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An algorithm is constructed for solving the two-dimensional single-electron Schrodinger equation
for a quantum system in the field of an electromagnetic wave. This algorithm is then used

to study the dynamics of the negative hydrogen ion in a strong light field. It is shown that at field
strengths greater that atomic, a stabilization effect is observed. Calculations for one-

dimensional and three-dimensional models of photoionization of the negative hydrogen ion are

compared. © 1995 American Institute of Physics.

1. INTRODUCTION

Direct numerical integration of the time-dependent
Schrodinger equation for a quantum system in the field of an
electromagnetic wave in recent years has become one of the
main methods of investigating elementary processes in in-
tense light fields.!? Unfortunately, the larger requirements of
computer time allow one to investigate the dynamics of only
the simplest systems in the shortest laser pulses, no longer
than a few tens of femtoseconds. A common technique for
speeding up the calculations is to employ the simplest pos-
sible model of the phenomenon, which is to say, one-
dimensional. Such a model, without describing many of the
features of actual experiments (as, for example, the photo-
electron angular distribution in the case of photoionization,
effects associated with the polarization of laser radiation,
etc.), still allows one to consider the interaction of an atomic
electron with an electromagnetic field under conditions in
which none of the commonly used approximations is justi-
fied. The number of papers dedicated to the analysis of a
real, three-dimensional atom in a laser field is still not large.
Thus, References 3 and 4 numerically solved the two-
dimensional time-dependent Schrodinger equation for a hy-
drogen atom in the field of a linearly polarized electromag-
netic wave. References 5 and 6 numerically modeled the
ionization of a hydrogen atom in the 1s and 2p states in a
circularly polarized field. A three-dimensional model of
above-threshold ionization of a hydrogen atom being acted
upon by a laser pulse with linear or circular polarization was
considered in Ref. 7. We may also note an effort to construct
a single-electron potential for the valence electron of a xenon
atom® and study the process of photoionization from the 5p
subshell in the approximation in which all the remaining
electrons are frozen.

In the present paper we will use direct numerical inte-
gration of the two-dimensional time-dependent Schrodinger
equation to investigate the process of photodetachment of an
electron from a negative hydrogen ion. We then compare
calculations of the dynamics of ionization of H™ in the one-
and three-dimensional approximations.
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2. SINGLE-ELECTRON MODEL OF A NEGATIVE HYDROGEN
ION

From the physical point of view, the correct description
of negative ions requires solution of the Schrodinger equa-
tion as a many-body problem. Such an approach can practi-
cally never be realized analytically and is often associated
with great difficulties in the numerical treatment of systems
with more than (wo electrons. In this regard, attempts have
been made to reduce the problem to a one-electron problem.
However, the question of the possibility of applying the
single-electron approximation for describing negative ions is
complicated. Atoms of the inert gases do not form bound
states with electrons, so there are no negative ions with one
electron above a completely filled shell. The appearance of
an “extra” electron in the valence shell of an atom strongly
redistributes its electron density, and this must be taken into
account in any description of the interaction potential of a
neutral atom and an electron. In the case of a negative hy-
drogen ion, the results obtained in the numerical solution of
the two-particle problem indicate the possibility of using the
single-electron approximation. A two-electron spatial wave
function of the negative hydrogen ion that partly describes

correlation effects it the Chandrasekhar function:>'°

(1)
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(a;~=0.97 a,y, a;=3.53 a,, where a, is the Bohr radius,
and N is a normalization factor), which corresponds to a
single bound state with ionization potential /=0.75 eV. The
maximum electron densities of the first and second electrons,
calculated on the basis of the given wave function, have
significantly different positions. This reflects the much
weaker coupling of one of the electrons with the nucleus and,
consequently, the validity of the single-electron approxima-
tion. To describe the system under study, we can use various
single-particle potentials, which to varying degree take ac-
count of correlation and polarization effects.

In the simplest case, the single-electron potential for the
weakly bound electron in a negative hydrogen ion can be
represented in the form of the interaction potential of this
electron and the neutral hydrogen atom:
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FIG. 1. 1) Single-electron potential and 2) radial distribution of the prob-
ability density |®o(r)|? for the ground state of the negative hydrogen atom.

e? 2r

V(r)=-— exp(——a—), a=ay. 2

r
r a
However, it turns out that for such a potential it is not pos-
sible to form a discrete energy spectrum with the prescribed
ionization potential (/=0.75 V) and characteristic width of
the electron density distribution for any value of a.

