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The kinetics of a first-order phase transformation are investigated using a unified mathematical 
approach based on the generalized Ginzburg-Landau model with a nonlocal 
thermodynamic potential. It is shown that since the formation of nuclei includes processes that 
prevent their appearance and growth in other regions in space, it should result in 
autostabilization of an intermediate mixed state. Various mechanisms for the formation of an 
effective long-range interaction in such systems are analyzed. The universality of the kinetic 
phenomena in first-order phase transitions, which is due to the self-consistent character of 
the blocking of the phase-separation process and is manifested by the establishment of universal 
relations between the effective parameters of the system, is pointed out for the first 
time. O 1995 American Institute of Physics. 

1. INTRODUCTION 

It is well known that phase transformations in real physi- 
cal systems are generally accompanied by the appearance of 
nonuniform long-range fields (elastic, dipole, etc.), which 
play a significant role in the kinetics of the phase transition. 
Consideration of the nonlocal interactions is crucial in the 
study of nucleation, which is a central question in the inves- 
tigation of the kinetics of first-order phase transitions. The 
displacement of the temperature for the beginning of nucle- 
ation in solids by a finite amount from the phase-equilibrium 
temperature T , ,  as well as the associated unavoidable ther- 
modynamic hysteresis1 and complete strictional blocking of 
the two-phase state: which have been known for a long 
time, stimulated numerous investigations of the influence of 
long-range elastic fields on the nucleation process (see, for 
example, Refs. 3-8). 

For the most part, the preceding theoretical studies 
started out with traditional models of a critical nucleus 
viewed as a quasihomogeneous spherical region of a new 
phase separated from the matrix by a negligibly thin bound- 
ary layer, with which a certain surface energy density a is 
associated.9p10 These models are valid in the early stages of 
evolution of the domains of the new phase. The evolution of 
arbitrary fluctuations of the order-parameter field and nucle- 
ation in a metastable medium were investigated in the con- 
text of a phenomenological theory in our recent 
and it was established that even in a system with isotropic 
symmetry, the critical configuration of the order-parameter 
fluctuations is not spherical and exhibits a tendency to form 
density folds, near which expanding spherical nuclei subse- 
quently form in the post-critical stage of evolution of the 
system. 

Numerical experiments and an analytic investigation of 
the kinetics of first-order phase transitions were performed 
on the basis of a generalized Ginzburg-Landau equation for 
the order-parameter field cp(r,t) in physical systems de- 
scribed by the Ginzburg-Landau functional with the general 
structure 

where V ( r - r ' )  characterizes the spatial dispersion of the 
interaction in the system and F(cp(r))  is the local energy 
density, which has at least two minima as a function of cp, 
making it possible to describe the behavior of the system in 
the region of metastability. 

The appearance of effective long-range nonuniform 
fields during first-order phase transitions causes the true 
physical picture of the kinetic processes to be richer than that 
described in the papers cited above. We shall demonstrate 
below that the long-range effects in the kinetics of a phase 
transformation can be included in a natural manner in a uni- 
fied scheme for describing the evolution of a system toward 
equilibrium based on an evolution equation for an order pa- 
rameter of the Ginzburg-Landau type, but with a "nonlocal 
energy density" F(cp). The physical mechanism of nonlocal- 
ity is generally based on the interaction of a field that is 
ordered during a first-order phase transition with other fields. 

Besides the traditionally investigated long-range elastic 
and dipole fields, the temperature and concentration of a sub- 
stance in a new phase (local concentration) can serve as the 
"interacting" component of the system. Strictly speaking, 
the "basic" kinetic equation for the field variable cp(r,t) de- 
scribing the ordering is supplemented by quasilinear para- 
bolic equations for the components of the system that inter- 
act with the field of cp  in this case. 

The term containing the order parameter rp in the equa- 
tion for the "interacting" component of the system acts as a 
nonlinear distributed source. Sometimes (as in the presence 
of striction effects, which manage to rapidly adjust to 
changes in the order parameter) a nonlocal source can be 
transferred directly into the evolution equation for the field 
variable cp(r,t),  which is then sufficient for describing the 
establishment of equilibrium in the system. 

The equilibrium state of a system for assigned values of 
the external parameters can be either a homogeneous state 
corresponding to the minimum of the original local energy of 
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the order-parameter field or a highly inhomogeneous state 
representing a superposition of the original metastable state 
and easily identifiable separate domains of a new phase. We 
discovered that regardless of their physical nature, systems 
which undergo a phase transformation with an effective non- 
local potential exhibit a universal type of behavior as they 
approach the (homogeneous or inhomogeneous) equilibrium 
state, which is akin to the universality of the critical phenom- 
ena accompanying second-order phase transitions. As before, 
the beginning of the nucleation process corresponds to the 
scenario described in Refs. 12 and 13. 

