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We consider the evolution of the renormalized parameters of the Ginzburg-Landau-Wilson 
(GLW) free energy functional in the critical region. The renormalization process is described by 
means of the exact renormalization group (RG) equation, using the recently observed fast 
relaxation of parameters in the vicinity of the universal trajectory, the so-called "large river," in 
phase space. We show that all earlier results obtained in the scaling limit of the fixed 
GLW functional are automatically reproduced in the renormalization process of arbitrary bare 
parameters; this removes the problem of the choice of physical solutions. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The conceptual side of the renormalization group (RG) 
method is rather simple. In the vicinity of critical points, 
where the correlation radius of the fluctuations is larger than 
other characteristic scales of the system, one integrates the 
partition function by parts over the small-scale variables so 
as to obtain a new effective form of the free energy func- 
tional. As expected, when the integration is repeated ad in- 
finitum, one loses essentially all information about the details 
of the system, except perhaps some general properties such 
as the symmetry group or the number of interacting compo- 
nents of the order parameter.' 

In fact, the realization of this program encounters con- 
siderable mathematical difficulties. The traditional methods 
for an analytic solution of the problem, which are based on 
one form or another of perturbation theory, create, moreover, 
the problem of the convergence of series, which is sur- 
mounted by various artificial  mean^.^-^ Moreover, the proce- 
dure for cutting off the perturbation series is itself based on 
an additional assumption about the existence of an expansion 
in an appropriate parameter (which in reality is not small) 
such as ~ = 4 - d ,  where d is the dimensionality of the space, 
the magnitude of the coupling constant, or the reciprocal of 
the number of components in the order parameter, 1 1 n . ~ ' ~  
This introduces an uncontrollable restriction into the theory 
and closes the path to its further improvement. 

The approach based on using the exact RG equation re- 
moves these difficulties in principle, but the mathematical 
complexity of an equation in functional derivatives again 
raises problems concerning the use of approximations and 
the choice of physical branches of the solution.798 The most 
promising approach is to use a local version of the exact RG 
equation as the initial approximation, based on the smallness 
of the Fisher index 7, reflecting the insignificant generation 
of nonlocal corrections to the interaction of fluctuations in 
the critical region. The RG equation then takes the form of 
an "ordinary" differential equation, and one can solve this, 
at least numerically. 

In the limit of a fixed GLW functional, the solution of 
the local RG equation gives an infinite set of branches, re- 
producing in this form the old problem of "redundant opet-a- 

tors" and the choice of the physical branch of the solution. 
One can show that only one of them (hereafter called the 
"physical" one) satisfies the requirements of the theory of 
critical phenomena.7 The good calculated values of the criti- 
cal indices based on this branch, as well as the verified small- 
ness of the expansion parameter for nonlocal corrections,8 
confirms its appropriateness as the zeroth approximation. 
Moreover, the main requirement used as a decision criterion, 
namely the absence of a logarithmic divergence for finite 
values of the order parameter field cp, and accordingly the 
"good" asymptotic behavior -5cp2/2 as cp+m, is unphysical, 
leaving open the main problem of how a nonuniversal trial 
GLW function can be turned into a fixed universal distribu- 
tion that "independently chooses the correct solution" from 
among all others. 

For an answer to this problem one must turn to a version 
of the RG equation which depends on the renormalized time 
I and use it to study the relaxation of the parameters of 
arbitrary GLW functiona~s.~-" Taking into account the inher- 
ent saddle-point nature of the required fixed solution one 
must then look for the critical surface (along which the sys- 
tem moves to the fixed solution) by the shooting method, 
using sufficiently arbitrary functions (!)f(cp) as starting 
points, and the adjustable temperature T = ( T -  T , ) / T ,  as a 
parameter, i.e., the coefficient of the term np2 which is qua- 
dratic in cp. 

In implementing this program, we found that on the criti- 
cal surface, the renormalized parameters rapidly reach the 
vicinity of some universal trajectory (the "large river") 
along which they afterwards relax slowly to the unique fixed 
solution." The present author has recently1' shown that- this 
fixed solution is the same as the earlier found physical 
branch of the solution of the RG equation for the fixed point. 
This result removes the problem of the choice of the solution 
since it was shown that on the critical surface, any GLW trial 
free energy density is automatically transformed into a uni- 
versal fixed distribution. 

