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The interaction of the kink of the A& theory with an attractive Gfunction impurity is discussed. 
It is shown that, depending on the initial kink velocity, the kink either passes over the 
impurity, is captured by it, or is reflected backward. This last effect has a resonant nature and 
can be explained using the effective Lagrangian obtained in the paper that takes into 
account the interaction of the translational mode of the kink excitation and the discrete mode of 
its excitation. The stochastization of the problem when the kink is captured by the impurity 
is discussed. It is shown that the spectrum of excitations of a kink at an inhomogeneity does not 
contain the so-called discrete impurity mode that is realized in the spectrum of the theory 
as a discrete mode if excitations over the vacuum are considered. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

Problems of the interaction of solitons (kinks) with im- 
purities have been fairly widely discussed in recent years. 
For these purposes, one most frequently considers the sine- 
Gordon equation and the Ginzburg-Landau-Higgs (GLH) 
equation. The sine-Gordon equation describes many phe- 
nomena in different branches of physics, for example, the 
propagation of magnetic flux in Josephson junctions, domain 
wall dynamics in magnetic crystals, the propagation of dis- 
locations through a crystal, the propagation of ultrashort op- 
tical pulses through a two-level medium, etc. It is clear from 
this that the problem of solving the sine-Gordon equation in 
the presence of nonlocal inhomogeneities arises very natu- 
rally. Depending on the geometry of the problem, either one- 
dimensional or multidimensional equations may be appropri- 
ate for the physical situation. The behavior of the solitons of 
the sine-Gordon equation in the presence of a variety of 
inhomogeneities has been repeatedly discussed in the litera- 
ture (see, for example, the reviews of Refs. 1-4). 

With regard to the GLH theory, it also has numerous 
applications in solid-state physics. For example, this model 
describes phase transitions in ferromagnetic materials, con- 
ductivity in quasi-one-dimensional systems, nonlinear exci- 
tations in polymer chains, etc. (see, for example, Ref. 5 and 
the references in it). In field theory, the GLH equation is used 
as the simplest model of a theory with spontaneously broken 
symmetry to describe the evolution of domain walls and 
vacuum bubbles. The behavior of the scalar GLH field in the 
presence of massive point fermion, which can be regarded as 
an inhomogeneity, was discussed in Ref. 6. A discrete (lat- 
tice) approximation of the theory with local mass inho- 
mogeneities was considered in Ref. 7. Therefore, study of the 
behavior of the solutions of the sine-Gordon and GLH equa- 
tions with inhomogeneities is of undoubted interest. 

In this paper, we consider the interaction of a kink in the 
A& theory with a Gfunction impurity. We consider a La- 
grangian of the form 

For the field theory determined by (I), at the classical level 
we can set A =  1, m = 1, after which the equation for the field 
&x, t )  takes the form 

Here p is a constant that characterizes the strength of the 
interaction of the field &x,t )  with the impurity. In the case 
p=O, Eq. (2) has the solution (kink) 

where y=[2(1 -v~)]-"~,  V is a continuous parameter (OSV 
<I)  that determines the kink velocity, and x ,  is the initial 
position of the kink. 

In this paper, we consider what happens to the kink in 
the case p # O .  It is well known that a Sfunction impurity 
acts on the kink in the approximation of an undeformable 
kink as a potential. For the case of the sine-Gordon equa- 
tion, this question was first discussed in Ref. 8, where it was 
shown that for the appropriate sign of p a microinhomoge- 
neity acts on the kink of the theory as an attractive potential, 
so that the soliton can be localized. In Refs. 9-1 1, questions 
relating to the deformability of a soliton solution localized at 
a microinhomogeneity were studied for the case of the sine- 
Gordon equation. It was shown that as the constant p is 
increased, in addition to the vibrational motion of the kink in 
the potential produced by the inhomogeneity, kink deforma- 
tion effects of a resonant nature arise. For example, it was 
found in Ref. 11  that there is a strong change in the shape of 
the soliton in the presence of vibrations, the change occur- 
ring at a definite value of the constant p. The problem of 
scattering of the kink by the impurity for the problem ( 1 )  was 
tirst studied in Ref. 12, and some resonance effects were 
found which are discussed below. 
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In the question of kink-impurity interaction, a recent 
development has been discussion of the role of the specific 
degree of freedom known as the discrete excitation mode of 
the impurity. Interest in this mode increased after the publi- 
cation of Ref. 7, although this excitation mode was appar- 
ently first mentioned in Ref. 6. We elucidate the position of 
the discrete impurity mode in the excitation spectrum of the 
problem (1). For any p, the solutions +,=-t-1, which are 
vacuum solutions 'in the case p=0,  persist for Eq. (2). We 
now seek the spectrum of small excitations around the solu- 
tion 4, : 

