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The training rule for Hopfield neural networks has been investigated with the help of a simple 
thermodynamic method which allows one to describe both the training stage and the 
stage of information reconstruction. Both the spins and the synaptic weights are considered to be 
dynamic variables in contact with heat reservoirs, where the temperatures of the system of 
spins and the system of weights are assumed to be different. A phase diagram of the system is 
constructed and the maximum number of patterns is determined which the system can 
remember for different values of the parameters. It is shown that the storage capacity grows as a 
result of training. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

In recent years there has been an upsurge of interest in 
the Hopfield model of associative memory.' From the view- 
point of statistical mechanics this model is described by an 
Ising Hamiltonian 

in which N spins u,= ? 1 play the role of the neurons, and 
the coupling constants J,, play the role of the synaptic 
weights. In the original model, the synaptic weights were 
determined by Hebb's training rule,2 which allows P patterns 
to be remembered after P step-presentations. Here the maxi- 
mum storage capacity (i.e., the maximum number of retriev- 
able patterns) is achieved at zero temperature, i.e., in the 
absence of noise, and the largest number of N-bit words that 
the system can remember, P C ,  turns out to be equal to 
-0.14N (N is the total number of spins).3 A number of 
other training rules were developed later (see, e.g., Refs. 
4-9), which made it possible to increase the number of re- 
trievable patterns and reduce the number of errors in their 
reconstruction. 

Hopfield and coworkers proposed an untraining 
algorithm4 consisting of successive modifications of the syn- 
aptic weights, starting with their Hebbian values 

annihilated and, as numerical modeling has shown,s3y for a 
moderate number of steps of the algorithm the storage capac- 
ity grows. 

In this paper we consider an algorithm related to un- 
learning, which may be called underlearning.10 At zero tem- 
perature, the dynamics of underlearning differs from that of 
unlearning (3) only in the sign of the parameter 6. Such a 
direction of evolution of the synaptic weights leads to a 
deepening of the energy valleys. If a spin state is located near 
one of the patterns {(f), then the energy minimum associ- 
ated with that pattern deepens. As a result, the storage capac- 
ity should grow and, as we will see, the retrieval region in 
the phase diagram increases in comparison with the Hebb 
case. 3 

We stress that in spite of the similarity of the underlearn- 
ing and unlearning algorithms, their mechanisms are sub- 
stantially different. In the former, the effect is attained thanks 
to a deepening of the "useful" energy minima, whereas in 
the latter it is attained as a result of destruction of "spurious" 
energy valleys. 

In a system with noise, the underlearning rule can be 
formulated10 in the form of the Langevin equation, assuming 
the dynamics of the weights to be slow in comparison with 
the dynamics of the spins: 

dJij(t) - S 
where {(f = 2 I ) ,  p= 1,. . . , P= a N  are the retrievable pat- - -- - 

d t  aij F[J(t),TI+ Tij(t)- (5) 
terns. At each step the weights change according to the rule 

J i j ( t+  1 )  =Ji j ( t )  + EUTU; , (3) Here T is the temperature of the spin system, ( . . . ) J ( t ) , T  de- 
notes the thermal average for given values of the synaptic 

where the spin values a; are chosen from one of the minima weights Ji, , F is the free energy of the spin system 
of the Hamiltonian (I), and 6 is some small negative param- 
eter. Such dynamics leads to the destruction of the potential 
minima and an increase in the energy of the system. How- F = - T l n  exp(-PH[J(t) ,u]),  (6) 
ever, it is primarily the shallower spin-glass minima that are ~ = ? l  
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and r],, is thermal noise corresponding to the temperature of 
the weights T' # T. The parameter E (3) is absent from Eqs. 
(4) and (5) thanks to the appropriate choice of units for mea- 
suring time. 

It is traditional in the construction and analysis of train- 
ing rules to devote principal attention to the ideal noise-free 
case, and nonzero temperatures are often not considered at 
all,' for, as it turns out, there exists a maximum temperature 
above which retrieval is impossible.326 For Hebb's rule the 
critical temperature T,= 1 (Ref. 3). We will see below that in 
our algorithm,10 training is possible, in principle, at any tem- 
perature T, and for the appropriate choice of parameters the 
efficacy of training does not depend on the temperature. 