In the following sections of this paper we thoroughly 
discuss the nature of the universality of the behavior of sys- 
tems in the region of metastability on the basis of an analysis 
of the corresponding kinetic equations. The reduced system 
of kinetic equations which we constructed for the order pa- 
rameter and the interacting component of the system makes 
it possible to investigate the overall scenario of the behavior 
of a system during a first-order phase transition observed in 
numerical experiments. Before proceeding to a detailed 
analysis of the mathematical models corresponding to spe- 
cific realizations of long-range effects in the kinetics of first- 
order phase transitions, we show that an expansion of the 
free-energy density functional of an arbitrary system must 
contain several terms, whose roles may be significant or not, 
depending on the physical nature of the system under inves- 
tigation. The appearance of nonlinear long-range interactions 
which prevent nucleation as a system passes from a meta- 
stable state to an equilibrium state is a manifestation of an 
effect just as common as the Le Chitelier principle in the 
linear thermodynamics of irreversible processes. 

2. INITIAL MODEL AND MECHANISM FOR REALIZATION OF 
LONG-RANGE NONLINEAR INTERACTIONS IN THE 
KINETICS OF A FIRST-ORDER PHASE TRANSITION 

The classical Ginzburg-Landau model used in nucle- 
ation theory is based on the use of a free-energy functional in 
the form 

d d r [ 3 ~ r ) ' + ~ ( c p ) l *  (2.1) 

where cp is the fluctuating order parameter, d is the dimen- 
sionality of the space, and, in addition, it is assumed (gener- 
ally without special reservations) that the leading nonlineari- 
ties with respect to cp are contained only in the local energy 
density F(cp), which, in the general case, is an arbitrary 
function of the order parameter and is invariant with respect 
to the symmetry group of the paraphase of the system under 
investigation. Bearing in mind the ensuing comparison with 
the results of the previous papers,'2"3 we shall restrict our- 
selves below to a scalar order parameter and, accordingly, to 
two types of expansions of the local part of the free energy:') 

a) F ( c p ) = ~ ~ ~ ~ - - $ a c p ~ + ~ b c p ~ ,  (2.2) 

The relaxation of the order-parameter field in the pres- 
ence of the fluctuational noise f(r,t) ,  such that 

(f(r,t))=O, (f(r,t)f(r ' , t l))= S(r-rl)S(t- t') 
(2.4) 

can be described satisfactorily by the equation 

where y is a positive kinetic coefficient (henceforth y= 1 ), 
cp(r,t) is the time-dependent order-parameter field, and cp, is 
its derivative with respect to time. Since the well-known 
work of Landau and ~halatnikov," various versions of this 
equation have been successfully utilized to investigate the 
appearance and growth of localized nonlinear excitations in 
systems near a phase-transition point, as well as the motion 
of the front of a first-order phase transition (see, for example, 
16-20). The Ginzburg-Landau functional in the form (2.1) 
can be regarded as the first terms of a series expansion of the 
nonequilibrium thermodynamic potential *cp(r,t)) in the 
small derivatives of the ordered field cp(r). The same func- 
tional can be obtained with certain approximations on the 
basis of the microscopic Hamiltonian of the system?' In a 
somewhat more general case the functionals thus obtained 
with a very simple quadratic interaction of the density- 
density type have the form 

We note that by the nature of the functional (2.6), the local 
part of the kernel V(r- r') is already taken into account in 
the second, local term $ddrF(cp). This is equivalent to the 
substitution V(r- rl)-+ V(r- r ')  - V(0) S(r- r'). The cor- 
responding kinetic equation for the order parameter is linear 
with respect to the nonlocal part: 

st= - ddr'v(r-rl)cp(r') -dF(cp)ldcp+ f(r,t). 