Therefore, we chose the potential created by the atomic
shell for the outer electron in H™ in the form

e

v e? 2 2r 3
(r) NraTs tg)eel ~ 5 (©)
where a=2.5a, and 8=3a,.

This potential does not have a singularity at zero, as does
the potential created by the hydrogen atom in empty space.
In such a potential the electron has one bound state, charac-
terized by the spherically symmetric function ®y(r) (see
Fig. 1) and ionization potential /~0.75 eV, which coincides
with the experimental value for H™. In this case, the width of
the wave packet describing this state, Ar= \/<r_2> is
roughly equal to 2.5a, which correspond to the half-width
of the packet, Ax, describing the H™ ion in the one-
dimensional model.!! The coincidence of these parameters
for the two models allows us to compare calculations of the
dynamics of ionization using the one- and two-dimensional
Schrodinger equations.

Note that the single-electron model of the negative hy-
drogen ion is valid for not-too-strong fields, i.e., for those
fields that do not have an effect on the inner electron after
passage of the laser pulse (i.e., fields that do not excite or
ionize the inner subsystem), Corresponding estimates of the
intensity of the electromagnetic field are made in Appendix
A.

One should not expect the electron charge distribution
for the given potential to coincide with the electron density
obtained from the two-particle wave function, since for this
it would be necessary to take the interaction of the electrons
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into account. But this, in its turn, would require a deeper
analysis of the physical properties of the system, which
would lead to a refinement of the single-electron potential.

3. NUMERICAL MODEL OF THE DYNAMICS OF AN H™ ION
IN AN ELECTROMAGNETIC FIELD

In the dipole approximation in the appropriate cylindri-
cal coordinate system the Schrodinger equation for the elec-
tron in the central potential V(|r]) in the presence of a lin-
early polarized electromagnetic wave is written in the form

oy R (1 9 9y Py
it o am\pp $+§Z[)+V(P,Z)4//
—eZE(t)'ﬁ(P,ZJ)- (4)

Here the z axis is aligned with the vector E, and p is the
radial coordinate of the electron r = p?+2z2.
We assume that initially the system is found in the un-
perturbed state of the atomic Hamiltonian
h? )
Hy=— o V*+V(p,z) (5)

described by the wave function ® ( \/pz+z7).
The field of the electromagnetic wave was chosen in the
form of a Gaussian pulse

1 [t—1,)2
_ 0
E(t)=E, expl— 3 (—T ) cos wt, )

where 7,=27 is the width of the pulse at half-maximum and
ty is the time at which the laser intensity reaches its maxi-
mum value.

We calculated the ionization dynamics of a negative hy-
drogen atom for radiation with energy iw=>5 eV and pulse
length 7,= 4 fs. For these values the parameter 7,/T~5 X(T
=2/ w is the period of the field), i.e., the intensity of the
radiation varies smoothly. The peak intensity of the radiation
was varied from 10" to 4-10" W/cm?. The total integration
time was 67=12 fs and was adequate to describe the ioniza-
tion dynamics at the leading and trailing edges of the pulse.

The magnitude of the intensity corresponding to the
atomic value of the field for the system under consideration
P,~3. 10'® W/em?, i.e., in the investigated range of param-
eters the intensities of the laser radiation were both greater
than and less than the atomic value of the intensity.

In order to integrate it numerically, Eq. (4) was dis-
cretized on a 200X 50 spatial grid in a region 120a,X30a,.
The grid was chosen to be spatially nonuniform so as to
more accurately describe the evolution of the wave function
where the potential acts. Near the boundary of the calculated
region (z= %2z« » P=Pmax) a0 imaginary term was added to
the potential which describes absorption of the probability
density and eliminates reflection from the boundaries. More
detailed information about the numerical solution technique
is given in Appendix B.

