selected from among the entire class. In this way knowl- 
edge of the entire "pre-history" of a wave perturbation en- 
ables us to establish the dispersion relation of a BGK wave, 
taking into account the contribution of the resonant structure 
that develops during the course of evolution along with the 
familiar terms. In essence this also happens in the linear 
theory. The contribution of the resonant particles is rigor- 
ously included by solving a Cauchy problem.3 

The nonlinear dispersion relation which includes the 
contribution of the trapped electrons has long been 

It can also be found in one form or another in 
Refs. 32-36 although it is difficult to say that it has been 
applied systematically. For a closed description of the pertur- 
bation wave dynamics the nonlinear dispersion relation is 
just as necessary as the conservation laws for particle num- 
ber, momentum, and energy. It is convenient because it au- 
tomatically removes the question of the size of the nonlinear 
phase shift,37 which inevitably arises in connection with the 
approach of Refs. 14-18. The usefulness of the nonlinear 
dispersion relation is also demonstrated in the analysis of the 
satellite i n ~ t a b i l i t ~ ~ ~ ' ~ '  and of the propagation of waves 
loaded with trapped particles in a weakly inhomogeneous 
plasma.39 

2. FORMULATION OF THE PROBLEM AND 
METHODOLOGICAL COMMENTS 

Consider the propagation of a Langmuir wave oscillating 
in time with frequency o in a weakly inhomogeneous plasma 
with a longitudinal density gradient. Generally speaking, the 
plasma density profile depends on the mechanism which 
maintains the nonuniformity. Here, however, we avoid dis- 
cussing the specific mechanism by assuming that the ions are 
motionless and the ion density profile is given. In the ab- 
sence of the wave the unperturbed electron distribution func- 
tion fo (V)  is also assumed known, e.g., Maxwellian. 

Figure 1 shows a typical formulation of the problem. A 
wave with prescribed initial values of the wave number ko 
and amplitude A .  is incident on the region of nonuniformity 
from infinity ( x =  -m).  We will be interested in the spatial 
dependence of these parameters, and also of the electron dis- 
tribution function in the region of variation. In principle the 
approach described below allows one to consider arbitrary 
smooth plasma density profiles. However, we sacrifice a cer- 
tain amount of generality and consider only the simplest of 
these, such as the ones shown in Fig. 1. Furthermore, we will 
assume that the initial phase velocity is much greater than 
the electron thermal velocity, o / k o S v T .  This formulation of 

FIG. 1. Plasma density profiles with smooth gradients. The wave number k 
and wave amplitude A are also smooth functions of position. 

the problem is attractive because there are no resonant par- 
ticles for the initial wave (or more precisely, their number is 
exponentially small), and consequently there is no need to 
artificially specify an initial particle distribution in the neigh- 
borhood V== o l k O  of the resonance. The phase velocity drops 
as the wave propagates in the region of reduced density, and 
it interacts with the electrons in the tail of the distribution. 
The distribution function is naturally perturbed in the region 
of velocities V== u ( x )  = o / k ( x )  as a result of this interaction. 
If the phase velocity subsequently increases (see Fig. 1, 
traces 2 and 3), some of the electrons are trapped and are 
accelerated by the wave.16'17 Thus, this problem is also of 
interest in its own right in connection with the description of 
how the high-energy electron component forms.40341 

Regarding the adiabaticity of the wave-particle interac- 
tion, we assume that the local scale length L =NlldNldxl  of 
the plasma density variation is always so large that the wave 
evolves slowly in comparison with the phase-mixing of the 
resonant electrons, i.e., the wave variables change little over 
distances on the order of the spatial bounce period 
1, = 2 ~ ( o l k )  o, '. Under these conditions, except for a dis- 
continuous change in the nature of the motion in crossing the 
resonant region,23724 the particle dynamics can be described 
using the adiabatic approximation. In addition, at large L we 
will ignore the exponentially weak wave If the 
reflected wave is neglected the total electron energy flux av- 
eraged over a wave period is conserved. This can easily be 
shown formally, starting from the Vlasov equation and using 
the periodicity of the wave. Consequently, in what follows 
we use the energy balance equation directly to determine the 
spatial dependence of the wave amplitude instead of calcu- 
lating the local damping Then the analysis of en- 
ergy exchange in the system simply reduces to identifying 
the contributions of the resonant and nonresonant particles in 
this equation. The fully self-consistent description is ob- 
tained by simultaneous solution of the Vlasov-Maxwell 
equations without any a priori assumptions (e.g., assump- 
tions about the harmonicity of the oscillations) whatsoever. 
The restriction introduced by the requirement of wave peri- 
odicity implies that the parameters are interrelated through 
the nonlinear dispersion relation. 

A series of studies designed to explain the mechanisms 
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for the production of the so-called trigger radiation in the 
earth's magnetosphere44-48 (see also the review in Ref. 49 
and work cited there) are especially deserving of mention 
among treatments which have been responsible for making 
important contributions to the theory of wave-particle inter- 
actions in inhomogeneous plasmas. Generally speaking, the 
resonant electrons are treated by identifying their current 
density in the Maxwell equations (or in the equations for the 
wave amplitude and phase). The calculation of the perturba- 
tion in the resonant particle current is a fairly involved pro- 
cedure, which in addition often includes non-self-consistent 
elements. In this connection the approach described in what 
follows differs from the majority of its predecessors in that 
the contribution of the resonant particles is identified in the 
solutions of the Vlasov-Maxwell equations rather than in the 
equations themselves. Finally, in order to avoid certain inac- 
curacies we will use rigorous expressions for the adiabatic 
invariants of the electron motion in the field of a wave whose 
parameters vary slowly. Closely related analysis of the time- 
dependent problem was carried out in Refs. 22 and 26. 

