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A self-consistent system of equations is derived for conduction electrons interacting with long- 
wavelength optical phonons in polar and nonpolar metals. The damping and 
renormalization of the optical phonon spectrum due to this interaction are found. The long-range 
electric field in a polar crystal is taken into account, and the effects of the Coulomb 
interaction of the carriers are studied. The dispersion relation for surface optical phonons, in 
contrast to acoustic Rayleigh waves, displays two branches. The computed response of the phonon 
system to an arbitrary external field in a semi-infinite anisotropic crystal (metal and 
dielectric) is used to determine the Raman scattering cross section of light accompanied by the 
excitation and absorption of phonons. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

Interest in optical phonons and the electron-phonon in- 
teraction in different structures has recently arisen in connec- 
tion with experiments on Raman scattering, electron spec- 
troscopy, and so on. However, existing phenomenological 
models encounter difficulties, especially when attempts are 
made to take surface effects into account.' Moreover, as a 
rule, the simplest isotropic Frolich model is used for the 
electron-phonon interaction. 

Long-wavelength acoustic phonons in metals are ordi- 
narily described by means of the so-called dynamical theory 
of elasticity (see, for example, Ref. 2). The theory employs 
self-consistent equations (taking into account the electron- 
lattice interaction) of the theory of elasticity for phonons and 
the kinetic equation for electrons. In the present work we 
propose similar equations for optical phonons. 

To derive these equations, we take the long-wavelength 
limit of the microscopic Lagrangian, constructed on the basis 
of a dynamical matrix, and we distinguish among the optical 
degrees of freedom. By varying the action we obtain the 
desired equation for the optical phonons together with the 
boundary condition for the action. The boundary condition 
leads to the existence of surface optical phonons (whose ex- 
istence was discussed previously only in the case of an iso- 
tropic nonpolar dielectric3). 

In Sec. 2 an equation is derived for optical phonons by 
the method indicated above. The effects of electron-phonon, 
electron-impurity, and electron-electron interactions- 
renormalization and damping of optical phonons-are dis- 
cussed in Sec. 3. In Sec. 4 a semi-infinite crystal is studied: 
the spectrum of surface optical phonons is found and the 
response to an external perturbation is calculated. The results 
obtained are used in Sec. 5 to calculate the Raman scattering 
cross section for phonons; Brillouin-Mandel'shtam scatter- 
ing of light in metals accompanied by the excitation of 
acoustic phonons was studied in Ref. 4. 

2. EQUATION OF MOTION FOR OPTICAL PHONONS 
INTERACTING WITH ELECTRONS 

We use the deformation potential to describe the interac- 
tion of the electrons with optical phonons.5 In other words, 
we assume that a relative displacement w f  of the sublattices 
produces a local change in the electron spectrum: 

where eO(p) is the spectrum of the undeformed crystal and 
5"p) are the deformation-potential vectors, whose number s 
is one less than the number of sublattices. In what follows, 
we confine our attention to the case of two sublattices. 

In many cases, the quasiclassical approximation can be 
used to describe the electronic excitations. We shall therefore 
use the distribution function fp(r,t) which satisfies the ki- 
netic equation. 

The complete Lagrangian of the metal, including the in- 
teraction (I), has the form 

Here, LC-,, is the Lagrangian of the electronic excitations in 
an electromagnetic field. The first term is the kinetic energy 
of the relative motion of the sublattices; the second and third 
terms represent the long-wavelength expansion of the dy- 
namical matrix; p is the reduced-mass density; q is the den- 
sity of the effective ionic charge; xik and pi,,, are tensors of 
the elastic constants, whose order of magnitude is 
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where o, is the Debye frequency and s is the speed of 
sound. 

The third term in the Lagrangian (2) is the long- 
wavelength limit of the small dispersion correction, and in 
contrast to the acoustic case, it need not have a definite sign.6 
At the same time, this term is important, since it leads to the 
boundary condition for and the dispersion of optical 
phonons. The one before the last term, representing the in- 
teraction of the dipole moment of the sublattices with the 
electric field, is absent in a nonpolar metal. 

