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The spectrum of optical excitations of a system of atoms that are resonantly coupled by 
dipole-dipole interactions can exhibit collective states whose coherence extends over some finite 
region. The subject of this paper is how the formation of these states is affected by 
finiteness of the size of this coherence region. To treat this problem, a distribution function is 
constructed for the collective dipole moments as a function of the size of the coherence 
region. It is shown that when light is scattered by such a medium, the time decay of the intensity 
of retarded luminescence has a universal character that is sensitive only to the dimensionality 
of the space of dipole moments. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The case in which the amplitude of coherent excitation 
transport between impurity centers falls off according to a 
1/R3 law (or l /Rd  in the general case of a d-dimensional 
space) plays a special role in the general problem of 
localization.' In a disordered system, more rapid falloff than 
this gives rise to localization; conversely, a slower falloff 
gives rise to delocalization (see, e.g., Ref. 2). In Ref. 3, Levi- 
tov presented a proof that a l / R 3  law corresponds to weak 
delocalization, leading to anomalous diffusion. 

In this case, excitation transport over large distances in- 
volves the participation of collective states formed by a large 
number of coherently coupled centers. This is a direct con- 
sequence of the increase in the volume and number of cen- 
ters, which is proportional to Rd and therefore compensates 
the falloff in the transport amplitude. In the general case, the 
clusters that form should possess different dipole moments. 
This leads to a change in the optical properties of the system, 
which occasionally can be quite radical in character. In this 
case all the correlation properties are sensitive to the distri- 
bution function of the emergent collective dipole moments. 
Levitov found the limiting distribution function for an infi- 
nite system, assuming only that coherent coupling is main- 
tained at infinite distances; in fact, coherent exchange is in 
general limited by inelastic processes (e.g., due to interaction 
with phonons, see Ref. 4, or because of radiative decay of the 
excited states), and by the finite dimensions of the system. 

The fundamental task of this paper is to find the distri- 
bution function of dipole moments of the collective states as 
a function of the size of the coherence region R,. Let us 
consider a system of identical atoms randomly distributed in 
a medium, each with an isolated resonance level correspond- 
ing to a dipole transition from the ground state. The transport 
of an excitation from one atom to another takes place due to 
dipole-dipole interactions, and the transition amplitude has a 
typical dependence for this interaction, f ,,m 1 1 ~ : ~ .  

As we will see below, the portion of the distribution that 
is most sensitive to the size of the coherence volume turns 
out to be that portion associated with small dipole moments; 
this is natural from a physical point of view. As a rule, it is 
this region that dictates the peculiarities in the temporal be- 

havior of the intensity of the light scattering for a random 
medium of this kind. The resulting distribution function al- 
lows us to solve the problem of retarded luminescence in 
such a medium. The analysis presented in this paper demon- 
strates the existence of a slow component of the emission, 
whose intensity falls off asymptotically according to a spe- 
cific power law. 

2. DISTRIBUTION OF COLLECTIVE DIPOLE MOMENTS IN A 
FINITE COHERENT REGION 

Let us consider a medium with randomly distributed 
resonant centers whose excitation energy is distributed over a 
certain interval with a density function g ( c )  normalized to 1. 
Let all the centers have the same absolute value of the dipole 
moment d o ,  and be distributed with spatial density n.  We 
will assume that 

The parameter x determines the probability of finding a 
resonant partner for an up-down dipole-dipoic .La~isition at 
the average separation (the energy difference for the resonant 
states is at most of the same order as their effective 
coupling f 12). Since the dipole interaction falls off according 
to l /Rd,  where d is the dimension of the space, this prob- 
ability increases as the size of the region increases: 

w(R)-,y ~ ~ ( R I R ) .  (2) 

This implies that the probability will be close to 1 when the 
size of the region reaches 

Choosing a volume of size R ,  , 

we can state that the probability of simultaneously finding 
two or more (n)  resonance partners is small, namely w2(R) 
[or wn(R)]. This enables us to treat only the pairwise forma- 
tion of resonance configurations. If we successively add lay- 
ers of thickness R , ,  then at each step the argument that the 
coupling is painvise remains entirely correct, although the 
objects that enter into the resonance coupling may even be 
clusters (in which case the coupling will involve one of the 
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states in the cluster; it is not difficult to see that the statistical 
distance between energies of the states in the cluster is large 
compared to the energy of the new coupling). 

The pairwise character of the interaction leads to impor- 
tant consequences. 