The approach which we shall use for studying systems in 
which both the spin degrees of freedom and the couplings 
are in contact with a heat reservoir was proposed in Refs. 
11-13. The idea is based on the traditional replica 

but the number of replicas n does not tend to 
zero; rather it is taken to be equal to TIT'. The replica 
method is used in this approach to calculate the free energy 
of the system of synaptic weights. This free energy describes 
the neural network in a state of thermodynamic equilibrium, 
i.e., at infinite times. Hence it is possible to extract informa- 
tion about the limiting result of carrying out a large number 
of steps of the algorithm. Hebb's rule for variable patterns 
{EfL} was examined from this point of view in Ref. 15. 

In order to examine the result of carrying out a finite 
number of steps when using the approach proposed in Refs. 
11-13, one needs to restrict the possible range of the cou- 
pling constants J,, . Toward this end, we add a term to the 
potential F[J(t) ,T] in the equation of motion (5) that de- 
pends on the distance between the current and initial values 
of the couplings. It is convenient to choose it in the form 

NT' 
W[J] = x (J~,-  J!:))~, 

2Jo j<j 

where N is the total number of spins, T' is the temperature of 
the system of synaptic weights, and J, controls the range of 
values of the coupling constants J,,. Now the effective 
Hamiltonian controlling the dynamics of the weights has the 
form 

References 13 and 15 considered an unlearning 
algorithm4,89y on the basis of the method of Refs. 11-13. A 
significant increase in the storage capacity was found in 
Refs. 8 and 9 on the basis of computer modeling. However, 
in Refs. 13 and 15 the patterns {(f) were assumed to be 
dynamic variables, whereas in reality the patterns should be 
fixed and only the synaptic weights should move around. 
These studies therefore represent only a rough attempt at an 
analytic explanation of the properties of unlearning. In our 
treatment the patterns {(f} are fixed, as they should be. This 
leads to the appearance in the formalism of two replica indi- 
ces instead of one as in Refs. 11-13, and 15. This more 
realistic approach allows us to study the underlearning pro- 
cess, and opens up a new approach to the construction of a 
thermodynamic theory of unlearning. 

In the present study we investigate the dependence of the 
storage capacity on the temperatures T and T', and the pa- 
rameter J, corresponding to the number of steps of the algo- 
rithm. In the second section we derive equations for the order 
parameters of a system with Hamiltonian (8). In the third 
section we discuss limiting cases. The fourth section is de- 
voted to a construction of the phase diagram, and the fifth 
section contains the conditions for replica symmetry break- 
ing. The Conclusion gives a qualitative discussion of the 
results and possibilities for further study. 

2. ORDER PARAMETERS 

For a fixed realization of disorder {[}, the partition func- 
tion of the system of weights has the form 

where F is the free energy of the spins (6). Introducing the 
notation n = TIT' and introducing n replicas of the spin sys- 
tem, we represent the partition function in the form 

where the index b labels the replicas. In order to find the free 
energy of the system of weights averaged over the disorder 
((1, we again make use of the replica method. But this time 
we introduce replicas for the synaptic weights and allow 
their number k to approach zero, as is c ~ s t o r n a r ~ . ~ ~ " ~  The 
free energy of the weights is given by 

f = lim 
( Vk) )  - 1 

k .  

Here (( ...)) denotes averaging over realizations of the pat- 
terns {[}. The spin variables now carry two replica indices, 
since the index b distinguishes only copies of the system 
with the same J i j .  For the value of the partition function 
averaged over the disorder ( ( zk ) )  we find 

In this formula the replica indices run over the values 
a = 1, .  . . , k (k+  0 )  and b = 1 , .  . . ,n (n = TIT'). Standard cal- 
culations (see, e.g., Ref. 3) lead to the result 
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where 

a a '  bb' 

1 
- - In 2 exp PC rnabuab 

Pkn [ r n a b  1 ab  

is the replica free energy, the variable a = P I N  is the ratio of 
the number of patterns 5.U- to the total number of spins. Ex- 
pression (14) contains three order parameters. The first of 
these is the overlap with the given pattern tl, which we want 
to reconstruct: 

The second is the spin-glass overlap matrix of the various 
thermodynamic states: 

The third is defined by the small (in the thermodynamic 
limit) overlaps with the remaining patterns: 

Here (...) denotes the thermal average for the case of fixed 
weights, [...I denotes the average over realizations of the 
weights for fixed patterns, and (( ...)), as was already noted, is 
the average over the realizations of the patterns. 