(2.7) 

The term $ddr'v(r- rl)cp(r') in this equation describes the 
change in cp(r) from one point in space to another?) In the 
case of a simple (for example, monotonic) dependence of 
V(r-r') on the distance, the first term in (2.6) can be ex- 
panded in powers of the gradients of cp to obtain the simple 
model (2.1) and a uniform distribution of the order parameter 
in the ordered phase. If the spatial dispersion of V(r- r') is 
complex enough, such an expansion is impossible, and the 
ordered state contains some density waves of the field of 
cp. It can, however, be verified that in both cases the quali- 
tative pictures of the nucleation process are practically iden- 
tical and correspond completely to a scenario including the 
appearance of nuclei from low-dimensional density folds: the 
formation of "filamentary structures" and isotropization of 
separate domains of the new phase followed by their growth 
until they completely displace portions of the metastable 
phase [see our previous papers (Refs. 12 and 13)]. This 
means that a qualitative change in the process must be asso- 
ciated with the inherently nonlinear terms in Eq. (2.7). In 
fact, as was already noted, the blocking of the nucleation 
process expected in the general theory is a specific manifes- 
tation of the Le Chitelier principle. When applied to a first- 
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order phase transition, this should mean that the formation of 
a nucleus in some region of space includes a mechanism 
which slows or totally suppresses the appearance of nuclei at 
other sites. This highly nonlocal mechanism involves an ef- 
fective interaction of order-parameter fluctuations at points 
in space that are relatively distant from one another. Just as 
nucleation is possible in model (2.5) owing to the nonlinear 
structure of the corresponding thermodynamic potential, the 
processes which suppress nucleation should be effective only 
when the amplitude of the local surges of the order- 
parameter field is sufficiently large, i.e., they should be de- 
scribed by highly nonlinear nonlocal functionals. We note 
that the partial blocking of the growth of nuclei observed in 
real experiments (see, for example, Ref. 22) would otherwise 
be impossible. In the general case, the functional f lcp(r)} 
contains all the nonlocal terms (especially when the fluctua- 
tional renormalization of the corresponding coefficients is 
taken into account23) and can be represented in the form 

from which any set of nonlocal terms can be isolated by 
formally setting particular coefficients gk  large. Which of 
them are significant in a theoretical investigation of the ki- 
netics of a specific first-order phase transition is detennined 
by the actual physical processes in the system undergoing the 
phase transformation. 

As noted in the introduction, such processes include the 
reaction (striction) of a crystal lattice to a change in magni- 
tude of the order parameter cp during a phase transition. In 
the very simple case of an isotropic medium and quadratic 
striction, the local seed functional of the free energy is modi- 
fied in the following manner: 

If the lattice vibrations manage to follow the variations of 
cp, we can utilize the condition 8 f l v , u ] / S ~ ~ ~ = O  to elimi- 
nate the variables uik and attain, after some standard trans- 
formations (see, for example, Ref. 24), an effective func- 
tional solely in terms of the field cp: 

Here $ ( c p )  is the renormalized local form of F(cp) with the 
same structure as the original function F ( p )  (we shall hence- 
forth omit the tilde), and the constant K is defined by the 
expression 

q2 
K= 2 V [ ( k 1 2 + 2 1 1 / 3 ) ' - ( k 1 2 + 2 ~ 1 3 ) - 1 ] .  (2.11) 

The constant P  is determined by the external pressure or 
other constraints which prevent free expansion of the crystal 
(twins, defects, etc.) and, in turn, fixes the sign of K. When 
P > p ,  K>O; otherwise, K<O. We note that the functional 
(2.10)-(2.11) was obtained in Ref. 25 in an investigation of 

continuous phase transitions in a compressible lattice (see 
also the corresponding references in Ref. 21). 

The nonlocal construction .fddrcp2(r).fdJr'cp2(r') in the 
functional .9'( cp]  generates a term with a long-range effect in 
the equation of motion for the field variable: 

whose presence significantly accelerates or slows (or even 
totally stops) the ordering process, depending on the magni- 
tude and sign of K .  

Let us discuss one more example of an interaction, 
which leads to a similar model. The local variation of the 
order parameter is accompanied by the evolution or absorp- 
tion of heat (depending on whether the transition is to the 
low- or high-temperature phase). This results by means of 
heat conduction in heating (cooling) of the surrounding re- 
gions of space, which, of course, slows the transition process 
in all cases. This mechanism seems universal, and its effec- 
tiveness is determined only by the relationship between the 
rates of the nucleation and heat-conduction processes. 

The local heating (cooling) of a system in a region where 
a nucleus appears can be taken into account by assuming that 
the quantity T in expressions (2.2) and (2.3) is a function of 
position and time. The kinetic equation for the order param- 
eter should be supplemented by an equation which describes 
the evolution of ~ ( r , t ) .  The latter equation should be a heat- 
conduction equation with heat removal and with a source 
P[cp], whose intensity is proportional to the rate of change 
of the free energy, i.e., 

As a result we have 

Here a is the thermal conductivity, ( ( 7 , ~ ~ )  is the heat- 
transfer law, which relates the local temperature3) T to the 
temperature r0 of the heat bath [in the simplest model case it 
can be assumed that ( (7 ,  T ~ )  = U(T-  T ~ ) ] .  In a numerical in- 
vestigation the system of equations (2.13)-(2.14) can be 
solved in parallel, which we actually did in our numerical 
experiments. 