Besides solving the problem in principle, the large river 
effect can be constructively applied to study a number of 
specific problen~s. The main idea of applying it is based on 
the use of the attractor nature of the large river. Basically, 
this means that all characteristic properties of the system in 
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the critical region must mathematically be reflected in the 
attraction of the appropriate functions to the attractor. This 
considerably simplifies the conceptual side of all calcula- 
tions, in fact, reducing it directly to the original motivation 
for the RG method. In the present paper, we demonstrate the 
efficiency of the method for a number of actual problems in 
the theory of critical phenomena. 

2. LOCAL VERSION OF THE EXACT RG EQUATION AND 
THE LARGE RIVER EFFECT 

The exact RG equation is in general highly nonlocal, and 
can be written out in functional derivatives. In order to by- 
pass the associated mathematical difficulties, we can use as 
the initial approximation an appreciably simpler local ver- 
sion of this equation, and the nonlocal corrections can then 
be taken into account via perturbation theory. How one takes 
such corrections into account will be discussed in the next 
section. Here, however, the exact RG equation1 will be used 
in its local version, which is often sufficient for a discussion 
of the qualitative predictions of the theory13-18: 

Here f {qi) is the density of the local free energy functional, 

and the summation is over the n components of the vector 
q={qi). The multicomponent nature of the vector (e and the 
presence of various invariants in the expansion of f{cpi) is 
very important from the point of view of the numerous ap- 
plications of the theory to real physical (as a rule, anisotropic 
or multicomponent) systems. Equation (2.1) was studied in 
just this context in a recent paper.12 However, for an analysis 
of the general aspects of the theory, one can restrict oneself 
to its most transparent scalar and even version f = f(Go2) (as 
will be done everywhere in the present paper that the oppo- 
site is not stated explicitly). 

We stated in the Introduction that the critical surface for 

can be obtained by the shooting The vertices 
g2,(l) of the GLW functional are then determined numeri- 
cally as the coefficients in a Taylor series. We show in Fig. 1 
the projections of several RG trajectories in the g4g6 plane. 
For all starting points, g2, initially rapidly approach some 
universal curve, along which they later evolve slowly to a 
fixed point f : ( ~ ~ ) .  A similar effect was recently observed on 
the basis of a somewhat different version of the local RG 
equation;9--" it was called the "large river effect". This phe- 
nomenon is typical of the relaxing nonlinear equations, of 
which Eq. (2.1) is one. In particular, the latter are associated 
with reaching a dissipation minimum on stationary (attractor) 
trajectories in problems of physical  kinetic^.'"^' This phe- 
nomenon reflects in the general case the fast "flow" of the 
phase trajectories into some (quasi-) potential valley along 
which the variables afterwards slowly "creep" to a fixed 

point. For saddle points, this "creeping" is anomalously 
slow (power-law rather than exponential). However, the RG 
fixed points are always saddle points, since for small devia- 
tions of the temperature from the critical surface, the RG 
trajectories passing through a flow minimum always go away 
from the fixed point. 

In Ref. 12 we calculated the evolution with time of the 
combinations A = g2 - gz  and B =g4-g2(2-g2)/3, and 
also the quantities In A and In B as functions of In 1 and 1, 
respectively. We observed a fast exponential drop in the dif- 
ference B and a slow attraction of the system to the fixed 
saddle point, characterized by a power-law dependence of 
the quantity A(1). 

A "large river" trajectory can be estimated analytically. 
The equation for g2k(1) has the form 

The flow minimum is reached for dgzk/dl=O, where we 
have 

The recursion relations (2.4) determine gzkzgzk(g2) as a 
function of the single parameter g 2  on the curve passing 
through the fixed point which is the same as the physical 
branch of the solution of the equation R f =O found earlier:7 

The projection of this curve in the g4g6 plane is shown by 
small circles in Fig. 1, and it is clearly very close to the 
numerically determined "large river" trajectory. 