Substituting (4) in Eq. (2) and linearizing with respect to 84, 
we obtain for 134 the equation 

Here the impurity is assumed to be situated at the point 
Xo=O. Making the substitution S#=exp(- iGt)x(x), we ob- 
tain for the function ~ ( x )  the equation 

Equation (6) has the unique normalizable solution 

It is natural to call (7) a discrete impurity mode. We shall 
consider the influence of this mode on the behavior of soli- 
tons near the inhomogeneity. In Ref. 13, this was done for 
the sine-Gordon equation. In Ref. 13, scattering of the soli- 
ton by the impurity was described using an effective La- 
grangian that takes into account the potential interaction of 
the soliton with the impurity and the possibility of excitation 
of the discrete impurity mode. Comparison of such a model 
with calculations of the exact field problem indicated that the 
behavior of the soliton could be described successfully with 
the effective Lagrangian. 

The aim of this paper is to investigate the problem of 
interaction of the kink with the impurity for the theory (1). 
We discuss: 1) the influence of the discrete impurity mode on 
the motion of the kink; 2) an effective Lagrangian that de- 
scribes approximately the kink-impurity interaction. We 
shall also compare the exact solutions of Eq. (2) with the 
solutions that follow from the effective Lagrangian; in par- 
ticular, we shall obtain a description of the "escape win- 
dows" and the regions where the kink is captured by the 
impurity. Preliminary results were partly discussed in our 
Refs. 12 and 14. 

2. BOUND STATE OF THE KINK AND IMPURITY 

It is convenient to begin the investigation of the kink- 
impurity interaction by discussing the behavior of the kink 
near the impurity. In Fogel's approximation,8 it can be 
shownt2 that the impurity in the theory ( I )  acts on the kink 
like an attractive potential (p>O): 

V ( x )  = - 
P- 

4 cosh4( ax)  ' 

where cr= 11d. Thus, in this approximation there is a finite 
motion of the kink for energy E<O and an infinite motion for 

E>O. However, the picture of the soliton motion in the exact 
field problem (1) is more complicated. The soliton may be 
not only captured by the attractive impurity but also reflected 
by it. This effect has a resonant nature and was first dis- 
cussed in Ref. 12. Later, the same effect was also discovered 
for the sine-Gordon equation in Ref. 13. Resonant interac- 
tion of the soliton with the impurity cannot be obtained in the 
potential approximation (8) and requires a more detailed 
study. 

We note first of all that a kink situated at the impurity 
position, 

is an exact solution of the problem (2). We attempt to find 
solutions of Eq. (2) in the form 

where ISc&x,t ;~~) 16 1. Choosing Xo=O, we obtain by anal- 
ogy with (5) 

Sq5,,- Sq&,+ (3  tanh2 ax-  l)&$= - pS+(x,t) S(x). 
(11) 

From this, making the substitution Sd= exp( - iot)x(x),  we 
obtain for the function ~ ( x )  the equation 

The potential of the problem consists of the attractive poten- 
tial -3 coshP2 (ax)  and a repulsive Sfunctional potential. 
The ground state of the problem is determined by the equa- 
tion 

where T(y) is the gamma function, and c2=-2(og-2). In 
the limit p+O, we obtain from (13) 

and this reproduces the frequency of the kink vibrations in 
the harmonic approximation for the potential V(x) in (8). For 
p=O, we have wo=O, i.e., the frequency wo arises from the 
zero (shear) mode of kink excitations in the absence of in- 
teraction with the impurity. In the limit p + ~ ,  we have &-, 1 
and og-+3/2. 