In the replica-symmetric approximation 

q:?'=q(a+a'), q z : r = ~ ( b + b t ) ,  

t I  

r:,b = r ( a # a t ) ,  r : k 1 = ~ ( b # b t ) ,  mab=m. 
(18) 

The stability of the solution in the form (18) will be investi- 
gated in Sec. 5. After substituting this ansatz into the expres- 
sion for the free energy (14), the latter takes the form 

Differentiating the free energy, we arrive at equations for the 
order parameters. They simplify after making the replace- 
ment R - r+R and have the form 

where we have introduced the notation 

~ = / ? ( m +  &z+ a x ) ,  

Recall that the parameter n is equal to the ratio of the tem- 
peratures P t I P  

In terms of the spin variables a and patterns 5, the order 
parameters can be written as 

where 

Recall once again that we are using three types of averaging: 
(...) is the thermal average over the "fast" spin variables at 
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temperature T, [...] is the thermal average over the "slow" 
coupling constants at temperature T', and (( ...)) is the aver- 
age over the disorder (6). 

In what follows we will be interested in the case T' < T, 
i.e., n > 1.  In this case the tendency to reach the energy mini- 
mum dominates the effect of thermal noise, and we will see 
from the analysis of Eqs. (20)-(24) that the storage capacity 
grows. 

Below we examine the phase diagram of the system. 
There arise three types of phases: a paramagnetic phase (PM) 
with Q = q = R = r = m  =0 ,  a spin-glass phase (SG) with 
Q # 0, and a phase with memory (FM), in which m # 0. In 
addition, we will study the question of replica symmetry 
breaking (RSB). 

3. LIMITING CASES 

There is a simply way to construct the phase diagram of 
the system in the limiting cases J O + ~  or T+O. The first of 
these corresponds to an infinite number of underlearning 
steps. Integrating over J; in Eq. (12), we find 

((zk))=const C x exp 

If p 2 ~ ; % P ,  then the main contribution to the sum over a in 
Eq. (26) comes from terms with 

i.e., with maximum possible overlap between the replicas 
(ab)  and (ab') .  Taking only these terms into account, we 
obtain 

( (zk))= const 2 x exp p n x  J~~)cT;u; . 
5 nu I j a I 

(28) 

This expression differs from the case of the Hopfield model 
with Hebbian coupling3 only in the replacement of P by n p .  

Now, in the limit J,+m, the phase diagram (Fig. 1) is 
obtained from the phase diagram of the Hopfield model3 by 
stretching it by a factor of n along the temperature axis. In 
particular, the boundary T,(a) of the retrieval region 
(m # 0)  is given by 

where ~:")(a) determines the boundary of the retrieval re- 
gion in the Hopfield model.3 We see that the dimensions of 
the retrieval region increase at all temperatures except T= 0, 
where the storage capacity does not change. In the limiting 
case n-fm, ac(T) coincides at all temperatures with the 
critical value in the Hopfield model; aLH)(~)=O. 145.  The 

RSB 

0.138 
> 
a 

FIG. 1. Phase diagram for J o 4 m .  T ,  is the temperature of the transition to 
the phase with memory. T,, and Ti, are the curves of replica symmetry 
breaking in the spin-glass phase and in the phase with memory. 

phase transition curves in the Hopfield model between the 
paramagnetic and spin-glass states for us correspond to the 
second-order transition curve between the two spin-glass 
phases: with Q = 1 and q = 0 and with Q = 1 and q # 0. [Re- 
call that Q = l  by virtue of Eq. (27).] Its equation has the 
form 

Below this curve replica symmetry is broken, i.e., the matrix 
arb "  elements gab are different for different values of the indices 

a # a ' .  The condition of replica symmetry breaking in the 
phase with memory also follows easily by comparing with 
the Hopfield model. 

If we limit ourselves to the region in which replica sym- 
metry is not broken and we apply ansatz (IS), then formulas 
(29) and (30) can be derived on the basis of Eqs. (20)-(24) 
\for the order parameters. To this end, it is necessary to bear 
in mind that as J o - + m ,  the order parameter R-+m and the 
parameter Q-f 1 .  Next we must integrate over x in expres- 
sions (23) and (24). Then the equations for the order param- 
eters take the same form as in the usual Hopfield but 
with n times lower temperature. We emphasize, however, 
that the approach that we have used is independent of the 
degree of replica symmetry breaking. 

All of the above considerations are also valid, except for 
the limit J o - + w ,  at low temperatures, where we again arrive 
at formula (29). 