Below we will use the following units to describe the 
physical variables: 

where u = w l k ( x )  is the wave phase velocity, T =  m u 3 2  is 
the electron temperature, E and @ are the electric field and 
potential, f is the electron distribution function, n and N are 
the electron and ion densities, j is the electron current den- 
sity, 5 is the energy density, S is the energy flux density, and 
e and m are the electron charge and mass. In these units the 
Vlasov-Maxwell equations assume the form 

d2@ m 
-- 
dxdt j=o ,  j=  (-mdVVf,  

Neglecting reflection, the space-time dependence of the 
physical variables is given by the following expressions: 

where we have written k ( x ) =  l l u ( x )  and cC, is the wave 
phase. The partial derivatives d.F,ldx-L-' in the variables i,l~ 
and x are assumed small by virtue of the weak inhomogene- 
ity. For averages over the wave period we use angle brackets: 

3. ELECTRON DISTRIBUTION FUNCTION 

We solve the Vlasov equation using the adiabatic ap- 
proximation, i.e., instead of the usual linearization we utilize 
the small ratio E = l b / L 6  1, which allows us to consider 
waves of arbitrary intensity. As a first step we go 
over to the new independent variables x ,  $, W ,  where 
W= v 2 / 2  + @ ( @ , x )  is the electron energy in the noninertial 
coordinate system moving with the local wave phase veloc- 
ity u = u ( x ) .  In this system the particle velocity is equal to 
v = V - u = + \I-, where the signs ? corre- 
spond to particles overtaking the wave and falling behind it, 
respectively. We obtain the equation 

We look for a solution of (3) by expanding in E:  

For the trapped electrons we use the relation f + = f - = F  
(see, e.g., Ref. 50)  to integrate (3) along the closed particle 
trajectory. This yields an equation for the distribution to lead- 
ing (zeroth) order in E:  

Without loss of generality we assume that the potential 
reaches its maximum value a,,, at i+b= 2 7~ and its minimum 
Qmi, at +=0. Then (5)  assumes the form 

where + (Clo(x, W) are the turning points determined by the 
relation W =  @(+ t,b0,x). The solution of (6) is an arbitrary 
function of the adiabatic invariant 

The procedure for determining the distribution function 
of the untrapped electrons is similar to that described above, 
except that for them we have f + # f - , and instead of match- 
ing the solution on a closed trajectory we use its periodicity 
in phase. Then we have 
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From this it follows that f  + = f  + ( I , ) ,  where 

It is easy to find the first correction f+ - E ,  which is respon- 
sible for the exchange of energy between the electrons and 
the electric field. Among other things this determines the rate 
of energy exchange ( j E ) .  However, the result of the wave- 
particle interaction is described even in zeroth order in E,  

which makes the application of the conservation laws espe- 
cially convenient. Thus, we actually work with the distribu- 
tion function averaged over phases, which is an analog of the 
ergodic equation.8 In a weakly inhomogeneous plasma this 
component of the electron distribution varies smoothly as a 
function of position, like the other wave properties. 

The specific form of the distribution function depends on 
the initial conditions, the wave parameters at infinity ( x =  
- w ) ,  and the form of the unperturbed distribution f o .  The 
uniqueness of f ( W , x )  is closely related to the possibility of 
following the entire evolution of the wave, and allows us to 
distinguish those BGK solutions which can actually be real- 
ized. Note also that Eqs. (7) and (8) imply that the electron 
distribution is a functional of @ ( $ , x ) ,  i.e., generally speak- 
ing it depends on both the amplitude and the shape of the 
wave potential, which must be determined self-consistently 
using the Poisson equation. This last consideration is fre- 
quently disregarded in the treatment of time-independent 
nonlinear waves. 

In our particular case we have u + v r  at the onset of the 
evolution. Then, neglecting the exponentially small number 
of "tail" electrons, as initial conditions at x =  -a we assume 

In the limit of infinitely small amplitudes f  - goes over to the 
prescribed unperturbed distribution f o  . In particular, if in the 
absence of a wave fo  is Maxwellian, then we have 

where N , = N ( x  = - w )  (Fig. 1) .  
In order to find the distribution function for arbitrary x ,  

we use the identity ( j )  = 0 [cf. Eq. ( I ) ] ,  which ensures con- 
servation of particle number and momentum in the system. 
Going over to integration with respect to W  and then to 
integration with respect to J, I ,  in the integral for the current 
density we find 

FIG. 2. Qualitative form of the phase plane close to resonance. Electron 
trajectories are shown in the wave field with (a) decreasing and (b) increas- 
ing phase velocity, along with the separatrix (chain curve) dividing the par- 
ticles according to their motion into three classes. Particle transitions from 
one class to another (shown schematically by heavy arrows) close to the 
hyperbolic singular points $=?.rr, V = u  are accompanied by short-time 
scale violation of the adiabaticity of the motion. 

where R and I$ are the limiting values of the adiabatic in- 
variants (7) and ( 8 )  on the separatrix W=@,,,  which sepa- 
rates the phase plane into three regions as shown in Fig. 2. 
Here 

The two integrals with respect to I -  in Eq. (11)  appear be- 
cause the relation between W  and I -  is multivalued. They 
correspond to the two intervals where the function 
I -  = I  - ( W )  is monotonic, and in the small-amplitude limit 
they describe the contributions of particles with (V)>O and 
(V)<O.  This fact, however, is of little importance for ana- 
lyzing the balance of the resonant particle number, which 
always satisfies ( V )  > O .  