The first excited state of the problem (12) has a node at 
x=O, is identical to the solution of the problem for p=O, and 
corresponds to the eigenvalue ta:=3/2. Thus, in the presence 
of the impurity the discrete excitation mode of the kink ex- 
ists and has the same eigenfunction and eigenvalue as in the 
case p = O .  There are also solutions of the problem (12) cor- 
responding td a continuum with w2>2 (Ref. 14). 

Thus, we have listed the excitation spectrum of the kink 
situated at the point of the impurity. It consists of vibrations 
of the kink around the point Xo with frequency oo,  variations 
in the shape of the kink with frequency o, , and a continuum. 
There is no excitation of the discrete impurity mode of the 
type (7) in the case when the kink is at the point of the 
impurity. We now consider the excitation spectrum of the 
system in the case when the kink is far from the impurity. In 
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this case, the discrete impurity mode (7) localized near the 
impurity is added to the zero mode wo=O and the first dis- 
crete mode w,= J3/2 of excitations of the kink localized 
near it. The discrete impurity mode splits off from the con- 
tinuum at distances between the impurity and kink of order 
unity and does not exist at shorter distances. As is shown by 
the experience gained from study of the kink-antikink (KK) 
interaction in the ~ 4 ;  t h e ~ r ~ , ' ~ - ' ~  the continuum excitations 
are strongly suppressed compared with the excitations of the 
discrete kink mode with ol= at not too high collision 
energies. Therefore, it appears logical to construct initially 
the effective Lagrangian of the kink-impurity interaction 
with allowance for only the modes oo and o , .  The procedure 
for constructing such an effective Lagrangian is completely 
equivalent to the problem of constructing the effective La- 
grangian for the KK interaction.16-l8 

3. EFFECTIVE LAGRANGIAN OF KINK-IMPURITY 
INTERACTION 

We shall seek solutions of the theory described by the 
Lagrangian (1) at all separations X between the impurity and 
the center of the kink in the form 

4(x,t)= tanh[a(x-X)] +Ax1[a(x-X)]. (15) 

Here xl(z) is the solution of Eq. (12) corresponding to the 
eigenvalue o1 = J3/2, z = a ( x  - X) : 

J9/8 tanh z 
XI(Z)= coshz ' 

We substitute the function &x,t) in the form (15) in the 
Lagrangian (1) and regard X(t) and A(t) as dynamical vari- 
ables in what follows. Integrating the expression (1) with 
respect to x, we obtain the effective Lagrangian 

up to terms quadratic in A, where 

where M,= 2 , 1 2 r n ~ / 3 ~  = 2,1213 is the kink mass. The stan- 
dard variational procedure for the Lagrangian (17) leads to 
dynamical equations for X(t) and A ( t )  by analogy with the 
procedure used earlier for the KK interaction.18 

If we take into account only the term with Xo in (17), 
then we obtain a potential model for the kink-impurity 
interaction-the analog of Fogel's approximation8 for the 
sine-Gordon equation. In this approximation, the kink eithe~ 
passes above the impurity or executes a finite motion in the 
region of the impurity. 7'he expression '1, is the Lagrangian 
that describes the free vibration of the first lr~ode with 

w ,  = m. The term Xi,,, describes the interaction of the 
zeroth and first modes due to the presence of the impurity. 
Making the change of variables 

C = A I ~ ,  y=Xt/Z, t1=t/V'2 

in (17), we obtain for the effective Lagrangian (17) the sys- 
tem of dynamical equations 

Here 

Note that if the first excited mode of the kink is frozen, i.e., 
we set CGO, we would obtain instead of (18) the potential 
problem 

which, with allowance for the energy conservation law, leads 
to solutions in quadratures. In contrast to (19), Eqs. (18) 
describe the motion of a system with two degrees of freedom 
(y,C), which are related by one conservation law. Thus, in 
the 4-dimensional phase space of the dynamical system (18) 
a 3-dimensional manifold of trajectories is distinguished. It is 
well known that in such dynamical systems stochastization 
can occur. The motion may be either finite or infinite. We 
have studied the solutions of the system (18) corresponding 
to the evolution of the unexcited kink scattered by the impu- 
rity. We studied the evolution in time of the functions X(t) 
and A(t) corresponding to the initial conditions 

Here ~ ( 0 )  is the initial velocity V of the kink (a free param- 
eter of the problem). 