Each stage of the coherent interaction of two states leads 
to two new states. This implies that the overall number of 
states per unit volume remains equal to the number of origi- 
nal resonance centers n. On the other hand, the discrete char- 
acter of the transformation of the states, and along with it the 
transition dipole moments 

preserves the sum of squares of the dipole moments of the 
system. Referenced to a single state, it remains equal to di .  
The mixing angle of the states cp in (5) is given by 

By representing the interaction in pairwise form, ~ e v i t o v ~  
was able to formulate a renormalization-group equation with 
a transparent structure for the distribution function of collec- 
tive dipole moments P(d,R),  which describes the evolution 
of this function as the interaction V is turned on with increas- 
ingly more distant states. This equation can be written in the 
form 

where 

In principle, the distribution function P depends on en- 
ergy. However, under condition (1) only states with nearby 
energies can interact effectively, i.e., states for which the 
energy difference is small compared to g-'(E). The energy 
density function itself remains essentially constant. There- 
fore, all quantities in (8) are defined at the same energy, 
which dictates the value of the parameter x in (1). 

We are interested in "nonstationary" solutions to Eq. (8) 
for finite values of [. The structure of the kernel of the inte- 
gral equation, which contains the product d ld2 ,  is respon- 
sible for a peculiarity in the behavior of the function P(d,[) 
when d e d , .  Actually, as d+O, the outgoing term tends to 
zero, whereas the incoming term remains finite. This type of 
nonequilibrium is maintained until the accumulation of small 
dipole moments leads to a dependence P(d ,a - l ld .  The 
smaller d is, the larger the distances [ that must be included 
in order to form states with small dipole moments. The fi- 
niteness of the coherent region freezes the distribution for 

small d in its nonequilibrium form. As .$+ +m, the "equilib- 
rium" distribution function, taking into account that the sum 
of the squares of the dipole moments is conserved in any 
resonant restructuring of the states, has the form3 

This result is exact if the dipole moments are oriented 
only along one direction (e.g., due to anisotropy of the crys- 
tal field), and the factor (9) has the fixed value 
F =  4/3312=0.75. In the general case, F varies weakly3 over 
the range 0.65 to 0.75; replacing it by a certain average 
value, we once again obtain relation (11). Direct numerical 
calculations show that as d-0, the solution approaches a 
value very close to (11) when the functional dependence (9) 
is preserved. 

The coefficients a and b in (11) are found directly from 
the normalization condition 

(12) 

and the conservation of the mean square of the dipole mo- 
ment 

1 d@(d,()d2=d:. (13) 

Equation (8) automatically ensures that these conditions are 
satisfied for arbitrary 6. 

Let us turn to the solution of Eq. (8) in the region d+do .  
We will verify below that in this case angles cp that are small 
compared with unity are important. As follows from ( 9 ,  here 
one of the two interacting states must possess a small dipole 
moment (for definiteness we choose dl), while the other can 
have a relatively arbitrary value do.  We use the symmetry of 
the expression under the integral sign in (8) with respect to 
the interchange dli+d2, and replace F by a certain average 
value F to simplify the analysis. If we include F in the 
definition of X ,  then Eq. (8) can be converted to the form (see 
Ref. 5): 

Further simplifications can be made by introducing a new 
variable 4=d2(p/2 and using Eq. (13): 

~ [ l d - n ~ 4 l P ( d - n ~ + , S ) - d P ( d ~ S ) l .  

(15) 

Here f l=47~ when the dimensionality of the dipole moment 
space n = 3 ;  a=27r  for n = 2 ;  and in the case n = l , a = 2 ,  
we replace the integral over dn2 with a sum over the two 
directions of the dipole moment. 

Equation (15), which is now linear, has a particular so- 
lution with variables separable. This solution can be written 
in the form 
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where a and /? are related by 

In Eq. (17) we have introduced the new variable 

The even function under the integral sign ensures that there 
is no singularity at y = 0 in (17). By going into the complex 
plane and treating the integral as a principal value, we find 
for the case n = 1 

For n = 3 ,  carrying out first the integration over dn,, we 
obtain 

It is not difficult to verify directly that even for x e 1 ,  the 
distribution P(d,[) will be close to uniform. Therefore, in 
treating the problem for x P 1 ,  for simplicity we can choose 
as our initial condition P(d,[)=Po. Then the solution to Eq. 
(17) can be written in the form 

where the integral is taken along a contour in the complex 
domain that includes the coordinate origin (la1<2). We em- 
phasize that this is the solution to the general Eq. (8) when 
d e d , .  