Before proceeding to a discussion of the results of the 
numerical experiments, we show that with some roughening 
of the model, the mechanism under consideration can be de- 
scribed in terms of a single field variable cp(r,t), which 
evolves in accordance with an equation like (2.12). The 
physical arguments, which lead to a functional like (2.10) in 
this case, too, are fairly simple. 

Each growing domain of the new phase creates a non- 
uniform temperature field r ( r , t )  around itself. Owing to heat 
conduction, the temperature at other points in space deviates 
from r O ,  altering the conditions for the growth of other do- 
mains at those points. This signifies the appearance of an 
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effective long-range field accompanying the nucleation pro- 
cess in the system. Relating the variation of the temperature 
field to the order-parameter field rp(r,t), we arrive at an 
energy functional - r p ]  (Ref. 4) like (2.10). In fact, when 
the fluctuations of rp  are "turned on" in a system with a 
temperature equal to the heat-bath temperature 7 0 ,  after a 
unit of time the mean value of r deviates from r0 by 

The mutual influence of the domains of the new phase 
cp= cpo # 0 becomes significant when they become so large 
(and this is seen from the results of the numerical experi- 
ments) that the energy of the domain boundaries between the 
ordered and unordered phases can be neglected. In this case 
we have for the integrand in (2.15) 

Combining expressions (2.16) with (2.2) or (2.3), we arrive 
at a functional like (2.10), which was obtained to describe 
striction effects in the kinetics of a first-order phase transi- 
tion. In some cases, this makes it possible, in principle, to 
disregard the specific mechanism for realizing the long-range 
effect accompanying the first-order phase transition and to 
formally analyze models with nonlocalities of the general 
form JJddrddr ' rp2(r)e(r- r')rp2(r').  

3. RESULTS OF NUMERICAL EXPERIMENTS AND 
REDUCED KINETIC EQUATIONS 

We numerically simulated the passage of a system from 
a metastable state to an equilibrium state using the integrod- 
ifferential equation (2.12) and the system of equations 
(2.13)-(2.14) for various values of the parameters appearing 
in these equations. The assignment of all the constants deter- 
mining the functional (2.10) actually specifies the original 
degree of metastability (the difference between the energies 
of the original state and the lowest minimum of the energy 
functional) in the system under investigation, and the 
strength of the interaction of the order parameter with the 
long-range field of elastic strains. In the initial stage of 
nucleation, in which the mean Jddrrp2(r)lv is small, the 
correction to the local interaction is very small, and the pro- 
cess proceeds as predicted by the theory previously devised 
in Ref. 13, which totally disregards long-range effects. In 
particular, in the initial stages of the process the structure of 
the evolving field rp(r,t) corresponds completely to that 
shown in the figures in Ref. 13 for the rp6 and rp3 + rp4 mod- 
els. As the ordered regions grow, the contribution of the in- 
teraction Sddrrp2(r ) l~  also increases, causing the kinetic 
process to deviate significantly from that previously de- 

FIG. 1 .  npjcal distribution of blocked nuclei of a new phase in the 
cp3+cp4 model. The amplitude of the order parameter is indicated by the 
intensity of the blackening (the intensity maximum corresponds to a nearly 
equilibrium cp in the ordered phase). A fragment of an ensemble of 
200X 300 cells calculated for T= 3.0, a=7.5, and b= 3.4 is shown. The 
fraction of the ordered phase on the effective binodal is 23%. 

scribed. Here the subsequent scenario of the first-order phase 
transition, as well as the spatial structure of the state to which 
the system evolves, are determined to a considerable degree 
by the seed parameters of the nonlocal functional (2.10). 

A typical distribution of blocked nuclei of the new phase 
in the rp3 + rp4 model is shown in Fig. 1. The amplitude of the 
order parameter is indicated by the intensity of the blacken- 
ing (the intensity maximum corresponds to a nearly equilib- 
rium cp in the ordered phase). A qualitatively similar picture 
containing ordered domains of both signs is obtained for the 
rp6 model. To avoid misunderstanding, it should be noted that 
the calculations performed on the two-dimensional ensemble 
correspond not to a two-dimensional system, as is sometimes 
assumed, but to a two-dimensional cross section of the three- 
dimensional distribution of the order parameter formed by a 
plane passing through a region of space in which one of the 
components of the gradient (nonlocal) terms can be ne- 
glected. This can also be said in regard to the "one- 
dimensional" distributions, which are actually calculated as 
cross sections of the complete space along the corresponding 
directions with two of the three relatively small gradients. 