Varying the action corresponding to the Lagrangian (2) 
gives the equation of motion of the sublattices 

with the boundary condition 

where lk is the normal to the surface. The condition (4) re- 
places the condition that the normal stress vanishes, which 
the displacement of the surface satisfies in the theory of elas- 
ticity. 

3. BULK OPTICAL PHONONS 

Boltzmann's equation for the electron distribution func- 
tion 

can be linearized by making the substitution 

The argument of the equilibrium distribution function 
fO(e-pO)  is chosen so that the collision integral itfp(r,t) 
vanishes to zeroth order in Gfp(r,t). We use the relaxation 
time approximation for the collision integral (the possibility 
of neglecting the arrival term in the collision integral is dis- 
cussed in detail in Ref. 7). 

We consider first an infinite crystal, and we expand all 
quantities in Fourier integrals. Equation (5)  then assumes the 
form 

We use Poisson's equation 

where E : ~  is the permittivity of the filled bands, to describe 
the electric field E(r,t)=-grad +(r,t), which contains both 

the Coulomb interaction of the carriers and the field gener- 
ated by the dipole moment of the sublattices. Substituting 
Eqs. (6) and (7), we obtain 

4 n-e 

where 

and the brackets denote integration over the Fermi surface: 

The region of applicability of Poisson's equation for 
three-dimensional problems in metals is quite wide and is 
determined by the condition ck+ o p ,  where op is the 
plasma frequency. It is applicable in dielectrics near the in- 
tersection of the photon and phonon branches of the spec- 
trum o D = ~ k l ~ " 2 .  Generally speaking, Maxwell's equation 
must be used to study surface plasmon-polaritons-this was 
done in Ref. 8 for a nonpolar metal, and the polar case must 
be studied separately. 

An equation determining the spectrum and the damping 
of bulk optical excitations is obtained by substituting Eq. (9) 
into Eq. (7) and then into Eq. (3): 

We consider two cases. 

a) Nonpolar metal: q = O  

In the absence of the electron-phonon interaction 
(&(p)=O), the dispersion relation has the simple form 

and for the isotropic case 

it gives dispersion of the longitudinal and transverse optical 
phonons near threshold: 

where a = pxxxxl p and a ,  = px,,I p.  
The second term on the right-hand side of Eq. (11) rep- 

resents the Coulomb interaction of the electrons. It deter- 
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mines the renormalization of the deformation potential in the 
first term on the right-hand side of Eq. ( 1 1 ) .  For 
v k* 1 w + i 7 -  1, renormalization obviously means making 
the replacement 

The first term on the right-hand side of Eq. (11) de- 
scribes the damping and renormalization of the elastic con- 
stants as a result of the interaction of optical oscillations with 
electrons. This happens differently in the short- and long- 
wavelength limits. 

Over a wide range v k+ I w + i 7 -  ' 1 ,  the real and imagi- 
nary parts of the first term yield a renormalization of the 
Debye frequency 

and the damping T(k)  of the optical phonons 

where v=vklvk. We write the index "dej" to emphasize the 
deformation origin of this damping. Taking damping into ac- 
count, the dispersion of the phonons can be written in the 
form w=w(k) - i r (k ) .  Setting (2:  e F p F ,  we obtain 

In the long-wavelength limit vk+ 1 w + r- ' 1 ,  the dis- 
placement of the threshold frequency and the damping are 

The collisionless limit v k r + l  [see Eq. ( I S ) ]  was stud- 
ied in Ref. 9 by means of the diagrammatic technique. 

In Ref. 10 Brovman and Kagan discussed the renormal- 
ization of the phonon spectra as a result of the interaction 
with electrons. According to their results, the renormalization 
(14) and (17) must be corrected by subtracting its value at 
w=O, which is responsible for the adiabatic nature of the 
electron-phonon system. 