Treating I ,  as the independent variable and differentiat- 
ing (11)  we obtain an equation which expresses the balance 
of the number of particles that intersect the separatrix: 
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Note the important difference in the behavior of the reso- 
nant electrons when the wave is slowing down, duldx<O 
( d N / d x < O ) ,  and when it is speeding up, du/dx>O (dNldx  
>O) .  Ultimately this difference causes irreversible changes 
in the distribution function. As the phase velocity decreases, 
the bulk of the electrons, including the thermal electrons 
V = v T ,  remain nonresonant, V < u .  These particles do not 
cross the separatrix, and their distribution function obviously 
is always equal to f  - = f o ( I - )  [cf. Eq. (9 ) ] .  On the other 
hand, part of the tail electrons which become resonant cross 
the separatrix and enter the ranks of those that overtake the 
wave V >  u ,  f  - = f  + . It is important to note that not one of 
them can remain for any length of time in the trapping region 
W<@,,, , since the trapped electrons, even if there happen 
to be any, have a tendency to spill out. Specifically, the con- 
stancy of J [cf. Eq. (7 ) ]  implies that if u decreases then W 
grows. Hence for dN/dx<O in the region of phase space 
corresponding to the trapped particles a distinctive electron 
"void" develops, drifting along with the wave in the direc- 
tion of smaller velocities, as shown in Fig. 2a (BGK struc- 
tures having the form of electron voids were considered in 
Refs. 51 and 52) .  Substituting F =  0 ,  f  - = fo in (15) we find 
the form of the function f  + : 

If the wave amplitude is small, then we have R G I ,  and (16) 
can be expanded. We retain only the first correction - R ,  
which is proportional to the square root of the amplitude. 
Then for dNldx<O we find 

where the subscript " - " indicates that the function R - ( I o )  
given parametrically by the expressions (12) and (14) is de- 
termined by the wave variables in the range dN/dx<O.  

At the density minimum N ,  = N(x, )  the phase velocity 
also attains a minimum u ,  = u(x , ) .  After passing the mini- 
mum (see Fig. 1, traces 2 and 3)  it begins to increase for 
dNldx>  0 .  Now a particle crossing the separatrix W=@,,, 
in the reverse direction can be trapped by the wave, since 
according to (7) the trapped electrons descend to the bottom 
of the wave potential well as u increases (Ref. 39; cf. Fig. 
2b).  Thus, where the density gradient is positive, part of the 
electrons which overtake the wave and go into resonance 
with it then fall behind, and part of them are trapped by the 
wave, f  + + f  - , F .  The increments in particle number in the 
three regions of phase space are proportional to the corre- 
sponding changes in the phase volume.'5724 Then from (15)  
as before, using the small amplitude of the wave, we find 

The subscript "+" on R + ( I o )  indicates that in Eqs. (12)-  
(14) we must use the wave parameters in the region dNldx  
>O. The subscript "m" is affixed to quantities at the point 
x ,  where the density is a minimum. Expressions (17)  and 
(18) can also be derived by calculating the probabilities for a 
resonant particle to pass from one region of phase space to 
another, as was done in Refs. 22 and 24 in treating the time 
evolution of a spatially periodic wave. 

If the phase velocity again becomes large, u + v T ,  as N 
increases, the function f  + becomes exponentially small ev- 
erywhere, and as in the beginning of the evolution we can 
assume f  + = 0 .  Thus, as a result of traversing the region of 
the plasma density gradient the wave leaves a "trace" in the 
form of a perturbation in the electron distribution in the 
range of velocities where it passed. Moreover, a small frac- 
tion of the particles is trapped and entrained by the wave to 
large velocities. Even if the plasma density profile is abso- 
lutely symmetric as in Fig. 1 (trace 2), when it leaves the 
gradient region a beam of trapped particles develops. For 
u B u ,  the trapped electrons, after dropping to the bottom of 
the potential well, form phase-synchronized bunches. From 
Eqs. (7), ( l o ) ,  and (18)  their disl  tion on in the phase plane 
assumes the form of a thin ring with sharp intcrior bound- 
ary, corresponding to the onset of the capture process at the 
point x ,  and a rapid decay in the direction of the separatrix 
corresponding to the monotonic decrease of fo (V) .  

4. MOMENTS OF THE DISTRIBUTION FUNCTION 

To close the description of the spatial evolution of the 
wave it suffices to calculate the current density j (or the 
density n )  and the average energy flux ( S ) .  Nevertheless, to 
complete the picture it is useful to also find expressions for 
the average electron density ( n )  and average energy density 
(Z) in the system. In this section we calculate these basic 
moments of the distribution function. 