4. MODEL RESULTS

Figure 2 presents the calculated evolution of the prob-
ability density |¢//(p,z)|2 of detecting an electron at different
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FIG. 2. Spatial distributions of the probability den-

sity |¢(p,z)|? at different times during the action of
the laser pulse. The contours correspond to the fol-
lowing values of |#(p,z)|%: 1—1072, 2—3.1073,
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points in space for a radiation intensity P=2- 10" W/em?.
Figure 2a shows the initial wave function (#=0), Figs. 2b, c,
and d correspond to the times 3.2, 6.4, and 11.2 fs, respec-
tively. Figure 2c depicts the probability density distribution
at the time when the radiation intensity is near maximum,
while Fig. 2d shows it while the lasing decays, when the
ionization process had already ceased. These distributions
show that the electronic escapes primarily in the direction of
the electric field of the wave, and that as the laser pulse
passes a series of wave packets is formed, moving away
from the potential well along the z axis in the positive and
negative directions. This is because the electronic escapes
from the atom preferentially at the time the electric field
reaches its amplitude value, i.e., photodetachment of the
electron resembles tunneling. Evaluation of the Keldysh
parameter
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w+\2ml

Y= eEo

for the given case actually gives y=1. The spatial distribu-
tions of the electron density for various values of the laser
intensity at the time roughly corresponding to the maximum
intensity of the radiation are shown in Fig. 3. Note that in the
intensity region P=10'%-10!5 W/cm? the ionization has an
above-barrier character: the electron wave packet executes
vibrational motion near its initial position, gradually delocal-
izing in space and scattering from the atomic potential. This
picture is very similar to the dynamics of the ionization of a
one-dimensional negative hydrogen ion, considered in Ref.
11.

In our calculation of the action of the laser pulse, we also
calculated the probability W(t) of detecting the electron in
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FIG. 3. Spatial distributions of the probability
distribution | ¢(p,z)|? at the times of maximum

radiation intensity (W/cm?) for P equal to a)
10'2, b) 10%3, ¢) 10", d) 10'°. The contours cor-
respond to the following values of |¢(p,z)|?: a)

f\/~5\/\/ \
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its initial bound state. This probability is defined as the pro-
jection of the calculated wave function ¥(p,z,t) onto the

state Do(Vp>+22):
2
f ¥*(p,2,0)@o(Vp?+2%)2mpdpdz

The functional dependence W(¢)) is plotted in Fig. 4 for
various values of the intensity. Note that these dependences
are qualitatively similar to the results obtained in the one-

w(n= )

dimensional calculations of Refs. 11 and 12. The most im-
portant feature of the ionization dynamics is the high-
frequency oscillations (with twice the frequency of the laser
radiation) of W(¢), for which the depth of modulation of the
curve W(t) grows rapidly as a function increase of the inten-
sity (see Fig. 4). For the radiation intensity P=4-10'°
W/cm? the probability W within one period of the optical
wave varies over six orders of magnitude and qualitatively
corresponds to the model of almost free oscillations of the

FIG. 4. Dynamics of the probability of de-
tecting the system in its initial bound state
for radiation intensities a) 2-10'* W/cm?, b)
5-10" Wicm?, c) 4-10"° Wicm?, broken
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tracc—envelope of the laser pulse.
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FIG. 5. Probability of detecting the system in its initial bound state as a
function of radiation intensity: 1) two-dimensional calculation, 2) one-
dimensional calculation.

electron wave packet proposed in Ref. 11. The authors of
Refs. 11 and 12 noted that when the field of the electromag-
netic wave exceeds the atomic field a stabilization effect
should be observed, that is, the probability of ionization of
the system by the laser pulse should decay with increase of
the intensity of the pulse. The physical reasons for the stabi-
lization phenomenon have been discussed repeatedly in the
literature and expounded in detail in Refs. 1 and 13.

The probability of detecting the electron in the bound
state after passage of the laser pulse, calculated in both the
one-dimensional approximation (using the one-dimensional
potential given in Ref. 11) and the three-dimensional ap-
proximation as a function of the intesntiy, is plotted in Fig. 5.
It turns that the effect of ionization suppression in a strong
field arises for both models, and the two models have the
same threshold for suppression, 5-10' W/cm?. The two
models differ mainly in their probabilities of detecting the
atom in the ground state after the passage of the laser pulse.
For P=5-10'* W/cm? the difference in the probabilities is
more than one and a half orders of magnitude. We suppose
that the “lighter” ionization of the three-dimensional atom is
connected with additional delocalization of the wave func-
tion in the direction perpendicular to the electric field vector
of the wave and the resulting faster decay of the overlap
integral (7) during the passage of the laser pulse. Reference
14 contains a comparison of the one- and three-dimensional
models of the hydrogen atom in a strong electromagnetic
field. This comparison revealed a great stability to ionization
of the one-dimensional system. On the other hand, this effect
implies that stabilization in the three-dimensional system is
manifested more sharply: as the intensity rises from 5- 10
W/em? to 4-10'> W/cm?, the magnitude of W grows roughly
threefold for the three-dimensional atom and only by about
10% for the one-dimensional atom.