We note that the damping of optical phonons is appre- 
ciably different from that of acoustic phonons. It depends 
strongly on the parameter 07, which is absent from the ex- 
pression for the damping of sound." 

The frequency range w - v k  merits special attention. As 
the frequency o approaches vmaxk, where urnax is the maxi- 
mum value of the projection of the Fermi velocity on the 
direction k, a singularity appears on the right-hand side of 
Eq. ( 1 1 )  for small values of 7'. The Coulomb interaction of 
the electrons (second term) weakens this singularity substan- 
tially. To logarithmic accuracy 

where x = 1 - v ,,,klw> 0 ;  the subscript "0" designates the 
value of t i ( p )  at the point where vk=vmaxk; for x<O the 
term ln(x) must be replaced by l n ( x l + i ~ .  For 
( w , r ) - ' G  1x1 < 1 we obtain for the frequency shift and 
damping 

Here O(x) is the Heaviside unit step function. Therefore, as a 
result of the Coulomb interaction, the optical phonons re- 
main weakly damped excitations even when they fall into the 
range of one-pair electronic excitations. 

b) Polar metal: q # O  

In a polar crystal, besides the effects described in section 
a and deformation effects, additional renormalization and 
damping of optical phonons represented by the last term in 
Eq. ( 1 1 )  can occur. In an isotropic dielectric, this term gives 
the well-known shift of the longitudinal phonon frequency 
w;+ 0: = 0; + 4 7Tq2/p€. 

The situation is different in a metal: the effects associ- 
ated with polarity are negligible compared to the deforma- 
tion effects. 

Calculation shows that for short-wavelengths 
uk% I w + i 7 -  ' 1  and under conditions such that k < p ,  , there 
arises a renormalization of the dispersion parameter 

and a contribution 

to the damping appears. Comparing the expression (20) to 
Eq. (15), we obtain 

r p o r / r d e f 2 : ( k ~ p ~ ) 2 ~ 1 .  

In the long-wavelength limit uk+ I w + i 7-,' I in a metal, 
as in a dielectric, it is not the dispersion parameter that is 
renormalized, but the threshold in the spectrum of optical 
phonons: 

The sign of the expression (21) depends on the value of 07, 

and I Gxpor / 6 X d e f l = ( ~ / v ) 2  m a x ( l , ( w ~ ) - ' ) < l .  In this same 
case the damping is 

Comparing Eqs. (22) and (18), we find rpol 1 rdef 
= ( e F  7 )  - l. Therefore, for electronic excitations in a metal, 
the polar contribution to the damping is always small com- 
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FIG. 1.  Deformation and polar contributions 
to the attenuation of optical phonons: a) 
short wavelengths vk* ( w + i ?-I(; b) long 
wavelengths vk<l w + i ~ - ' ( .  

pared to the deformation contribution. The characteristic de- In the s  equation, the singularity at the surface is given 
pendence of the damping of the optical photons on w, v k ,  by the expression 
and 7' is displayed in Fig. 1. d2wS d2w, 

- Pszsr x- ( ~ s z s z  + ~ s s z r )  2 

4. SURFACE OPTICAL PHONONS 
which leads to the appearance of a surface term that does not 

We now calculate the response of a semi-infinite (z>O) depend on k, : 
crystal to an arbitrary perturbation U(r,w) described by the 
Hamiltonian dw s 

- 2 p  s,,, ( ~ = O + ) + 2 i k s ( ~ s z s z + ~ s s z z ) ~ z ( ~ = O + ) .  

H =  - d3r l ; ) i ~ i ( r , w ) ~ ( r , w )  J (23) 

with some vertex v i .  The term ~ ~ U ( r , w )  must be added to 
the right-hand side of Eq. (3)  in this case. 

To solve the equation of motion so obtained, we con- 
tinue the component of the displacement w s ( s , z , w )  parallel 
to the surface and the field U ( s , z , w )  into the region z<O as 
even functions, and the perpendicular component w,(s , z ,w)  
as an odd function: 

All quantities can then be expanded in spatial Fourier inte- 
grals: 

When the Fourier components in Eq. (3) are calculated, 
singularities arise on the surface z = 0  that are associated 
with derivatives with respect to z .  These singularities result 
in the appearance of additional terms, which represent sur- 
face effects. 