First of all, we write the electric potential as the sum of 
the electrostatic part @,(x ) ,  which in a weakly inhomoge- 
neous plasma is generally nonzero but small due to the 
quasineutrality of the plasma, and the wave perturbation 
@(x,$) ,  @ = a , + & ,  where (@)=a,, (6)=0.  In what fol- 
lows it is convenient to write 6 in the form 

where A ( x )  = (@,ax-@,i,,)12 is the wave amplitude and 
a= a ( x ,  $) is the function describing the shape of the wave. 
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This function is even in t+b to leading order in E (to which 
order we will restrict ourselves everywhere) and varies over 
the range OSaSl (for more details see Sec. 5). Going 
over to the integration variable w = W- a,+ 2Ap 
= (v- u ) ~  
I2 + 2A a ,  we find the desired moments in the form 

4.1. In the region of negative gradients dN/dx<O we 
use (17) to find j = jo+ jl , where 

Here we have omitted the simple but rather lengthy proce- 
dure of evaluating the integrals, although clearly a number of 
comments should be made about the technique employed. In 
considering small-amplitude waves it is convenient to break 
up the range of integration into two parts, e.g., 2A < w 
< & and & < w < m. In the nonresonant region both the 
distribution function and Ivl = 4 '  can be ex- 
panded in powers of &. In evaluating the resonant contri- 
bution we make use of the narrowness of the range of inte- 
gration and expand f o .  Then the terms in jo proportional to 
A(2m+1)14 (m= 1,2,3, ...), associated with the artificially in- 
troduced boundary w = &, cancel one another. Finally, in 
calculating jl it is necessary to take into account the fact that 
g -  - ,/A is small. For small values of A, restricting our- 
selves to the leading terms, we find 

where fo(u) is the value of the unperturbed distribution 
function at the resonance and the integral (24) is understood 
to be a principal value. 

The average moments of the distribution function (20) 
are calculated in a similar way. Neglecting small corrections 
due to the weak anharmonicity of the wave (see Sec. 5), we 
can further simplify the calculations by assuming that the 
wave is sinusoidal a=(1/2)(1 -cos $), p = 112. Then for the 
perturbations of the moments we find 

d P - Q  
(n)- l:mdVfo=- - - 

4 du u 

64 dfO +--- 
9 7 ~  u d u '  

where we have written 

and A - =A -(u) is the wave amplitude as a function of 
phase velocity in the region dNldx<O determined by the 
closed set of equations describing the wave evolution (see 
Sec. 6), where Ao=A-(1) is the initial amplitude for x =  
- m, u = 1. The first terms on the right-hand sides of Eqs. 
(25)-(27) constitute the contribution of the bulk of the non- 
resonant electrons. The second terms describe the contribu- 
tion g-(I,) of the trace left by the wave in the tail of the 
distribution and associated with the electrons that have been 
resonant. The third terms are the contribution of fo(I+) in 
the narrow resonant region. All three sets of terms are the 
leading contributions in the expansion of the corresponding 
quantities in half-integral powers of the amplitude. 

For a Maxwellian distribution fo(V) = ~lJ2?rT 
exp(- v2/2T), N(x) =No exp(- @,IT) the conditions for 
Eqs. (25)-(27) to be applicable take the form A 4 T, which is 
equivalent to ~ $ 8  m T 4  (krD12 in the generally accepted 
notation ( r D  = J-), or v E 4 v T ,  where v~ is the 
half-width of the trapping region (Fig. 2). Assuming 
(krD)2= ~ 1 ~ ~ 4  1 we can easily find the approximate rela- 
tions 
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To interpret Eqs. (25)-(27) we supplement these relations 
with an expression for the mean energy density &=A2/4u2 
of the field of a harmonic wave. The perturbation in the 
energy density of the nonresonant component (below we use 
the superscript N) consists of the perturbation associated 
with the redistribution of the density (subscript D) in re- 
sponse to ponderomotive forces and the transported energy 
(subscript S). Similarly, we represent the contribution of the 
resonant particles (subscript R). Then the perturbation intro- 
duced by the wave can be written in the form of a sum of five 
terms ZW= EF+ aN)+ 6N)+ GR)+ aR). Using Eqs. (25)- 
(28) we find 

%$= TnN/2 = - A 2 ~ / 8 u 2 ,  n(N)= - A 2 ~ / 4 T u 2 ,  

Thus, allowing for the contribution of the resonant particles, 
we can calculate the transported energy and the energy flux 
using well-known formulas (see, e.g., Refs. 53 and 54): 

where so, the dielectric function, satisfies 

the Vlasov dispersion equation.55 Although this is quite natu- 
ral, it is worth noting that by no means all distribution func- 
tions f(W) invoked in constructing BGK solutions2' guaran- 
tee this identity. 

For small amplitudes the second term dominates among 
the resonances in Eqs. (25)-(27). Under the conditions 
A < T, Tlu2< 1, when the damping of the wave is small, we 
can take the function &(v) = G ( u )  out from under the 
integral and find 

~ ; ) = r ~ ( ~ ) u ~ / 2 =  -(4/7r)T-fO(u), 

Thus, we see that the energy of the wave is transported 
in the form of two components ( s ) = s ( ~ ) + s ( ~ ) .  The part 
associated with the wave motion of the thermal electrons 
propagates with the group velocity v,. The other part, the 
resonant component due to the electron void, moves with the 
phase velocity. A similar division of the energy into two 
"blocks" for a wave packet was noted in Refs. 56 and 57, 

although there perturbation theory was used, i.e., an essen- 
tially different limiting case y/wb% 1 was being considered. 