We also note that the pictures of the spatial distributions 
of rp(r,t) obtained reproduce the isolated blocked nuclei, 
which are greatly separated from one another in space (by 
distances of the order of 30-100 lattice constants of the en- 
semble) so well that we even encountered some difficulties 
in graphically depicting the results for publication. For this 
reason, Fig. 1 shows a small fragment of the calculated en- 
semble consisting of 200X 300 cells and containing a rela- 
tively rich cluster of nuclei of various scales. Note that dur- 
ing the numerical experiments we repeatedly observed the 
relatively rapid appearance of nuclei of various scales fol- 
lowed by the slow disappearance of the tiny nuclei and the 
establishment of a practically equilibrium structure with 
large domains of a single scale. However, even an ensemble 
of 200x300 cells is, unfortunately, insufficient for correctly 
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calculating the correlation functions of the system for the 
purpose of elucidating the scale structure of the distribution, 
as well as for obtaining other statistics when the characteris- 
tic size of such domains equals 10-50 lattice constants and 
they number from 10 to 30 in the entire ensemble. 

Several important laws governing the linear process can 
be understood on the basis of a numerical analysis of the 
"one-dimensional versions" of Eqs. (2.11), (2.12), and 
(2.13), respectively, which are very convenient for visualiz- 
ing the results of the numerical experiments. As we have 
already noted in discussing Fig. 1, this is possible despite the 
fact that in its original formulation, the problem of a phase 
transition in a compressible lattice is essentially three- 
dimensional. 

Figure 2a shows a one-dimensional slice of the distribu- 
tion of cp(r,t) for the cp6 model (with K = 2 at time t  = 70). 
Isolated blocked nuclei with dimensions of the order of 10 
(computational) lattice constants at distances of the order of 
lo2 from one another are clearly seen. Figures 2b-2d, re- 
spectively, show the phase portrait of the equation of motion, 
the time-dependent behavior of the fraction of the ordered 
phase taken with a weight cp2, where (cp2)=Jdrcp2/v ,  and 
the decrease in the deviation of the system parameters with t  
from the effective binodal A = rb- r -  ~ $ d r c p ~ / v ,  where 
rb= 1.6874 is the calculated value of the phase-equilibrium 
temperature for the cp6 model when r =  1, a =  1.5, and 
b= 1. 

It is not difficult to see the qualitative similarity between 
the phase portrait of the system and the portrait we previ- 
ously obtained for a local system,13 which reflects the afore- 
mentioned maintenance of the general appearance and 
growth of nuclei in the early stage of their evolution. The 
subsequent scenario of the evolution of the system depends 
strongly on the value of K.  When K is small (see Fig. 2c), the 
fraction of the ordered phase increases without bound up to 
complete ordering of the system. If x is sufficiently large 
( K  2 2),  the system stabilizes at a certain concentration of 
the new phase, which is less than unity. The parameter A 
then vanishes. 

Figures 3a and 3b depict the formation of an effective 
long-range interaction between domains of the new phase by 
means of a heat-conduction mechanism. For clarity, several 
profiles of the field cp(r) and temperature r ( r )  at different 
times are shown for several neighboring nuclei when the 
noise is turned off. When the noise is turned on, the nucle- 
ation process is qualitatively similar to that shown in Fig. 2. 
Figures 3c and 3d present plots of the time dependence of 
S r = J d d r r ( r ) / v -  r0 and ( c p 2 )  = J d d r c p 2 ( r ) / ~ ,  as well as of 
the ratio between Sr and ( c p 2 ) ,  which tends to a constant 
asymptote as t-+m. The latter plots, which were obtained by 
simultaneously solving the equations for the order parameter 
and heat conduction, illustrate the possibility of reducing al- 
lowance for a heat-conduction mechanism to a model with 
an effective long-range field. 

One shortcoming of the numerical solution, however, is 
that while permitting the study of all the details of a specific 
scenario, it does not make it possible to fully retain the be- 
havior of the system as a whole as a function of the param- 
eters of the original state. With this in mind, it would be 
useful to somehow reduce the original equations to a rela- 
tively simple quasi-mean-field model, which would make it 
possible to investigate the observed behavior as a whole. 