We now assume that the surface of the crystal is a sym- 
metry plane and that the wave of displacements propagates 
along a principal axis. This means that the tensor compo- 
nents with an odd number of z  indices are equal to zero. The 
equation for the displacement component perpendicular to 
the sz  plane is not coupled to the other two. This component 
does not participate in the surface oscillations and will not be 
considered below. 

In the z  equation, the special term 

yields a term linear in k, : 

2ik,pzzzrw,(~ = 0') .  

Therefore, in Fourier components Eq. (3)  has the form 

where there is no summation over Greek indices, and the 
coefficients C,(k , ,w) ,  which are linear combinations of 
dwS(0+)ldz  and w , ( o f ) ,  must be found from the boundary 
condition (4) .  We included the damping in w : w + w +  ir, 
and all renormalizations are included in the elastic moduli. 
As a result, the tensor xik depends on the direction n of the 
vector k. 

The zeros of the determinant of the matrix on the left- 
hand side of Eq. (24) give the spectrum of bulk optical 
waves-in the isotropic case these are longitudinal and trans- 
verse phonons: 

w2=w?+aIk2 ,  w2=w:+a,k2,  

where 

The solution of Eq. (24) has the form 
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where we have introduced the Green's function matrix 
(0, 

Dz(k,w) of a phonon in an infinite crystal. This matrix sat- 
isfies the equation 

We determine the constants Ca(k, , w) from the boundary 
condition (4): 

Ca(ks, w)=Dbs,)(ks ,m)~izlrn 

where D?)(k, ,w) is the "surface" Green's function matrix, 
which satisfies the equation 

Equations (26)-(29) give the solution of the problem 
posed. The first term in Eq. (26) is the response of an infinite 
crystal to the external field U(k,w). The poles of D z ( k o )  
determine the spectrum of the bulk phonons. 

For the isotropic case we find 
W ,  

where 

the wl,, are given by the expressions (25), and the a,,, are 
given by Eq. (13). We took into account the fact that in an 
isotropic crystal the excitation thresholds of longitudinal and 
transverse phonons are different because of the renormaliza- 
tions: wlZ w, . 

The second term in Eq. (26) is the surface contribution. 
The poles of D:k(k,,w) determine the surface optical 
waves-the analog of Rayleigh acoustic waves. 

We now give an expression, which will be required be- 
low, for the tensor 

According to Eq. (32), the spectrum of surface optical 
phonons is determined by the equation 

This equation has the same form as the dispersion relation 
for Rayleigh waves,6 except that here KI and K, are given by 
(31). 

In the special case wl= w, , Eq. (33) yields two branches 
of surface optical phonons [see Fig. 2(a)]: one (dispersion- 
less) 

FIG. 2. Spectrum of surface optical phonons (a,>O, a,>O). a) wl= w, ; b) 
w,Z  w ,  . The dashed lines represent the curves w2 = w:, w2= of +a,k:, and 
w2=w:+a,kt .  

and another (with quadratic dispersion) 

where a, is related to a ,  and a ,  by the same algebraic equa- 
tion as for Rayleigh waves,6 and si is related to s: and s f :  

For any ratio of a l  and a , ,  Eq. (36) has a unique root corre- 
sponding to real values of K,,, , such that la,l4 lull, Iatl. The 
amplitude of the surface oscillations (34) and (35) decreases 
with depth exponentially at distances of the order of the 
wavelength = k, ' . 