The fact that the fixed solution is the same as the physi- 
cal branch found earlier, and is unique for different trial 
functions f(cp), must be considered a decisive demonstration 
that this branch of the solution of R f =0  is the correct choice. 
Physically, this means that the bare structure of the GLW 
functional is determined by the microscopic interactions of 
the system.2' If these interactions are such that, in general, a 
second order phase transition is possible in the system, it will 
take place when the characteristic interaction energy is the 
same as the temperature. In that case, fluctuations develop in 
the system, the correlation radius increases, and all effective 
parameters are renorrnalized. In turn, this means that a single 
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FIG. I .  Projection of phase trajectories in 
the g4.g6 plane. The analytic estimate for 
the "large river" trajectory is shown by 
small circles. 

parameter (the temperature) ought to be sufficient to "place" 
the system on the critical surface, where it spontaneously 
arrives at the universal structure f(q). The shooting method, 
based on the use of a given trial form f ( q ;  1 = 0) and the 
fitting of a single parameter r, in fact mimics this physical 
process in a nonperturbative approach and with no additional 
hypotheses. 

The attractor nature of the "large river" guarantees the 
universalization of the critical behavior long before the sys- 
tem reaches the true fixed point. This renders the main ver- 
tices in the qualitative structure of the phase portrait unim- 
portant, since they rapidly "readjust" during variations in the 
important vertex 7=g2 (and some of the vertices of g,, 
which are also important in anisotropic models). Moreover, 
the slow change in the parameters along the large river gives 
a phase transition which is essentially indistinguishable from 
a continuous one, even in those cases when the RG trajecto- 
ries never reach the desired fixed point. 

One can estimate the rate of change of the parameters by 
considering the flow strength. To this end, Eq. (2.1) was 
rewritten in Ref. 22 in the form 

where p=exp( -f), with the quasilinear differential operator 

The flow rate can be characterized by the norm 
11 ,kt1 = (,hl ,k) 'I2, in which the scalar product 

contains the weight function p(q)=exp[-(d-2)q2/4], which 
is determined by the structure of the quasilinear operator. If 
there exists a flow minimum p = p *  (for which 
~llil l~/d~(q')l , , ,*=~), decomposing ,k in the Qk basis, i.e., 
writing it in the form 

and afterwards taking its component along the vector l l / i ,  it 
can easily be shown that 

where the Aj are the eigenvalues of the operator i. Since 
there are at least some Pj#O, there are some Xj=O. The 
evolution of the RG parameters is anomalously slow in the 
corresponding directions. Linearizing p near p* and cany- 
ing out the standard operations of fluctuation theory, one 
easily reaches a behavior of the physical quantities similar to 
their behavior in the case of an ordinary second-order phase 
transition. 

The existence of a flow minimum was confirmed in Ref. 
12 by direct numerical integration of Eq. (2.3) for a tetrago- 
nal system with a trial function p(ql ,%)=exp[- f (ql ,%)I, 
which depends on the invariant u(qj+q;) with a small ad- 
mixture of the interaction v (d+ q$)2 (where u - 10-~v). 

3. GENERATION OF NONLOCALITY AND NATURAL 
DEFINITION OF ANOMALOUS DIMENSIONALITY 

In the general case, the exact RG equation is nonlocal. 
Following Refs. 8 and 23, we write this equation out for an 
arbitrary Ginzburg-Landau (GL) functional, 

CO 

in the form 

We used here as H ,  the Gaussian functional 
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and introduced the following notation: h ( q ) = e ~ ~ ( - q ~ / 2 ~ ~ )  
is the smooth cutoff factor, A,(cp) is the scale dimensionality 
of the field cp, and ~ ( q )  is the anomalous dimensionality 
function, 77 (q) = A,,,(q) - (d+ 2)/2. One can show that the 
function 71 (q) determines the structure of the physically 
measurable correlation function G, = (cp, , cp- ,) at the criti- 
cal point, and its limit dq-+O)=r)(O) is the same as the 
Fisher index 11 in the asymptotic expression G , - ~ - ~ + ~ ( ~ )  
for r = 0  and q-+O (see Ref. 8). 