First of all, we stress the fact already mentioned that the 
role of nonlocal interactions becomes significant when a do- 
main of a new phase with clear-cut narrow boundaries and a 
value of the order parameter (within the nucleus) equal to the 
equilibrium value grows in one or more regions of space. In 
this case the value of Jcp2dr in expression (2.10) naturally 
increases, effectively altering the "temperature" at the re- 
maining points in space (i.e., renormalizing the coefficient 
r of the linear term in the local part of the equation of motion 
for the order parameter). Since the value of cp2 in the ordered 
regions is essentially equal to its value at the free-energy 
minimum, Jcp2dr varies mainly due to the spatial expansion 
of the domains of the new phase. At the same time, the 
renormalization of the parameters of the equation results, in 
turn, in a smooth variation of the equilibrium value of c p 2 ,  
which, of course, must be consistent with the variation in 
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T. The variations in cp and T cease if the degree of metasta- 
bility (the energy difference at the local minima) vanishes, 
and the value of cp coincides with its value at the renormal- 
ized energy minimum. All this provides the following proce- 
dure for reducing the integrodifferential equations. Instead of 
the infinite number of degrees of freedom of cp(r), we retain 
only two integral characteristics: the value of cp(r)= cp 
within the ordered domains (which, as noted above, varies 
smoothly with time) and the effective fraction of the ordered 
phase, which is taken for convenience with the weight cp2: 
x=$cp2ddrl~. Then cp is described by the equation 

while the corresponding equation for the variable x must be 
written down with consideration of the fact that the variation 
of x = $ cp2ddrlv is related mainly to the spatial expansion of 
the domains of the new phase in the ordering process, whose 
rate (in the stages of evolution of the system in which the 
domains of the new phase have already formed) is propor- 
tional to the rate of motion of the domain boundary, which 
moves under essentially steady-state  condition^.'^'^^ The rate 
of such steady motion is determined by the degree of super- 
cooling (superheating) of the system, and is equal to the 
density of the free energy F(cp) at the point of the stable 
minimum cp= 90, in our case with accuracy to within a nu- 
merical factor. We recall that according to expressions (2.2) 
and (2.3), the energy density in a domain of a metastable 
phase with cp = 0 is equal to zero. 

Thus, the rate of change of x=$cp2ddrlv can be de- 
scribed by the equation ydxldt= - F(cp), where, we recall, 
cp is understood to be the value of the order parameter within 
the ordered domains, which varies smoothly with time. Since 
we shall henceforth use the reduced model to describe the 
previously considered cp6 and cp3+ cp4 systems, in which x 

FIG. 3. a, b) Formation of an effective long- 
range interaction between domains of the 
new phase by a heat-conduction mechanism. 
For clarity, several profiles of the field 
cp(r) (a) and of the temperature d r )  (b) at 
various moments in time are shown for sev- 
eral neighboring nuclei when the wise is 
turned off. c) Plots of the time dependence 
of S7=Jddrr(r)lv- T,, and 
( c p 2 )  = Jddrcp2(r)lv. d) Ratio between ST 
and ( c p 2 ) ,  which tends to a constant asymp- 
tote as t+m. 

and T are additive, it is convenient to introduce the quantity 
(T+x) as a new variable, for which we shall henceforth 
retain the symbol T (i.e., r+x+  T), and we shall call it the 
variable (effective) temperature. For the sake of definiteness, 
we fix the sign of the coefficient K in front of the nonlocal 
term in the functional (2.10), or, more specifically, we as- 
sume that K>O, which corresponds to the possibility of the 
blocking of nuclei. The reduced equations for the cp6 model 
are 

Even in such a simplified form, the analytic solution of these 
equations is nontrivial, as before, due to their nonlinear na- 
ture. Nevertheless, all the necessary qualitative information 
on the system of equations (3.2) can be extracted from an 
analysis of the topology of their phase portrait, which is 
uniquely specified in the present case by the position of the 
isoclines dcpldt= d~ ld t=O.  Solving the corresponding alge- 
braic equations with rp # 0, we can easily obtain the single 
fixed point cpo= 3g/2b, TO= 3g2/4b. A standard analysis of 
this point for stability gives the negative characteristics 
A = - 2g cpi and A 2  = - cp:/2, so that this point is a stable 
node. In addition, the system (3.2) has a complete line 
cp = 0 of stable fixed points. A similar picture is obtained for 
the q3+ cp4 model, which can be described by the reduced 
equations 
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and which also has a line of stable fixed points at Q= 0 and, 
in addition, the stable fixed point cpo = 2 g / 3 b ,  T,, = 2g2 /9b .  