For wl# w,, two surface waves also exist. Their spec- 
trum is displayed in Fig. 2b. In the long-wavelength limit 
k:-=Z(w:- w:)/al, the dispersion curves are given by 
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2 2 ata1 
w:(k,) = w, + a,k, - 2 k:. 16(w:-  w , )  

We note that these surface oscillations exist if 
( w l  - w,) /a  l> 0 .  Normal to the surface, the longitudinal 
components of the surface waves decay exponentially at dis- 
tances K [  ' = ( a l / ( w :  - w:))112,  and the transverse compo- 
nents decay over much larger distances K;' = ~ [ ~ ' ~ k , ~ ~ ~  for 
the first component and 4 K ,  /k: for the second component. 

If w l -  w ,  is small compared to the characteristic Debye 
frequencies, then a region where alk:+o:-  w: can exist. 
Here, the dispersion curves reach the values (34) and (35) 
[Fig. 2(b)].  

5. RAMAN SCAlTERlNG 

Raman scattering of light is due both to conduction elec- 
trons and to electrons in filled shells. In a previous paper we 
studied the first contribution, consisting of the electron-hole 
continuum and the phonon peaks resulting from electron- 
phonon intera~tion.~ We use Placzek's phenomenological ap- 
proach to describe the contribution of the electrons in filled 
shells as scattering by permittivity fluctuations (see Ref. 12). 
The polarizability of the atomic shells and the permittivity 
eYk depend on the deformation 

FIG. 3. Diagrammatic representation of the Raman scattering cross section 
of (a) bulk optical phonons and (b) surface optical phonons. The dashed 
lines represent the incident (A( ' ) )  and scattered (A( ' ) )  photons; the dot rep- 
resents the phonon-photon vertex 77,; the wavy line represents the bulk 
phonon Green's function D:; the double wavy line represents the surface 
Green's function DSk. 

Here, the brackets represent statistical averaging; the effec- 
tive external field is ~ ( r , t ) = ~ ( ' ) ( r , t ) ~ ( ~ ) ( r , t ) =  exp(-iwt 
+ ik,s), and the transmitted frequency and wave vector par- 
allel to the surface w = w(')-  w(" and k, = k !)- k:) have 
been introduced. 

To calculate the correlation function (40), we use the 
fluctuation-dissipation theorem: 

eyk= eYk(w). (37) The generalized susceptibility a, ,  defined by the relation 

The effective Hamiltonian that describes the scattering of 
light is obtained from the Hamiltonian of the electric field in 
a crystal in which the dependence of the permittivity on the 
lattice displacements is taken into account. Expanding the 
expression (37) in powers of w i ,  we obtain 

where 

e t ) ,  A(')(r, t)  and el"), A(")(r,t) are the polarization and vec- 
tor potential of the incident and scattered light, respectively. 
It should be noted that these quantities are different in a 
crystal from their values in free space, and they are deter- 
mined by the solution of the electrodynamic boundary value 
problem of the distribution of the incident and scattered 
light.8 

The scattering cross section in the frequency interval 
dm(,) and solid angle interval do($)  of the scattered light has 
the form 

where Kik(k, , z , z l , w )  is the Fourier transform of the corre- 
lation function 

can be found by means of Eqs. (26)-(29): 

The first term in Eq. (41) represents scattering by bulk 
phonons [Fig. 3(a)], and the second term represents scatter- 
ing by surface phonons [Fig. 3(b)].  

We note that the contribution of the conduction electrons 
to Raman scattering7 can be taken into account by adding to 
qi the term 

which is represented by the diagram in Fig. 4. 
The contribution of optical bulk phonons to the cross 

section for an isotropic crystal has the form 

where the proportionality factor [see Eq. (39)] is 
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(w- w,)sgn a + [ ( o -  wt)2+r2]1'2 lI2 
= 1 a ~ ' l 2 (  

(w- w t ) 2 + r 2  1 

FIG. 4. Effective phonon-photon vertex for electron Raman scattering. The 
solid line represents the electron Green's function; the dark triangle repre- 
sents the electron-photon vertex Ap); the open triangle represents the 
electron-phonon vertex [,(p). 