The main difficulty in applying this equation is that even 
for a purely local trial functional, nonlocality will arise as a 
result of the RG transformation. If one formally lets the cut- 
off momentum A tend to infinity, we have h(q)+const 
= h(O)= 1 and, hence, the function 

(r-  r ' ) 2 ~ 2  
h(r-rf)=(&)dexp[- ] 

tends to a S function: h( r - r1)4  S(r-r'). In that case no 
nonlocal terms will be generated in the free energy func- 
tional if they are not present in its bare form. This makes it 
possible formally to use the local version of the exact RG 
equation. 

Indeed, the original RG equation is written for the nor- 
malization A = 1, and the nonlocality is generated due to the 
term 

where h(r-rf)=h(r-rl)-qr-r'). 
We encounter here the problem of determining d q ) .  

Above it was purely formally defined as the difference be- 
tween the dimensionality of the field q(q) and the naive 
dimensionality (d+2)/2. If we use the fact that 
A,(q) = (d + 2)/2=const, the Gaussian functional Ho of 
(3.3) turns out to be unchanged, and the form of the RG 
equation is greatly simplified, since there are no terms pro- 
portional to d q )  = A,,,(q) - (d + 2)/2. This suggests that if 
we formally take all nonlocal corrections exactly into ac- 
count, this will give the required nonlocal form of H [ q ] ,  the 
correct function G(q), and so on. However, such a solution 
is to date impossible. 

Moreover, the requirement that the functional 

be constant under RG transformations is as artificial as split- 
ting it off from the total form H,,,,,, since when 
A,(q) = (d+ 2)/2=const, terms proportional to Icp (q) l2  are 
inevitably generated in H=H,,,,I-Ho. More natural is a 
choice of A,(q) that preserves the coefficient of lcp(q)12 in 
the total GLW functional, and transfers the source of struc- 
tural change in the (exact) correlation function G(q) from 
the generation of corrections to this coefficient to the genera- 
tion of the anomalous dimensionality 9 (q;l) 
=A,(q;I)-(d+2)/2 of the field cp with time I. In fact, it is 

just this choice that occurs in conventional RG theory, and 
that was also used in previous papers in the limit 1 - w  (i.e., 
it was assumed, in fact, that d q ) =  ~ [ ( q ; l h ~ ~ ) ] .  This made 
it possible to develop a perturbation theory in a verifiably 
small 7. However, it was made clear that this choice does not 
fix 9 uniquely and, in turn, requires a selection of this quan- 
tity starting from the requirement for a physical branch of the 
solution for the nonlocal corrections.* Taking now into ac- 
count knowledge of the large river effect and the uniqueness 
of the fixed point for the local approximation, we may expect 
that the required quantity 11 is obtained automatically when 
we place the system on the critical surface of the local equa- 
tion and undertake a parallel solution of the time ( I - )  depen- 
dent equation($ for the nonlocal correction. 

One can obtain the equation for the nonlocal correction 
by writing H as the sum H=Qo+@, of a local part 
@,,=Jrf[rp(r)] and an additional term @ ,. If, as expected, 
@,4@, (to the degree that 17 is small), we have, after linear- 
izing in @, , 

Describing the variation of the correlation function in 
terms of the generation of 17 instead of in terms of correc- 
tions to the coefficient of Icp (q)12 makes it possible to look 
for @, in the form of a gradient expansion. To do so, we 
expand the factor h in powers of gradients, and retain to first 
order the lowest nonvanishing contributions from Vrp: 

It can easily be shown that in this approximation it is suffi- 
cient to retain the anomalous dimensionality function 
9 (r-r') in the form q(r-rl)=const= 9. The RG equations 
were worked out in this approximation in Ref. 8, and take the 
form 

where the coefficient B is Jpp2h(p) = d1(27r)"'~4 I .  The set 
of Eqs. (3.7) was numerically integrated in the same paper at 
the fixed point J'= x= 0. 