Note that the stability of the fixed points is a general 
property of the reduced equations for an arbitrary structure of 
F(cp). It can be seen that for any F, the system of linearized 
equations near a fixed point has the form 

so that the desired characteristics A = - (F, , (Q))  1 and 
h2= - 4$/2 are automatically negative for a fixed qualitative 
structure of the free energy with two local minima at Q=O 
and Q= qo # 0 (for which the corresponding second deriva- 
tives are negative: (F , , (Q) )  1 ,= ,o<O and - 4 4 / 2 <  0 ) .  

The phase portrait of system (3.2) is shown in Fig. 4a. 
The separatrix separating the phase trajectories reaching the 
nontrivial fixed point cpo from the trajectories tending to the 
Q=O line is clearly seen. These two classes of trajectories 
correspond to physically different behavioral scenarios of the 
system. If the structure of the seed function F ( Q )  is such that 
the temperature 7 for a given position of a nonzero minimum 
is excessively high (i.e., the initial point lies above the sepa- 
ratrix), all the trajectories tend to the Q= 0 line, and ordering 
is impossible. If the initial values lie on the other side of the 
separatrix, the parameters of the system evolve quickly to- 
ward some universal relationship between them and then 
slowly approach a nontrivial fixed point (see Fig. 4c and its 
discussion in the next paragraph). The phenomenon just de- 
scribed of rapid evolution of the parameters toward a univer- 
sal relationship is the essence of the so-called "large-river 
effect," which was recently discussed in reference to the 
theory of phase transitions from a somewhat different 
standpoint.28 In the context of the present paper, the realiza- 
tion of this effect basically signifies the physical indistin- 
guishability (universality) of the kinetics of a first-order 
phase transition for a large set of systems having fundamen- 
tally different initial properties. As far as we know, such 
universality has not previously been discussed in the litera- 
ture in reference to first-order transitions. 

FIG. 4. a) Phase portrait of the system of 
equations (3.2). The isoclines of the ver- 
ticals and horizontals are depicted by 
dashed and dotted lines, respectively. 
The separatrix and the path of the "large 
river," which are explained in the text, 
are seen directly. b) Distance from the 
image point to the large river (in prac- 
tice, to the isocline of the verticals 
d ~ / d t = O  (curve I) and distance from 
the same point to the fixed point (curve 
2). The straight S i  stress the behav- 
ioral crossover described in the text. c) 
Logarithms of both quantities, respec- 
tively. 

The variation of the rate of motion of the image point 
after it gravitates toward the "large river" is clearly seen 
when its distance from the isocline of the verticals 
dr /d t=O (i.e., ~ / 2 - ~ ~ / 3 +  b q 2 / 4 = 0 )  is plotted as a func- 
tion of time on a logarithmic scale (curve I in Fig. 4b). At 
small t  it drops much faster than the distance r from the 
corresponding value on the binodal (curve 2). After the im- 
age point reaches the vicinity of the path of the large river, 
the distance from that point to the d ~ / a t = O  curve varies 
slowly thereafter, i.e., at the rate at which the system as a 
whole approaches the binodal, so that the slopes of curves I 
and 2 nearly coincide. The latter is clearly reflected in the 
crossover of the corresponding logarithmic slope (which is 
noted in the figure by the slanting straight lines). 

The system spends most of its time in the vicinity of the 
large river, and in this sense its behavior (within the regions 
of attraction to the nontrivial point bounded by the separa- 
trix) also depends little on how it reached the region of meta- 
stability. In addition, since in the limit t =  its parameters 
tend to the point defined by the pair of conditions 
F =  dFldp=O,  it "closes itself up" at the binodal. As a re- 
sult, equilibrium between the phases is established over a 
relatively broad region of the physical phase diagram, so that 
if the system is left alone, it remains in an inhomogeneous 
state, and in order to actually bring the system into a homo- 
geneous ordered state, its parameters must be additionally 
altered, i.e., the binodal "line" has a finite width. 

It is seen in the phase portrait that the trajectory defining 
the path of the large river lies between the isoclines and 
gravitates mainly toward the d r / d t =  F=O line, giving a 
good estimate for the desired relationship between the renor- 
malized parameters, and being in good agreement with the 
physical picture described of smearing of the binodal, just 
where the condition F ( Q =  9 , )  =O holds. The separatrix is 
also located in the region between the isoclines (although, of 
course, in a different region of the phase space). This trajec- 
tory is unstable, but if seeds lie sufficiently close to it, the 
system also evolves very slowly. Thus, such a turning-point 
state is clearly observed in numerical experiments and 
should certainly be manifested in real experiments. 