As we will verify below, regions where the value of d is 
sufficiently small correspond to the inequality a*l. In this 
case 

By substituting this relation into (21) and making the change 
of variables 

we can transform Eq. (21) to the form 

P(d,b) = f (dz12 .rriz)exp{v(z+ llz)}. (24) 

Here 

q[2 ln(do l d ) ~ [ ] ' / ~ .  (25) 

Choosing the contour of integration in (23) to correspond to 
the unit circle z=eiB, we find 

where I. is the Bessel function of imaginary argument. 
Keeping in mind that ~ $ 1 ,  and using the well-known as- 
ymptotic form of the Bessel function, we are led to the fol- 
lowing final expression for the distribution function: 

~ ( d , t )  = ( p o  127r112q112)e2'7. (27) 

The condition lal<l, which we used in deriving (26), corre- 
sponds to the inequality 

which in turn corresponds to the region of small dipole mo- 
ments whose upper limit decreases as [ increases. In this 
region, the distribution of dipole moments differs radically 
from the distribution (22). The increase in the distribution 
function with decreasing d reflects the fact mentioned above 
that for d e d ,  the outgoing probability is -d, whereas the 
incoming probability does not depend on d. Let us now 
verify the assumption that the effective values of the mixing 
angle cp are small. 

In calculating /?(a) from (17) we find that the integral 
builds up for y > 1,  ln(y)=l/a for small a .  From the defini- 
tion (23) it follows that on the contour Izl= 1 chosen to 
calculate the integral in (24), 

Returning to the definition (18) and keeping in mind that 
d 2  -do, we find 

Since d e d o  and ~ $ 1 ,  from this it quickly follows that cpel. 
At the limit of applicability, where ln(dldo)=4x[, the 

solution (22) approaches the "equilibrium" value P- l l d .  It 
is natural to assume that the transition to the equilibrium 
distribution is realized in the limit opposite to (27). In order 
to make the discussion as transparent as possible, let us in- 
vestigate the case n = 1 in detail. 

Let us use Eq. (19), and rewrite the solution (21) in the 
form 

+tx.rr(l-a)tg[.rr(l -a)/2]).  (29) 

We will choose the contour of integration corresponding to 
the unit circle cu=el$, and compute the integral in the limit 
[ x ~ l n ( d 0 l d ) 9  1 .  Direct analysis shows that the real part of 
the exponent in (29) is negative over the entire contour and 
has a minimum for $=0. The extremum lies in the region 
where $41. In this limit, the exponent equals 

- [x(.rr2/2)$2- i$ ln(do Id). 

Calculating the integral in (29), we find 

~ ( d , [ ) = ~ o ( d O  l d ) ( 1 1 ~ ~ ' ~ ) ( 2 ~ [ ) - ' / ~  

X exp[- ln2(do ld)/2.rr2X[]. (30) 

Since lal=l,  the characteristic values of y in the integral (17) 
are of order 1. Therefore, the characteristic values of the 
mixing angle cp [see (18)] are 

cp=ydldoQ 1,  

and the original assumption of smallness of cp remains cor- 
rect. 

If we put the factor dold back into the exponential, its 
exponent takes the form 

ln(d,ld)[l - ln(do l d ) / 2 ~ r ~ ~ [ ] .  
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From this it is clear that the transition to equilibrium behav- 
ior P m l l d  is characterized by the parameter ln(dold)l 
2x5. The transition is actually complete for d + d o  

Xexp(-r a). 
Thus, strictly speaking, the l l d  law is found to be vio- 

lated for the range of dipole moments 

This range has two intervals separated by a value d ,  , given 
by 

d *  = do, - 4 ~ 5 .  (32) 

For d < d ,  the distribution of dipole moments is deter- 
mined by Eqs. (27) and (25), while for d,  < d < d l  it is de- 
termined by Eq. (30). It is not difficult to write down an 
interpolation expression that encompasses both intervals: 

~ ( d , ( )  = ~ ~ ( 1 / 2 . r r " ~ ) ( 2 ~ ( ) - ~ / ~ [ 1 +  ln(dold)/2X(]-1/4 

(the limiting expressions can be distinguished from those 
found above by the replacement of 2 1 4  by 2). 