The main difficulty here is that the physical branch of 
the solution for f'(cp(r)) itself is known only numerically, and 
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FIG. 2. The quantity 7.1 as function of  I for 
the physically most interesting d = 3  case. 
Further on (for 186), the quantity 7.1 remains 
essentially constant, coinciding in 1% I limit 
with the fixed value found earlier by means 
of the I-independent equations for the fixed 
point. We also show two close phase trajec- 
tories obtained for deviations of the system 
on the two sides of the critical surface. 

varies as a function of the parameter g in (3.7a). To bypass 4. EVOLUTION OF THE CORRELATION FUNCTIONS IN THE 

this difficulty, we put cp = cp'l &, removing the 7 depen- CRITICAL REGION 

dence in (3.7a) to the effective dimensionality 
de,=2dl(2- g), and neglecting the small quantity Bx. More- 
over, we have already stated that when one works only with 
the equations for the fixed point, the physical constraints do 
not completely determine the numerical value of the index g 
(since in the given approximation, they simply reduce to the 
boundary conditions x(O)=x,(O)=O). With these constraints 
and with a fixed branch of the solution of f(cp)=0, the equa- 
tion for the fixed point x = O  has a one-parameter family of 
solutions x(q;$.  As in the purely local case with f(cp(r)), 
this again led to problems in choosing a physical branch of 
the solution for x(cp;rl). This choice, strictly, also fixed the 
magnitude of 7 # 0. 

The new approach radically changes the philosophy be- 
hind the search for g. If at the initial time the function X(cp,l 
=0) satisfies the requirement X(O,O)=x,(O,O)=O, these 
boundary conditions will also be satisfied for arbitrary 1 if 
the function f(cp,l) is even and x(0,l) =O. Hence, 

which determines the function dl) at any time 1. As a result, 
we have the following prescription for calculating the func- 
tions f ,  X ,  and g. For a given structure of the seed f (cp,l= 0) 
we choose r=g2 such that we fall on the critical surface 
(deformed by the presence of g and BX in the equations for 
f ,  which in turn are calculated in the case of a parallel solu- 
tion of Eqs. (3.7) taking condition (3.8) into account). Nev- 
ertheless, since g is small, it is convenient to begin the 
search for the desired r, starting with r as found in the local 
approximation. 

This program was implemented when we prepared the 
present paper. We show in Fig. 2 as an example, the behavior 
of 77(1) calculated in this manner for the physically most 
interesting case rl=3. As I increases, so does g, and in the 
limit as I+% i t  reaches a tixed value which is the same as 
the one found earlier using the (I-independent) equations for 
the tixed point. 

Although the natural determination of the index g that 
does not rest upon additional hypotheses is also of interest 
from the point of view of the foundations of the general 
theory, by itself this result does not enhance traditional ap- 
proaches. The starting idea of the derivation of the exact RG 
equation, resting upon the use of the scaling equations for the 
physical correlation functions, assumed broader possibilities 
thanks to the connection between RG equation and the scal- 
ing equations.23 In the present section, we shall demonstrate 
that such possibilities are, indeed, opened up by the new 
approach to solving the RG equation. 

The idea of the derivation of the scaling equations for 
the correlation functions is simple, but writing them down is 
very cumbersome (one can find a detailed exposition in Ref. 
23). Without going into details, we note that the scaling 
equations can be written in the form of an infinite hierarchy 
of partial differential equations, the characteristic set for 
which is the same as the exact RG equation. This means, in 
particular, that the singular points at which the correlation 
functions diverge (which must be at the physical critical 
point) are the same as the fixed points of the RG equation. 