It should be recalled that the variable r is the sum of the 
constant r= ( T -  T , ) / T ,  , which is determined by the exter- 
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nal conditions, and the time-dependent "phase fraction" 
x= $cp2drlv, which cannot exceed cp2=cp:  , where cp, is 
the position of the nonzero minimum of the energy F(cp) 
renormalized by the interaction. This imposes certain con- 
straints on the attainable values of (T ,  c p )  in the phase por- 
trait (see Fig. 5). Physically, this means that if 
r= ( T -  T,.)/T, is so great (small) that even at 100% filling 
of the system by the new phase the renormalization of T on 
account of x is insufficient to hold it on the binodal, the 
nuclei spread without bound, and the system unavoidably 
undergoes an ordinary first-order phase transition. Otherwise, 
the renormalized value of r tends to the fixed value TO, and 
the system remains in an intermediate state with a fraction of 
the ordered phase specified by the difference 
x= $cp2drlv= T- TO . The other boundary of the region of 
observability of the effect described is the requirement that 
the fraction of the ordered phase be nonnegative: x 2 0. 
Stated simply, the minimum possible value of T coincides 
with the seed temperature and thus also assigns the condition 
of equality of the energies of the phases above which the 
appearance and growth of nuclei becomes possible at all. By 
varying the seed (i.e., the actual physical) temperature, we 
can shift the effective boundary for realization of the inter- 
mediate state, as illustrated by the frame formed by the thick 
lines in Figs. 5a-5c. 

When Eqs. (3.2)-(3.3) were written down, to be specific 
we fixed the sign of the coefficient of x to correspond to the 
possibility of blocking of the nuclei. However, as discussed 
in the preceding section, the sign of this coefficient can be 
reversed. This is formally accomplished by reversing the 
sign in front of dr ld t  in Eqs. (3.2) and (3.3), which, as is 
easily verified, results in conversion of the stable node 
cpo=2g/3b, into a saddle point. The entire 
phase portrait changes accordingly (see Fig. 6). In addition, 
it is seen from the pattern of flow lines that there is also some 
universalization of the behavior of the system here. When 
phase trajectories pass near the saddle point, the rate of evo- 
lution of the parameters of the system decreases with time 
(this can be verified directly by calculating the total flux 
[ ( d c p ~ d r ) ~  + (371 d t )2 ]112 ) ,  and then increases quickly as the 
system moves away from this point and the nucleus of the 
new phase rapidly grows. In this stage the parameters of the 
system are already universal to a considerable extent, so that 

FIG. 5. Displacement of the boundaries 
(thick lines) of the possible location of the 
seed parameters as the temperature varies. 

its behavior is again essentially independent of the relation- 
ship between the seed constants. We note that we repeatedly 
observed just such development of the scenario in the nu- 
merical simulation of a phase transformation directly on the 
basis of the original equation (2.11) for a large number of 
sets of starting parameters and a suitable sign of K. 

In conclusion we mention one more interesting aspect of 
the problem. We previously recalled that the role of nonlocal 
contributions to the Ginzburg-Landau functional which are 
similar to those used in the present work was previously 
investigated in reference to the critical behavior of systems 
with a fluctuation region (see the review in Ref. 25). A sys- 
tem of renormalization-group equations was derived and 
analyzed, and it was shown that when the coefficient of x is 
positive, the phase trajectories reach a stable fixed point and 
that, otherwise, they leave the region of positive definiteness 
of the fourth-order form. The latter event is interpreted as 
instability of the continuous phase transition with respect to 
its breakdown into an abrupt process. These results are in 

FIG. 6. Same as in Fig. 4 for the case of negative renormalization of the 
effective temperature x/2V J'd"r'cp2(r'). 
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complete agreement with the results obtained in the present 
work. 

The presence of fluctuations in the system (in numerical 
experiments they are simulated by a source of noise) 
smooths the original form of the free energy for a first-order 
transition in such a mannerz9 that when the maximum of 
F(p-) is low, it becomes qualitatively the same as in a 
second-order transition. This means that instead of a simple 
smooth transition from the results obtained in the present 
work to the results corresponding to the critical region, there 
should be real overlap between them for values of F(p-) 
comparable to the characteristic scale of the fluctuations. In 
this context the agreement between both tendencies (univer- 
salization of the behavior of the system and breakdown of 
the transition to an abrupt process) when the nonlocal terms 
have the appropriate signs is very significant. 
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