The second simple limiting case corresponds to Jo--0. 
Here we return to the Hopfield model with Hebbian weights, 
consistent with the sense of the parameter J o .  

4. PHASE DIAGRAM 

In this section we investigate the phase diagram in the 
replica symmetry approximation (18). The typical form of 
the phase diagram for n < 2 and n > 2 is shown qualitatively 
in Figs. 2(a) and 2(b). 

4.1. Spin-glass region 

1) l < n < 2 .  In order to find the curve of the second- 
order transition from the paramagnetic phase with q, Q, r, R,  
m = 0 to the spin-glass phase with Q, R # 0, we expand ex- 
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FIG. 2. Typical form of the phase diagram: a) for n < 2 ,  b) for n > 2  (for 
large enough J , ) .  TsG is the temperature of the transition to the spin-glass 
state, T ,  is the temperature of the transition to the phase with memory. T, is 
the curve at which the paramagnetic state disappears for n > 2 .  

pressions (20) and (21) near the transition curve in the small 
parameters Q and R. As a result, we find for the transition 
temperature TSG 

For large a the temperature TsG behaves like &. For small 
a 

2) n>2 .  Analysis of the stability of the paramagnetic 
solution with respect to perturbations with m = 0 (the calcu- 
lations are analogous to those in Ref. 3) shows that the para- 
magnetic phase is unstable below the transition curve (31). 
Here the phase transition to the spin-glass state is first-order 
and takes place at a higher temperature than TSG from Eq. 
(31). We will determine this temperature in the limit a+O. In 
this limit ar- iO and ~ R + J ~ Q ,  and Eqs. (22)-(24) for the 
order parameters take the form 
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In these formulas we have introduced the notation 

In the spin-glass region m = 0.  Therefore Eq. (34) transforms 
into the equation for the order parameter in the Sherrington- 
Kirkpatrick model with n # 0 (Refs. 12, 13, and 16) (with /3 
replaced by p J o )  Sherrington shows16 in this model that 
there is a second-order transition for n > 2. Numerical results 
for the temperature TtG(n) of this transition and the corre- 
sponding values Q*(n)  of the order parameter at the transi- 
tion point are presented in Ref. 12. For us, the transition 
temperature TSG = JoT&(n) corresponds to this tempera- 
ture. However, our arguments do not apply for all J o .  Indeed, 
below the transition point, the order parameter is 

At the same time, the expression for the free energy (19) 
makes sense only for 

Conditions (37) and (38) can be fulfilled simultaneously for 
T= TSG only for 

Consequently, the transition from the paramagnetic state to 
the spin-glass state takes place at the temperature 

only for Jo > J,*(n). For smaller J o ,  the equations (34)- 
(36) no longer hold, since a r  is nonzero. In this case it is 
possible to assert that 

In the limit a+m, it is possible to neglect all terms in the 
expression for the free energy (14) that do not contain a. As 
a result, we arrive at the free energy of the Hopfield model 
with Hebbian weights.3 This means that the transition from 
the paramagnetic phase to the spin-glass phase takes place at 
the temperature 

Note that for n =  1 ,  the number of components of the 

order parameters R:~' and Q:~' vanishes for each a .  There- 
fore these parameters drop out of the expression for the free 
energy, and we return to the Hopfield model.13" 
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5. REPLICA SYMMETRY BREAKING 4.2. Phase with memory 

Let us consider two cases: T+O and a+O. The first is 
studied in a way analogous to the case J,-+m. For the tran- 
sition from the spin-glass phase to the phase with memory, 
we obtain 

The ansatz (18) corresponds to Parisi structure in the 
a ' h '  matrices gab and r:?' , which itself corresponds to replica 

symmetry breaking in one step. The stability criterion for 
states with one-step broken replica symmetry was obtained 
in Ref. 17. It can be written in the form 

where ( ~ ~ ( 0 ) - 0 . 1 3 8  and Co=O. 18 are the same constants 
as in the model with Hebbian weights.3 We see that for T =  0 ,  
the storage capacity does not change in comparison with the 
result obtained in Ref. 3. 