For d > d l  the distribution function has the equilibrium 
structure (11). When the spaces of the dipole moments are 
three-dimensional or two-dimensional, the small-d phase 
volume in Eqs. (12) and (13) causes the normalization to be 
essentially determined by the region d - do.  Therefore, the 
coefficients in "a" and "b" in (11) are close to their values 
for the case of complete equilibrium: 

For n =  1 the situation turns out to be more complicated, 
since the equilibrium distribution function predetermines that 
the normalization interval (12) will diverge logarithmically 
at its lower limit. Because of this divergence, it is necessary 
to treat the system as one with a coherence region of finite 
size 5, from the outset; that size, in particular, is associated 
with the finite geometric dimensions (there is no problem 
with this in the integral (13), which, as before, is determined 
by the region of large d). 

The normalization integral for the distribution function 
(27) gives a contribution - ( ~ , ~ ) e x p ( - 4 ( ~ ~ )  on the interval 
(0, d,). This contribution is small compared to 1. We must 
keep in mind that the region where the solution (30) is cor- 
rect overlaps the equilibrium region. Therefore, the coeffi- 
cient "a " must be equal to 

a ~ ( l / ( 2 ~ ) 3 1 2 ) ( l l ( x t ~ ) 1 ' 2 ) ,  (35) 

since 2P,d0=1. Estimating the contribution of the interval 
(O,do) to the integral (13), we see that it is of order a d i e d i .  
The main contribution comes from the region (do,+w); ac- 
cordingly, we have 

a b = d i .  

From this 

Thus, for n = 1,  in addition to the peculiarities in the behav- 
ior for small d,  a quasi-equilibrium blurring of the distribu- 
tion function appears in the direction of dipole moments that 
are large compared with do when x t L %  1. 

Let us make one remark here. As a direct analysis of Eq. 
(8) for n = 1 shows, when 

the "incoming" term becomes important due to pairwise in- 
teractions between states with large dipole moments. In other 
words, the assumption that small angles cp play a decisive 
role in (8) is violated. This in no way changes the results 
given above, since the distribution reaches its equilibrium 
value even for d > d ,  . For n = 3, the small-angle approxima- 
tion breaks down, in fact, for d > d ,  . Therefore, in order to 
describe the transitional region, we must find the solution to 
the general Eq. (8). 

3. RETARDED LUMINESCENCE 

The time dependence of secondary emission that accom- 
panies light scattering by a medium with randomly distrib- 
uted resonant centers depends on the distribution of dipole 
moments of the collective states. Assume that a light pulse is 
incident on such a medium with a frequency distribution 
@(w) for the field. Let us consider a medium with a high 
density of centers, i.e., that satisfies the condition 

In this case, an excited state that is delocalized due to the 
resonant dipole-dipole interaction possesses a set of dipole 
moments with the distribution found in the previous section. 
If we consider single scattering only, we have a natural 
bound on the thickness of the medium L <I,  where 1 is the 
mean free path of the photons. The scatter of resonance lev- 
els r in the absence of foreign defects is given by T-ndi. If 
the frequency distribution of the incident pulse lies in this 
interval, then the mean free path will turn out to be of the 
same order as the wavelength A. As we detune from reso- 
nance, the mean free path can become considerably longer; 
however, in this case it is necessary to include spatial phase 
in the coherent part of the scattering. Let us consider the case 
L s h ,  and then discuss a straightforward generalization to 
the case L - 1% A.  We will assume that in all cases xtL S 1 
while x<1. 

Up to an unimportant coefficient, the time dependence of 
the intensity of the scattered component can be written in the 
form 

Here a labels a collective state with characteristic frequency 
w, and dipole moment d,, y,=(2/3)dio; is the radiative 
width of the state a. 

Let the incident radiation have a Lorentzian distribution 
with center w, and width y, . Then by calculating the inte- 
gral in (38) we find 
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Substituting this expression into (38), we can determine 
the individual incoherent I , ,  (diagonal in mode index) and 
coherent I ,  components of the scattered radiation. We will 
assume that 

Ya+Y*. (40) 

Let us first consider the incoherent radiation, keeping only 
the component that decays slowly with time: 

For x&%1 the sum over a reduces in fact to an integration 
over the distribution of levels g ( s )  and to an independent 
average over the dipole moments. If the scatter is determined 
only by the dipole-dipole interaction, then its characteristic 
width is dictated by the quantity I'--ndi, and the distribution 
is Lorentzian in character. Let us keep the assumption of this 
character for the distribution in the general case. We will deal 
with the two cases y,-@ and y,%T. 