Defining the mth order correlation function by 

we can write the scaling equations in the form 

The operator 61 ,yl ] is here given by 
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In view of the fact that the operator &[gk] describes the 
derivative of the correlation functions with respect to I, i.e., 

and restricting ourselves for definiteness to the two-point 
function 

we obtain for it a compact version of Eq. (4.2): 

By virtue of the symmetry of G(q;{gk(l)}) 
= G(-q;{gk(l))), this correlation function depends only on 
q=lql, and in particular, in the limit as G(q;{gk(l)})--+m, we 
have simply 

Equations (4.8) and (4.9) look like a surprisingly simple so- 
lution of the problem. However, it is so simple only in terms 
of the formal variable I. In actual fact, we are interested in 
how G depends on the physical quantities, i.e., in the present 
case on q and 7: 

In turn, in order to find the function I(T), we must first solve 
the whole system of equations for the infinite number of 
vertices gk(l) (i.e., the equation for dflal), and after that 
express them all, including 1, in terms of the single parameter 
T. Nonetheless, this procedure is realizable in the approach 
described here. 

We combine the equations for f ,  X ,  and G into a single 
system as follows: 

We shall consider in parallel the evolution on the large river 
of the functions f and x in the space of the variable q, of the 
quantity d l )  given by Eq. (4.9b), together with the condi- 
tion (3.8) in the form 

and of the function G(q;l) defined in the space of the wave 
vector q. Essentially, we then simply copy the smoothing and 
universalization process of the correlation function, which 
proceeds in parallel with the renormalization of the effective 
parameters of the system. Since gk  and G are evaluated at 
the same times 1, there is a one-to-one correspondence be- 
tween the numerically determined T'g2 and the other quan- 
tities, and that correspondence can be explicitly calculated 
and visualized. 

In order to study the system (4.9) analytically, it may be 
useful to consider it in the context of some form of pertur- 
bation theory. In particular, such a study is carried out in 
Appendix A in the spirit of the E expansion. It reproduces the 
well-known results of the E expansion, and enables us to see 
directly how the required solution for the correlation func- 
tion G =  G(r) can be obtained in the context of Eqs. (4.9). 

The program of numerical calculations described here 
was also implemented, and the corresponding result is shown 
for d = 3  in Fig. 3, where we show the evolution with time 1 
of the function G(q;l), which is put into correspondence 
with the renormalized quantity r. One easily performs also 
the inverse Fourier transformation and obtains the form of 
the correlation function G(r;l) in real space at an arbitrary 
stage of the renormalization. The result of such a transfor- 
mation is shown in Fig. 3b for the critical point (i.e., for 191, 
when this function has essentially ceased changing). Plotting 
the function G(r;l) on a log-log scale, we can verify that 
(with time 1) it acquires a scaling shape arriving at the ap- 
propriate distribution G(r,m) as at an attractor. 

The whole philosophy behind the method is such that it 
does not make any fundamental distinction between the 
search for a solution for the simplest (scalar and even) GLW 
functional, and the analogous procedure in more complex 
cases such as, for instance, the study of tricritical behavior or 
the behavior of systems with a symmetry that allows for the 
existence of odd terms in the GLW expansion, i.e., g2,+, ZO. 

In the interests of brevity and given that the physics of 
this problem is of interest in its own right, we do not present 
here the corresponding material, and it makes sense to con- 
sider only that which is necessary for completing the discus- 
sion of the system of scaling equations containing arbitrary 
vertices, including also , g 2 k +  I 20. Part of the necessary in- 
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formation about the RG equation with g z k + l  #O is relegated 
to Appendix B. Using the general scaling equation for arbi- 
trary correlation functions, 

we have for the lowest odd numbers m =  1,3 the following 
equations (written here for the sake of compactness in the 
local approximation): 

The first of these equations can be solved independently in 
the form 

immediately giving (fiZ0)=exp[(d - 2)1/2]. 
In particular, in the E expansion (see Appendix A), we 

have 

and hence, 

Since the equation for the fixed point has, as before, only an 
(Ising) nontrivial solution with g2k+ =0 (see Appendix B), 
we obtain for ,O a magnitude which is the same as the clas- 
sical result for the index p: 

or, in more general form, ,O= 112-3e/2(n + 8). Using 
(q(,=o), one can solve the next equation, which determines 
~'P,/,'P,/*'P,,,)~ and so on. 