Note, in conclusion, that the magnitude of the stabiliza-
tion threshold of this system turns out to be roughly equal to
the limit of the region of applicability of the single-electron
approximation for H™. Therefore, a study of the dynamics of
the negative hydrogen ion in a superatomic field would re-
quire additional consideration, with attention given to the

239 JETP 81 (2), August 1995

effect of the electromagnetic field of the wave on the inner
electron.
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APPENDIX A: ESTIMATE OF THE INFLUENCE OF THE
ELECTROMAGNETIC FIELD ON THE INNER ELECTRON IN
A NEGATIVE HYDROGEN ION

In the present paper we investigate the interaction of the
outer, weakly coupled electron of a negative hydrogen ion
with an intense laser pulse of finite duration in the single-
particle approximation. The single-electron approach is valid
if the conditions of the interaction are such that it can be
assumed that neither ionization nor excitation of the inner
subsystem (hydrogen atom) takes place. It can then be as-
sumed that this inner electron is found in the 1s state of the
hydrogen atom. The lower limit of the field at which the
single-electron approximation is no longer valid can be taken
to be the field E, which noticeably populates the excited
states of the hydrogen atom during the time of the pulse
7,=27. The magnitude of this field was estimated from the
transition probability in a two-level system. Here we as-
sumed adiabatic turning on of the field, since the condition
7,/T>1 is fulfilled under the conditions of our problem. The
probability of population of the 2p (excited) level under
these conditions has the form:'?

w. L, _1al
L) 20)°
where A is the detuning and () is the Rabi frequency.
Taking as critical a field that leads to 5% population of

the upper level, we obtain the following estimate for the
critical intensity:

P.,=cEX/87~5.5-10"* W/cm?.
APPENDIX B: METHOD OF NUMERICAL INTEGRATION OF
THE T!VO-DIMENSIONAL TIME-DEPENDENT
SCHRODINGER EQUATION

To solve Eq. (4), we used the method of splitting the
equation according to physical factors, described in Ref. 15.
In this approach, Eq. (4) is first discretized in time with time
step At. In this way, Eq. (4) is replaced by a chain of equa-
tions describing the spreading of the wave function in space
and its behavior in the total field of the potential and the
electromagnetic wave. The wave equations in the field is an
ordinary differential equation, and is solved in the same way
as in Ref. 15.

Let us mention the solution of the equation describing
the spreading of the wave function

el R (1 0 Yy Py

ih —=—s—|——p—+ .
o 2m pﬁppap 927 ®
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We discretize Eq. (B1) in the spatial variables by using
finite elements with cubic interpolation of the function at
each element. As a result, we obtain a system of ordinary
differential equations for the vector of grid values of the
wave function (r)={;(¢)}. Here i is the index of the spa-
tial grid point:'®

dy
M,©M, — = M,®D,y(1) + D,@M, (1),
(Mp)ijsziijdp’ (Mz)ij=JNideZ, ()]

% h

where M and D are the analogs of the weight matrix and the
stiffness matrix, N; is the cubic function of the form, and ®
is the direct product of the matrices.

The time derivative is approximated according to a semi-
implicit scheme with implicitness parameter 0.5 (Crank—
Nicolson scheme)

At
M, @M, (¢ —y")= = (M,®D,+D,®M,)

X(Pi+yn), (10)

where "*! and " are the vector function # at the nth and
n+ 1th time step.

This scheme is of order (Atz,Arz,Dz). To within terms
of order [(1/4)A1*D,®D,Ay"* ], Eq. (10) can be reduced
to the form

1 1
(MZ— 3 Dz)®(M,,— 3 DP)AW‘“=R"At,

A¢n+l=¢n+l_¢n,

where R" is a vector to be determined by the function at the
nth time step.

Equation (11) can be split into two equations corre-
sponding to the one-dimensional problems

(11)

1
(MZ— 5 DZ)A¢*=R"At, (12a)
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1

(M,,~ ) Dp)Ai//"+'=At/1*. (12b)

Let the number of grid points in z be K, and inr be X,.
Then Eq. (12a) consists of K, scalar equations in a vector of
dimensionality K, , and Eq. (12b) consists of K, scalar equa-
tions in a vector of dimensionality X, .

The one-dimensional equations of system (12) were
solved by LDL-factorization,!” in which the matrix on the
left side of the equation is split into an upper and a lower
triangular matrix and a diagonal matrix.
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