The question regarding the contribution of the resonant 
particles to the wave energy has been discussed in the 
l i t e ra t~re .~~-~O A Van Kampen wave4 can be regarded as the 
linear analog of a BGK wave. Nevertheless, it is not entirely 
clear how adequately the Van Kampen mode, a product of 
linear theory, describes a real physical object, i.e., a station- 
ary (or quasistationary) periodic wave. Moreover, it is quite 
nontrivial to calculate nonlinear quantities using the theory 
of Van Kampen modes56761,62 and a number of troublesome 
questions r e ~ n a i n . ~ ~ ' ~ ~  In this connection the BGK method 
has the advantage that it allows us to determine the structure 
of the resonant electron distribution in all its details and to 
find the nonlinear quantities by direct calculation. As for the 
phenomena we have treated, they cannot be described at all 
in linear theory, inasmuch as all physical variables associated 
with particle resonances are connected one way or another 
with the bounce frequency and are proportional to half- 
integral powers of the amplitude. 

The expressions we have found for the moments admit a 
simple physical interpretation (see also Ref. 14). An elemen- 
tary event in which electrons interact resonantly with a wave 
at a time such that u = V holds can be treated as a discon- 
tinuous increase in the particle velocity by an amount on the 
order of the width of the resonant region - vE = 2&. 
Then, using the constancy of the average particle flux 
f + = f - Vl(V+ vE), we can derive expressions for the pertur- 
bations of all moments of the distribution function through 
simple qualitative estimates. If in addition we assume that 
the discontinuity has magnitude (4/T)vE we find not just 
qualitative but quantitative agreement with rigorous calcula- 
tions. 

4.2. Now we consider the moments of the distribution 
function in the region where the density gradient is positive 
(see Fig. 1). We will assume that the wave phase velocity has 
reached some minimum value u =urn and then increased 
again to the values u + v T 7  urn . Then, setting f + = 0 in Eq. 
(18), we find using (20) that 

where the first term is the contribution of the bulk electrons, 
the second is due to the trace left by the wave in the tail of 
the distribution, and the third is the contribution of the beam 
of trapped particles. The function A + =A +(u)  is determined 
by the dependence of the amplitude on the phase velocity in 
the region dNldx>O. Acceleration of trapped electrons is 
accompanied by the occurrence of recoil momentum in the 
plasma since ( j )  = 0 must hold, and the mean current ( jT)  of 
the trapped particles is exactly balanced by the second term 
in (32), as can easily be shown by direct calculation. Thus 
we have 
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as a result of which (32) can be rewritten in the form 

The perturbations of the remaining moments of (20) are 
equal to [cf. Eqs. (25)-(27)] 

A' d P-Q 8 

where the terms describing the contribution of the trapped 
electrons have been underlined. For a Maxwellian distribu- 
tion fo the main contribution to the integral comes from 
small velocities V=u, , where the number of particles is not 
too small and the energy exchange between waves and par- 
ticles is strongest. For this region, when u S v T ,  urn holds, 
the upper limit of the integral is irrelevant and it can be 
replaced by w. By assuming V=urn<u we can estimate the 
relative contributions of the trapped electrons and of the 
trace left by the wave in the tail of the distribution. Compar- 
ing the terms in square brackets we see that the contribution 
of the trapped particles to the density perturbation is small, 
whereas in the expressions for the energy density and the 
flux the underlined terms dominate. Thus, the energy balance 
in the subsequent evolution of the wave is determined by the 
interaction with the beam of trapped electrons pulled out of 
the tail of the distribution and entrained by the wave. The 
division into two components of the energy flux in the sys- 
tem consisting of the wave and the trapped particles is even 
more obvious than in the case of an electron void. 

5.1. In the region dNldx<O we can use Eqs. (21)-(23) 
to arrive at a nonlinear oscillator equation of the form 

where we have written C=U'P [cf. Eq. (24)] and b 
= 8u2fo(u)/3 &c. The term proportional to in Eq. (39) de- 
scribes the contribution of an electron void. The presence of 
this term implies that there is another nonlinear phenomenon 
associated with resonant particles: the potential profile devi- 
ates from sinusoidal. If the anharmonicity parameter satisfies 
b=O, which holds, e.g., at the start of the evolution when 
fo (u)  is negligible, then the solution of (39) is trivial: a=( l /  
2)(1-cos $), p= 112, where the condition that the waves 
vary periodically in time yields the Vlasov dispersion 
relation55 [cf. Eq. (30)] C = 1. The difficulties in solving Eq. 
(39) for b # O arise because the coefficients p and z ,  which 
are functions of a, are not known in advance. The problem 
simplifies somewhat in the case of weak anharmonicity 
b e  1, since in the limit b+O the functional z must also go to 
zero because ((1 - a)-"') diverges for a harmonic wave. 
Nevertheless, we cannot completely disregard the term pro- 
portional to z, because it is singular for a=l .  This singular- 
ity is closely related to the behavior of the distribution func- 
tion and the wave potential close to the hyperbolic singular 
points $= t ~ ,  V=U in the phase plane (Fig. 2). 

The procedure for solving the nonlinear oscillator equa- 
tion is well known (cf., e.g., Refs. 22, 26, and 27). Multiply- 
ing (39) by da/d$ and integrating with respect to $ we find 

~ - ' ( d a / d $ ) ~ +  a ( a - 2 p ) +  b f i  

Noting that Jald$=O holds at the minimum a=O, i,b=O and 
maxima a= 1, $= +.rr of the potential, we find the relation 

H = b ( l - z ) = l - 2 p ,  (42) 

and eliminating p and H by means of these relations we 
reduce (41) to the form 

with an effective nonlinear oscillator potential 

5. NONLINEAR DISPERSION RELATION - (44) 

For a closed description of the spatial evolution of a ne condition for periodicity in (I/ and expressions (40) ad- 
wave it is necessary to determine the shape of the self- ditionally enable us to write 
consistent potential a($ ,x )  [cf. Eq. (19)l. Using Eqs. (2) and 