In the first case we have 

In the second case, 

In considering the coherent component, the average must 
be carried out over amplitudes (39). In this case we immedi- 
ately discover that deexcitation in the coherent channel takes 
place rapidly with the characteristic time 11T or lly,. Since 
both of these quantities are independent of d,  we can use Eq. 
(13). Then, once more examining the two cases, we have 
finally 

Comparing these expressions with (42) and (43), we see that 
coherent deexcitation takes place much faster than incoher- 
ent deexcitation. Nevertheless, the integrals over time turn 
out to have the same order of magnitude for both compo- 
nents. 

Thus, the retarded emission at times large compared to 
TO= 112 yo is associated entirely with incoherent scattering. As 
t increases, smaller and smaller values of the collective di- 
pole moments are found to be responsible for secondary 
emission. 

For t >  ~ , ( d , l d , ) ~  [see (32)] the integral in (42) and (43) 
builds up at dipole moments whose distribution is deter- 
mined by Eqs. (27) and (25). 

The asymptotic time dependence of the intensity in this 
case has a power-law structure of the form 

where q, as before, is determined by the dimension of the 
dipole moment space. 

For intermediate times 

the characteristic dipole moments in (42) and (43) corre- 
spond to the distribution P(d,tL)mlld, and accordingly, 

Thus, there is a change in the asymptotic time behavior, 
which is more marked the smaller the dimensionality. 

At significant offsets from resonance (i.e., Iw*-wol 
large), or for r + n d  i ,  the mean free path increases com- 
pared to A; moreover, the extent L of the medium may be 
enlarged. In this case we can retain all the results for the 
incoherent component of the scattering. In calculating the 
coherent part it is now necessary to take into account the 
phase factor exp[i(k-kr)ra] in the scattering amplitude. 
From this it follows that the coherent scattering will be con- 
centrated over a narrow range of angles near the forward 
direction. In this case the extent of this concentration is a 
function of the total particle number; however, the statement 
regarding the relation between the intensities of coherent and 
incoherent remains unchanged. 

Another example of retarded luminescence relates to 
pulsed excitation involving a third level. Decomposing the 
local state ( i )  that appears in terms of the collective modes 
according to ti) = Cacial a), we have for the probability that 
the excitation will not relax before time t 
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Let us average over the position of the excited center and 
determine the intensity of the emission, taking the derivative 
of W(t) with respect to time. Assuming that the size of the 
system does not exceed the mean free path of the photon, we 
find 

For t >  ~,,(d,,ld,)~ the intensity will be determined by Eq. 
(46), in which we make the following replacement of expo- 
nents: 

for the intermediate asymptotic form (47) we use an expres- 
sion of the form (48) with the replacement 

4. CONCLUDING REMARKS 

The results given here indicate that when the density of 
resonant scatterers is large (nit391), a universal distribution 
of collective dipole moments is formed. This distribution, 
and the optical properties of the medium determined by it, 
depends only on the spectral density of scatterers (through 
the parameter x), the effective dimensionality of the space of 
dipole moments, and the size of the coherent region. This 
universality is absent when the density of scatterers is small, 
i.e., when nit3e1. In this case, the light is actually scattered 
independently by isolated centers, and the optical properties 
of the medium are determined by the original parameters of 
the scatterers. 

The role of universality is strongly evident in the ex- 
ample discussed here, i.e., the temporal behavior of the re- 

tarded luminescence. In fact, for scattering in a disordered 
material the power-law decrease in the retarded lumines- 
cence with time turns out to be sensitive only to the dimen- 
sionality of the dipole moment space. 

The power-law nature of the time dependence of re- 
tarded luminescence was observed in experiments by Wa- 
tanabe et ul.' and Sturge et ul.' 

Note one important circumstance. When the space of 
dipole moments is one-dimensional, the spectrum of relax- 
ation times ( 1 / r = a d 2 )  of the collective states becomes 
logarithmic: 

P ( T ) N  d ( d ) / d s ( r -  l /[od2]) = 1/21. (50) 

It is well known that the presence of a logarithmic spectrum 
of relaxation times is a sufficient condition to explain phe- 
nomena such as llf noise. Since interactions between defect 
centers (for example, mediated by a strain field) in a medium 
are, as a rule, subject to a 1 / ~ ~  law, we cannot dismiss the 
possibility that this result could be nonrandom. 
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