FIG. 3. a) Evolution of  the Fourier trans- 
form of the correlation function G(cl,l(r)) 
placed in correspondence with variations in 
the temperature parameter 7. b) The shape of 
the correlation function G(r;l) in real space, 
given for the critical point (i.e., for l a 1  
when this function essentially ceases to 
change). This shape G(r,m) is an attractor to 
which any trial functions G(r;O) will be at- 
tracted. 

In conclusion, note that we are, in fact, dealing with a 
coherent hierarchy of scaling equations, including the RG 
equation, which can be interpreted as an additional scaling 
equation for the partition function, considered in this context 
as a special case of the zeroth-order correlation function 
A,=o, so that the most refined method for studying critical 
phenomena turns out to be at the same time both the most 
convenient and the most natural one. If we ignore the fright- 
ening complexity of Eqs. (4.9), the prescription for solving 
them looks like a naive copy of the experimental prescrip- 
tion. One need merely let the temperature of the system ap- 
proach the (renormalized) critical temperature, and the sys- 
tem itself will produce a scale-invariant structure with a 
fluctuating field with the corresponding correlation function 
and other parameters that are automatically acquired during 
its approach to the critical point. 

I am grateful to J. P. Badiali, V. Russier, and D. Di Cap- 
rio for hospitality and collaboration at the Universiti Pierre 
et Marie Curie (Paris VI), during which the "large river" 
effect was discussed many times and used to analyze various 
problems in fluctuation theory. I am also grateful to C. Bag- 
nuls and C. Bervillier for useful discussions and kind infor- 
mation on the latest results of their study of the exact RG 
equation. 

APPENDIX A 

Perturbation Theory Solution of the Equations for the 
Renormalized Functional and the Correlation Function 

References to the numerical solution of equations, espe- 
cially unfamiliar ones like (4.9), usually leave some gaps in 
the exposition since the numerical solution cannot be repro- 
duced in all details in a journal. Taking this into account, we 
consider a simplified form of (4.9) in the present Appendix, 
reduced in the spirit of the first E expansion approximation, 
and solve it analytically. 

We restrict ourselves to the local approximation, and we 
truncate the system of equations for the vertices g 2 k  as fol- 
lows: 
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The quantity E = 4- d is assumed here to be small. In the 
vicinity of the fixed point, where the trajectories follow the 
large river and hence i rk[g j ]=~,  we have 

in which we have introduced the renormalized temperature 
"7 T+ 3g2/2. For a given value of E#O, the vertex g4 tends 
to gz  = el18 # 0,  and only the equation dfldl = 2 7  (1 
- 3 g t )  remains important. Integrating it with the boundary 
condition "70) = 1, 

and substituting this result into the equation for the correla- 
tion function (4.8), we have finally 

where the index y is the same as the quantity well known 
from the E expansion 

(in the more general n # 1 case, one easily obtains in a simi- 
lar way y= 1 + (n + 2)/2(n + 8)).21 

It is also of interest to calculate the temperature depen- 
dence of the G function as d 4 4 .  In that limit, g z  = ,418 
tends to zero as 7-i 0 (or, accordingly, as l-im), and the 
solution is not so trivial, but more intuitive, as the program 
of reducing all quantities to their dependence on a single 
parameter "7s realized. Instead of Eqs. (A2), we now have 

We have already stated that it is convenient to use "7s the 
independent parameter, and to consider first the equation 

with solution in the form 

which one now must substitute into the first of Eqs. (A6) to 
obtain the desired integral: 

This relation gives the well known logarithmic correction to 
the mean-field critical asymptotic form: 

The results obtained for d f  4 and for d= 4 are some- 
what trivial in and of themselves, but the process of obtain- 
ing them demonstrates how the formal /-dependence of the 
vertices of the free energy functional and of the function G is 
transformed into the real temperature dependence of the cor- 
relation function. For an analytic solution, we have in this 

case used essentially the same prescription for tinding the 
required dependence as was described in the main text for 
the numerical procedure, with the only difference being that 
here we succeeded explicitly in transforming the parametric 
data G(1) and g2,(l) to the function G(?).  