1 d a  
(19) and also the continuity equation dnldt + djldx = 0 we 
can show that to leading order in E the second and third 
equations of Eqs. (1) both yield 

2 ~ d ~ a / d $ ~ + u j = 0 .  (38) (45) 

427 JETP 80 (3), March 1995 V. L. Krasovskii 427 



Now the search for a solution reduces to determining the 
functions p(b )  and z (b )  satisfying (42) and (45). Analysis of 
the behavior of the integrals for small values b e 1  reveals 
z ln(8/bz)=l ,  p=(1-b) /2 ,  and fi = 1 - 4blrr. The 
last relation, which determines the resonant correction, al- 
lows us to write the nonlinear dispersion relation 

where the third term is the contribution of the electron void. 
Using (43) we can easily show that the wave profile a(@) 
deviates little from sinusoidal in shape everywhere except a 
small neighborhood of the potential hill 1 @- rrl 5 bz,  where 
instead of the quadratic dependence a= 1 -(T- 1,b)~/4 for a 
sine curve we have a = 1 - [( rr - @)/4]  413(bz)213. 

Equation (46) can also be treated as the leading terms in 
an expansion in fi 4 1 of the nonlinear dielectric function 

omitting here the symbol for a principal value integral, al- 
though it is difficult to judge how useful this formula is in 
the case of large amplitudes. 

5.2. Now we consider the solution of (38) in the region 
of positive gradients dNldx>O. Substituting j from (34) we 
find 

The distribution function for the trapped electrons is given 
by (18). The sequence of operations described above again 
leads to (43), but now with an effective potential 

where the minimum value wo of the particle energy is deter- 
mined by the condition (7) that the adiabatic invariant be 
constant [cf. also Eqs. (12) and (18)], 

x (  dl - f f (* .xm)) ,  

w0=2Aa(% @, ,x) ,  (48) 

and corresponds to particles trapped at u = urn at the point x ,  
where the density minimum Nm is located. 

In contrast to the case of an electron void, the nonlinear 
correction to U due to a beam of trapped electrons [the sec- 

ond term in basis in Eq. (47)] is small for all values OSacl 
if the number of trapped particles is not too large. It can 
easily be shown that the anharmonicity of the wave is always 
small if the current density of the beam [cf. Eq. (33)] satisfies 
the inequality 

upIA@*41 .  (49) 

Physically Eq. (49) means that the repulsive Coulomb 
self-field in the electron bunch is small in comparison with 
the electric field of the wave. This condition is most stringent 
for trapped electrons concentrated close to the bottom of the 
potential well @=O where the wave field is also small. When 
(49) fails to hold the electron bunch begins to spread out, 
"pushing apart" the walls of the potential well, which causes 
the wave potential a(@) to be deformed. 

Thus, under condition (49) the wave is almost sinu- 
soidal, a=(1/2)(1-cos @). We can find the correction to the 
wave profile without difficulty using (43). However, we are 
primarily interested in the contribution of the trapped par- 
ticles to the dispersion relation. Substituting (47) in the first 
of Eq. ( 4 9 ,  expanding @, and integrating with respect to a,  
we arrive at the relation 

where K ( K )  and E ( K )  are complete elliptic integrals of the 
first and second kind with modulus K = Jx. It is con- 
venient to transform to the integration variable J [cf. Eq. 
(7)].  Using the expressions 

in the conditions for weak anharmonicity and setting C = 1 in 
the nonlinear correction, we find 

Since F ( J )  falls off exponentially as J increases above Rm 
(cf. Sec. 3), Eq. (52) can be further simplified by removing 
the factor 

from underneath the integral and noting that the remaining 
integral is equal to half the average current density ,u of the 
trapped particles. Finally, we find fi = 1 + , u u g ( ~ ~ ) / A  or 

where the energy level wo of the trapped electrons is deter- 
mined according to (48), (51), and (53) by the expressions 

To conclude this section we note that using Eqs. (8)- 
(10) and the calculations described above, we can also easily 
find the correction to the dispersion relation associated with 
the nonlinearity of the nonresonant part of the component. If 
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there are no resonant particles the nonlinear dispersion rela- 
tion takes the form N =  1-(3Tlu2)(1 + ~ T I u ~ + A ~ / u ~ ) ,  
from which it follows that for weak wavesA1u24 1 the non- 
linear correction -TA2 is always much smaller than the 
thermal correction (see also Refs. 65 and 66). 

6. SPATIAL EVOLUTION OF THE WAVE 

The description of the wave evolution in a weakly inho- 
mogeneous plasma reduces to finding the spatial dependence 
of the amplitude A and the phase velocity u (wave number 
k=u-l ) .  To this end we use the closed system consisting of 
the energy balance equation and the nonlinear dispersion re- 
lation. These two conditions determine A =A(N) and 
u =  u(N) as functions of the local plasma density and thus 
solve the specified problem, regardless of the specific form 
of the density profile N=N(x) .  Consider a typical case IN 
- 1 I < 1 in which the thermal and resonant directions in the 
dispersion relation are small. To be specific we assume that 
the unperturbed distribution function f o  is Maxwellian. 

6.1. In the region where the gradient is negative, dNl  
dx<O (see Fig. I), expanding the integral and retaining the 
first thermal correction in the limit T / u 2 4  1 ( k 2 r i 4  1 )  [cf. 
Eq. (28)], we can write Eq. (46) in the form 

Note that the sign of the resonant correction is the same as 
that of the thermal correction. Thus, in the process by which 
a void forms the resonant electrons bunch mainly in the vi- 
cinity of the potential maximum a= 1, *= +- n; in phase with 
the thermal particles. 