In the case a=O, the order parameters are determined by 
Eqs. (34) and (35). The very same equations describe the 
Sherrington-Kirkpatrick model with smeared interactions.'' 
It was shown in Refs. 12 and 16 that for ~ ; < 1 / ( 3 n - 2 ) ,  a 
second-order transition takes place in this model from the 
paramagnetic state to the ferromagnetic ( m  f 0 )  state at a 
temperature 

where the eigenvalues A? and X r  correspond to the four rep- 
lica modes obtained in Ref. 17. We display these eigenvalues 
for our model: 

For J:= 1 / (3n  - 2 )  the order of the transition changes. At 
large J,, the ferromagnetic state appears as a result of a 
second-order transition from the spin-glass phase. The tran- 
sition point can be found by expanding expressions (34) and 
(35) in x. As a result, we find that for n>2, 

for n = 2,  

and for l<n<2,  

where where we have used the notation 

is the beta function. 
Note that for J;< 1 / (3n  - 2 ) ,  the equation of the transi- 

tion to the state with memory, at small a ,  has the same as- 
ymptotic form that it has in the Hopfield model:3 

and 

The expression for TJ, has the form 

The values of the order parameters Q ,  q ,  R ,  r ,  and m in 
formulas (52)-(60) should be taken from the solutions of the 
" replica-symmetric" equations (20)-(24). 

Analysis of Eqs. (51)-(60) shows that for a=O, the 
replica-symmetric solution for the order parameters is stable The calculation of 72, is given in the Appendix. 
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at all temperatures in the phase with memory. Note that the 
conditions of replica symmetry breaking obtained in Sec. 3 
for J;+W can be reproduced with the help of the general 
criterion (51)-(60). 

6. CONCLUSION 

We have examined the phase diagram in the replica- 
symmetric approximation (18) and derived the conditions of 
replica symmetry breaking. We gave special consideration to 
the case J;+m, which corresponds to an infinite number of 
underlearning steps. In this limit, the phase diagram is ob- 
tained from the phase diagram of the Hopfield model by a 
simple rescaling of the temperature axis. We showed that 
underlearning leads to an increase in the storage capacity, as 
one might expect. At the same time, for T=O the storage 
capacity does not change. This can be understood on the 
basis of the following arguments. At T=O, the spin system 
finds itself in one of the energy minima of the Hamiltonian 
(I), and thermal fluctuations are absent. Modification of the 
interactions according to rule (4) means adding a correction 
term to the Hamiltonian, whose minimum is reached in the 
same state in which the system is already found. As a result, 
the spin system will remain in its previous state at each step 
of the algorithm. Therefore nonzero overlap of the spin state 
with any of the patterns {p} cannot arise if it was not there 
before the beginning of underlearning. 

It would be interesting to apply the thermodynamic 
method used here to a study of the unlearning algorithm.42879 
However, in this problem the method should be modified. 
The point here is that in contrast to underlearning, in un- 
learning an increase in the storage capacity is not related to a 
deepening of "ferromagnetic" valleys, but to a destruction of 
the spin-glass states. Therefore in the corrected approach, the 
system should find itself in the spin-glass region during train- 
ing, and in the retrieval region only during retrieval of infor- 
mation. 

The author is grateful to V. S. Dotsenko for formulation 
of the problem and valuable advice, and to E. A. Dorofeev 
for useful discussions. This work was carried out with the 
support of the International Scientific Foundation, Grant No. 
M5R000, and with the support of INTAS, Grant No. 1010- 
CT93-0027. 

APPENDIX 

Here we calculate the temperature for the transition to 
the phase with memory for small a in the region 
J;< 1/(3n - 2).  We expand the free energy (19) out to the 
second-order term in the small parameter 6. As a result we 
obtain 

(61) 

In this formula, in place of the order parameters (18) we have 
introduced the variables 

which are independent of a in the limit a+O, and the defi- 
nition of the parameter R is the same as in formulas (20)- 
(24). The equations for the order parameters (62) take the 
form 

The variables q *, Q *, and r *  can be eliminated from these 
equations. As a result, we obtain 

I = ( r *  +y)J;, 

where 

r * = r + R * ( n - 1 )  

In the retrieval region the order parameter y #O. Our prob- 
lem reduces to finding the maximum temperature at which 
this inequality can still be satisfied. This temperature is given 
by Eq. (48) with r, replaced by the minimum possible value 
of r for which y f 0.  In order to find this extreme value of r, 
we augment system (68)-(70) by the equation 

or equivalently, 

The regions J;+O and J;+ 1/(3n - 2) correspond re- 
spectively to r*+1.95 (Ref. 3) and r*+m. In these limits it 
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is possible to obtain approximate expressions for y from Eq. 
(68). After substituting them in Eq. (69), the combined solu- 
tion of Eqs. (69) and (72) leads to formulas (49)-(50). 
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