APPENDIX B 

Lack of a Nontrival Solution for a Model with gk+' Terms 

Here we consider some properties (of the local version) 
of the exact RG equation 

when there are odd terms in the GLW functional. It is con- 
venient to split the local GLW functional density f into two 
parts, f(cp)=a(cp)+s(rp), where a(cp)= [f(cp)-f(- cp)1/2 
and s(cp)= [f(cp)+ f(-  cp)]/2, and rewrite Eq. (Bl) in the 
form of a set of two equations: 

This pair of equations can be studied both numerically and 
analytically. In the present Appendix,-\aresncentrate on an 
analysis of static solutions i s =  Ra = 0 ,  which are oTinterest 
from the stand point of solving the equations for the corre- 
lation functions. Many problems connected with applying 
the large river method, of course, turn out to be omitted. 

First and foremost, we analyze the mutually consistent 
asymptotic behavior of the functions s(q) and a(cp) as 
cp 4 m. If the presence of the term a: in the equation RS=O 
is unimportant, the asymptotic behavior of the function s(cp) 
remains the same as for a =0, and hence s,=q a: cp --+ m. 

Substituting this asymptotic form into the equation Ra =O we 
have 

The simplest possibility of satisfying this equation in the 
limit as cp+m consists in assuming that 

This yields 

and, hence, u- (p2"'("+2'. For 2< d<4, 1 <2dl(d- 2 ) < 2 ,  
and the corresponding term n$- q 2 ( " - 2 ) ' ( " f  2'-=S q2 in the 
equation Rs=O is indeed unimportant. However, this is a 
special solution found, in fact, for a (rather special) choice of 
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the boundary conditions. To control the asymptotic behavior 
in the more general case, we need to solve Eq. (B4). Using 
the substitution a(cp)=cprc(cp2), we have 

It is then easy to reduce this equation to the standard form of 
the equation for the hypergeometric functions 

Z K ~ ~ + ( P - Z ) K ~ - L Y K = O ,  (B6) 

where z,= (d+2 )q2 /4 ,  /3=3/2, and a= ( 2 - d ) l [ 2 ( d + 2 ) ] ,  
and to use its well known asymptotic form. Turning then to 
the function a(cp), we obtain the general asymptotic form for 
the family of solutions of the initial equation 

cp2dl("2) exp[(d + 2)cp2/4]. 

The general solution which we have obtained diverges much 
faster than s c p 2  as ( ~ 4 0 3 .  Moreover, the special solution 
obtained earlier cannot be used simultaneously cp>O and 
q<O, since it requires a special choice of the constant a,(O) 
which cannot be satisfied simultaneously for cp>O and cp<O 
by virtue of the continuity of the function a(cp). 

This fact is reflected in the perturbation theory as fol- 
lows. Introducing a cutoff as was done above, we obtain a set 
of equations for the parameters gk resembling the E expan- 
sion in the presence of odd-order quantities g2k+ l :  

Using this cutoff of the system, one in fact assumes that 
2 g 4 - 4 - d = ~ ,  g6-E , and gka7-+0 or, in other words, that 

f(cp)-F, and that it tends to zero as E -+ 0. But that, in turn, 
means that g2k+140, and hence g3g4<& and g 6 g l + ~ 2 ,  SO 

thatg5<&*g3<&Jg1<&. In other words, g 2 k + 1 < ~ - g 2 k ,  
so that only the even part of the function f ( q )  = s(cp), which 
is small as E ,  is important in the framework of the E expan- 
sion. 

This result is the same as the well known result of the 
standard field theoretical approach to the theory of critical 
phenomena (see Refs. 24 and 25). Moreover, it is of great 
import in the framework of the method described here for 
solving simultaneously the exact RG equations and the equa- 
tions for the correlation functions, since it reduces the prob- 
lem of finding the critical surface in the presence of g2k+ 
vertices to the simpler g2k+ = 0  case. All nonvanishing cor- 
rections to the quantities g2k+ play the role of deviations 
from the critical surface, and can be taken into account in the 
appropriate manner, i.e., in the language of the appropriate 
eigenfunctions, instabilities, and so on. Such a study has 
been carried out, but it lies beyond the scope of the present 
paper. 
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