The damping of a small-amplitude wave on an electron 
void is described according to Eqs. (27) and (28) by the 
energy balance equation 

where we have written A=A-(u) ,  and u = l ,  A ( l ) = A o  
holds at infinity (x = - a). 

In the initial stage u s  1 we can ignore the damping, 
since the number of resonant electrons is exponentially 
small, f o ( l )  - 0.  As N decreases the phase velocity falls off 
in accordance with the linear dispersion relation and we have 
A = = A , u ~ ~ ~ .  By virtue of the exponential dependence of 
fo(V) the wave experiences a perceptible damping if the 
phase velocity u(N) drops to values on the order of a few 
times the thermal velocity v T 4  1. Regarding u as an inde- 
pendent variable and differentiating (57) we arrive at the 
equation 

which with certain provisos is the same as the similar expres- 
sion derived in Ref. 17 by a different method. The approxi- 
mate solution (58) takes the form 

According to (59), damping develops for u2 f O ( ~ ) l ~ 3 1 2 -  1 ,  
or in ordinary notation for ( y / ~ ) ( k r ~ ) ~ = =  ( w , ~ w ) ~ ,  where y 
is the linear damping rate. Note, however, that the connec- 
tion with Landau damping in this case is somewhat illusory, 
since the damping of a wave on an electron void is deter- 
mined by the value of the distribution function itself at the 
resonance, rather than its derivative, and so occurs even for 
dfOldu = 0. Nevertheless, for a Maxwellian distribution it is 
sometimes convenient in estimates to use 
y l w = ( v / 2 ) u 3 f 0 ( u ) l ~  instead of fo(u).  

Equation (59) says that for some value u = uH the ampli- 
tude formally goes to zero, i.e., the wave is totally damped 
(see also Ref. 37). For small amplitudes the contribution of 
an electron void to the dispersion relation (56) can be con- 
siderable. For y*wb it is comparable with the thermal cor- 
rection. One should also keep in mind that for a specified 
density gradient of length L the adiabaticity condition must 
fail sooner or later as the amplitude decreases, so that the 
damping goes over to the Landau regime.14 But if the value 
of L is very large, then, generally speaking, it is desirable to 
analyze the instability of this BGK wave. In any case, the 
damping implies that the wave cannot have a velocity below 
the value uH determined by the relation 
uz4fo(uH)= 7rA:l2/4, if this value is reached for the speci- 
fied density profile, i.e., u,>u,= u(x,). 

6.2. Now we assume that u,>uH holds for the given 
density profile, and the wave does not reach the strong- 
damping point. Then en route from the density minimum at 
x, it traps a certain fraction of the resonant particles. Many 
of the electrons are trapped near the minimum x, , where the 
wave amplitude satisfies A , - A ~ u ; ~ ~ ~ .  From (33) the current 
density of the trapped particles is approximately equal to 

In practical calculations it is also convenient to use the ratio 
of this quantity to the total electron current density in the 
range of velocities traversed by the wave, V 2  urn : 

From (54) in analogy with (56) we find the dispersion 
relation 

As the phase velocity increases for u 9  u T ,  U, the conserva- 
tion of the adiabatic invariant (55) implies that the trapped 
particles settle to the bottom of the potential well K~+O, 
r + ( v / 4 ) ~ ; ,  g + l .  In contrast to the case of the electron 
void, they bunch up at the antiphase ( @ = O )  with respect to 
the thermal electrons; this is also shown by the plus sign of 
the resonant correction. Because of this, in particular, the 
wave loaded with the trapped electrons can penetrate into the 
supercritical regions of the plasma N >  1 (Refs. 30, 31, 35, 
and 50), contrary to the conclusions of Ref. 16. 
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The subsequent evolution of the wave as the plasma den- 
sity increases is described using Eqs. (53), (%), and (61) and 
the equation for the conservation of the average energy flux 
[cf. Eqs. (28), (33),  (37), and (60)l: 

From (62) we see that because of the damping on the trapped 
particles the phase velocity of the wave cannot exceed the 
value U ,  = d m .  The ratio of the maximum to the 
minimum velocity can be regarded as a dimensionless pa- 
rameter which characterizes the strength of the wave, 

As the amplitude decreases near the point u = u,  the trapped 
electrons rise from the bottom of the well, and for 
A / A ,  = ( u , ~ u ) ~ - a - ~  they spill out of the potential wells 
~ ~ = 1 ,  r (KO)= 1 by virtue of Eq. (55).  As in the case of an 
electron void, a substantial drop in the amplitude can destroy 
adiabaticity and hence cause the spilling to occur earlier. If 
the waves are sufficiently intense, wbml w > a -312 ,  then even 
before the spilling occurs the nonlinearity of the wave dis- 
persion can be manifested for A / ~ , s ( w ~ , l w ) ~ a ,  i.e., the 
contribution of the trapped particles to (61) becomes compa- 
rable with the thermal correction. In connection with propa- 

FIG. 3. Spatial evolution of the electron distribution in 
the ($,V) phase plane. For each position x one wave 
period - TKI+ST is shown. 

gation over long distances the criteria for stability of the 
wave13,33,38 become important also when energy can be ex- 

changed with the beam of trapped electrons. 
Thus, for a specified plasma density profile, depending 

on the wave intensity A o ,  two basic "scenarios" are possible 
for the evolution. A small-amplitude wave a <  1 is absorbed 
by the resonant particles without reaching the density mini- 
mum at the point u = u,S urn . In the opposite limit a P 1 a 
small group of resonant electrons are trapped near the mini- 
mum, and the subsequent acceleration in these particles 
causes the wave to be absorbed at the point where 
u = uBBum holds. 