We shall not write it out explicitly below. The factor U(k,w), 
describing the exponential character of the distribution of the 
incident and scattered light, has the form8 

where C1 + iL2 is the sum of the normal components of the 
wave vectors of the incident and scattered radiation in the 
crystal. The quantity 5, is determined by the attenuation of 
the light in the medium (by the imaginary part of the refrac- 
tive index). For normal incidence and scattering, Eq. (43) 
gives 

The denominator in Eq. (45) has a minimum of width 
A k, at k, = k,,, : 

where the damping r is given by (15) and (18) when the 
scattering is due to a metallic sample. We now consider two 
limiting cases in the typical situation 51S==52. 

a) Strong attenuation, Ak,+ c2. Then, only I uI2,  taking 
the denominator at k,= 5, , need be integrated: 

The expression (47) has the form of a peak, describing the 
excitation of a transverse phonon with frequency 
~ = ( w ? + a ~ [ : ) ' / ~  and momentum k , = l l .  

b) Weak attenuation, Ak,G 12 .  Integrating only the de- 
nominator and taking I uI2 at k,= k,,, , we obtain 

The expression (48) has the form of a split peak. One 
maximum is located at the threshold w= w,, and the other is 
located at w = w,,(ks = 0,k,= 5,), and is given by energy 
and momentum conservation. These maxima are resolved in 
frequency: the interval between them is =at5:/2wt, while 
their width is -at5, L2/2wt. 

For oblique propagation of light (ks# O ) ,  together with 
excitation of a transverse phonon (47) and (48), there exists a 
peak that corresponds to the excitation of a longitudinal op- 
tical phonon. It can be analyzed similarly. It is described by 
formulas similar to Eqs. (47) and (48). We give the relative 
magnitude of the corresponding cross sections: 

In the general case, the heights of all peaks are of the same 
order of magnitude. 

The second term in Eq. (41) represents the contribution 
of surface phonons to the Raman scattering cross section. 
Substituting into Eq. (39), we obtain 

where 

and the Green's function matrices Dz(k,w) and Dfk(ks,w) 
are given in the isotropic case by Eqs. (30) and (32). 

In the range w2<wtt+a,,,k:, both KI and K, are real. 
This means that both the transverse and longitudinal oscilla- 
tions decay away from the surface. According to Eq. (32), an 
imaginary part in Eq. (49) appears near the poles correspond- 
ing to the excitation of surface optical phonons. The corre- 
sponding peak is Lorentzian: 

In the range w;+ atk:< w2< w:+ alkL K ,  becomes 
imaginary-transverse phonons can propagate throughout 
the crystal. Once again, longitudinal phonons decay away 
from the surface. The contribution of these quasisurface ex- 
citations has the form of a narrow continuum arising in a 
square-root fashion near the threshold K~ = 0 :  

where 
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In the case o:+a lk :<  w2 ,  both K I  and K ,  are imaginary: 
both longitudinal and transverse phonons propagate through- 
out. In this case the cross section has a peak associated with 
the excitation of longitudinal phonons sliding along the sur- 
face. This peak is asymmetric: 

S o  sgn a l + ( S o 2 + r 2  

X (  6 d + r 2  

where S o =  w -  (w:+  ~ ~ k : ) ' ' ~  

6. CONCLUSIONS 

In the present paper we examined in detail optical 
phonons in metals and dielectrics. The attenuation of these 
phonons is substantially different from that of acoustic 
phonons. It was found that surface optical phonons with 
characteristic frequencies -1 THz exist. In contrast to the 
well-known surface Rayleigh waves, there exist two 
branches of such oscillations, which are described by a non- 
linear dispersion law. These excitations, like bulk optical 
phonons, can be observed in experiments on Raman scatter- 
ing of light. The width of the peaks associated with the ex- 
citation of surface oscillations is always less than the width 
of volume peaks, since it is determined exclusively by their 
characteristic attenuation. The decay constant of the incident 
electromagnetic field also contributes to the width of the bulk 
peaks. 

It is well known that besides these excitations, there also 
exist surface plasmon-polaritons. These excitations must be 
analyzed separately. 
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