The formation of a beam of accelerated trapped particles 
constitutes a clear example of the occurrence of irreversibil- 
ity in a dissipationless system, and stems from the violation 
of adiabaticity in the motion when particles cross the narrow 
region of phase space adjacent to the separatrix (Fig. 2).2,24 
This effect, which appears somewhat unexpected, especially 
in the case of a symmetric density profile (Fig. lb), is illus- 
trated by the results of numerical simulation. Figure 3 dis- 
plays the electron distribution in phase space found by nu- 
merical integration of the equations of motion for 1150 
particles in the field of a wave with phase velocity varying 
according to u ( x )  = 1 - S exp( -x2/12) .  The main purpose of 
the calculations is to exhibit the processes by which resonant 
structures develop. The problem was therefore solved in a 
non-self-consistent formulation and approximately describes 
the real situation if the resonant particles exert a weak effect 
on the wave, i.e., A = A ~ u ~ ~ ~  and N =  1 - T I U ~ .  Furthermore, 
only the dynamics of the electrons in the tail of the Maxwell- 
ian distribution V >  V m i , s u ,  was examined. The initial par- 
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ticle phases and velocities at x =  - 21 were prescribed using 
a random-number generator. The parameters of the calcula- 
tion were vT=0.2 ,  ~ ~ = 2 . 2 4 . 1 0 - ~  (A,= 1 . 3 6 . 1 0 - ~ ) ,  
1=3.2.103,  S=0.284 (u,=0.716), Vmi,=0.632. The fig- 
ure clearly shows the resonant structures we have been con- 
sidering: an electron void at the point x = 0, u = urn and a ring 
of trapped electrons at the exit from the region of density 
variation x = 21, u - 1, even though we used a fairly small 
characteristic scale for the variation of the phase velocity 
Illb = l&/2.rru2 = 30 in order to reduce running time. 

7. CONCLUSIONS 

Because of the rapid phase mixing of the resonant par- 
ticles, the collisionless damping of plasma waves in a weakly 
inhomogeneous plasma is conveniently described as the 
smooth spatial evolution of a steady BGK wave. The pres- 
ence of a small parameter E makes it natural to use the adia- 
batic approximation to determine the electron distribution 
function, and allows us to avoid the customary linearization 
of the original equations. This yields an algorithm for the 
self-consistent solution of the nonlinear problem for an arbi- 
trary smooth plasma density profile. This method permits a 
variety of nonlinear plasma wave effects to be described with 
considerable rigor, ranging from the effect of resonant par- 
ticles on the dispersion of the wave to anharmonicity in the 
oscillations and the effects of the ponderomotive force. It is 
also worth noting that for a fully collisionless plasma it in- 
cludes strongly irreversible processes by which structures de- 
velop in the resonant region of phase space. Since it is based 
on the conservation laws, this approach yields as a by- 
product simple expressions for the perturbations of all the 
basic moments of the distribution function in the form of 
sums of the contributions of resonant particles and the non- 
resonant component of the plasma, which facilitates a deeper 
understanding of the physics of these phenomena. In particu- 
lar, it becomes clear that the wave-particle adiabatic inter- 
action is quite similar to the energy exchange in a beam- 
plasma system, and the wave possesses properties of such a 
system close to a BGK equilibrium. 

The final product of our analysis is a closed system of 
equations describing the amplitude and phase velocity of the 
wave as functions of the local plasma parameters, in the form 
of an energy balance equation and a nonlinear dispersion 
relation. Although the mathematical operations constituting a 
detailed derivation of this system can be somewhat lengthy, 
the final equations are simple and convenient to use. 

In the examples we have treated, for a Langmuir wave 
propagating in the direction of decreasing plasma density in 
the region of phase space corresponding to trapped particles, 
a void develops which moves with decreasing phase velocity. 
Although the phase volume of the void decreases, the wave 
damping becomes stronger, since the number of untrapped 
resonant electrons surrounding the void is growing. Next, 
depending on the form of the plasma density profile and the 
shape of the unperturbed distribution function, two scenarios 
are possible for the evolution of the wave. The wave may 
reach the points where damping is strong, with a probable 
transition to the Landau regime, or if this point is not 

reached, it can pass through the density minimum and trap 
some of the electrons from the tail of the distribution. Then 
as the phase velocity increases on the positive density gradi- 
ent the trapped electrons undergo acceleration, extracting en- 
ergy from the wave. This process can play the role of an 
effective mechanism for the formation of high-energy par- 
ticles in a plasma. The result of this energy exchange de- 
pends on the specific form of the density profile and can 
easily be estimated using the equations we have derived and 
the conditions for confinement of the trapped particles in the 
potential wells of the wave. In particular, we can determine 
the energy spectrum of the resulting fast particles. 

In conclusion we note that the techniques used in the 
present calculations can easily be extended to other kinds of 
waves, e.g., circularly polarized waves in a magnetized 
plasma. This generalization is also possible for spatially 
bounded quasi-monochromatic wave packets. Finally, if cer- 
tain difficulties of a computational nature are overcome, this 
algorithm is suited also for more intense waves than those 
treated above. 
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