We studied the system (18) for the different values 
p=0.3, 0.5, 1.0, 2.0 of the coupling parameter and different 
initial velocities V. For example, for p=0.3 the range of 
velocities 0.025SVS0.075 was calculated with velocity step 
A V=2. lov4. In this case, the relative error in the energy was - Without allowance for the coupling of the channels, 
i.e., for the problem (19), the infinite motion corresponds to 
passage of the kink from -w to +w over the attractive well 
vo(y>. 

If the coupling of the channels is accounted for, the kink 
may be captured by the well, and it can also be scattered 
backward. All three different forms of kink motion are 
shown in Figs. 1-3. Figure 1 shows projections of the phase 
trajectories onto the planes (x,x) and (A,A) for the case 
when the kink passes over the well, Fig. 2 is for the case of 
capture, and Fig. 3 for backward scattering. Backward scat- 
tering by the impurity is a new element inherent in systems 
of the type (1 8). Indeed, the capture effect could be ascribed 
to the presence of friction in the system. This was precisely 
how the discovered capture effect in kink-antikink collisions 
was originally explained.'5 However, the observation of "es- 
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FIG. 1. ProFtions of phase trajectories onto the (x,x) plane (at the top) 
and the (A,A) plane (at the for p=0.3, V=0.0544. A case in which FIG. 3. Projectio?~ of the phase trajectories onto the (x.X) plane (at the 

the kink passes near the inhomogeneity after it has made one complete 
and the (A,A) plane (at the bottom) for ~ = ~ . ~ 7  V=0.0537. A case 

motion around it (here and in what follows, the impurity is situated at the reflection of the kink by the inhomogeneity. The reflected kink is elliptically 

point X=5.0). The lower figure shows internal excitation of the kink, and 
one can clearly see the elliptical polarization of the outgoing kink. 

ing impurity. The further study of the model leads to the 
cape windows" (see Ref. l7 and the references cited in it) discovery of several windows of transmission and capture 
indicated an existing mechanism for returning the energy to 

(see Fig. 4). We mention that the system of equations (8) was 
the zero mode. In the case of kink-impurity interaction, the 

calculated to t '=  lo3. It is entirely possible that at times t>  t' 
same effect exists in the reflection of the kink by the attract- 

some of the trajectories from the capture windows may make 
a contribution to the region of escape forward or backward. 
The difference between the trajectories is manifested particu- 
larly clearly when one studies the Poincari plots in the 
(x,A) plane made for the case of reflection of the kink by 
the inhomogeneity (Fig. 5) and for capture (Fig. 6). It can be 
seen that in the case of capture the plane of the plots is filled 
rather uniformly, in contrast to the backward scattering. 
Thus, in the capture windows the motion is nearly stochastic, 

FIG. 2. Projections of the phase trajectories onto the ( x , x )  plane (at the 
top) and the (A,A) plane (at the bottom) for ~ 3 0 . 3 ,  V=0.055I. A case of FIG. 4. Windows of transmission and capture for p=0.3 shown as the 
cnpturc of the kink by the inhomogeneity situated at the poitit X,=5.0. The coefficient of inelasticity K = v ~ / v , ? , ,  as a function of the initial velocity V: A 
internal excitation of the kink in the lower palt of the figure suggests thc plus sign of K(V) corresponds to trnnsmission of the kink, a minus sign to 
cxistcnce of cluasilcvels in the hinh-impurity system. reflection, ;~nd K=O to cnpt~~re o f  tlic kink by the impurity. 

\ 
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FIG. 5. Poincare plot X(A)[,,=, for the case of reflection of the kink by the 
inhomogeneity, p=0.3, V=0.0537. Regular behavior. 

while in the transmission and reflection windows it is nearly 
integrable. 

It was also found that there is a critical value V,, of the 
velocity above which the only kink passes around the inho- 
mogeneity occurs, while below it all the above effects occur. 
Thus, for p=0.3, V,,=0.0686; for p=0.5 ,  Vc,=0.151; for 
p=  1 ,  Vc,=0.322; and for p=2 ,  Vc,=O. 149. Note that with 
the effective Lagrangian (17) the critical velocity V,, in- 
creases with increasing p in the region of small p .  However, 
in the region p> 1 the regime is different, and for large p V,, 
is observed to decrease. 

FIG. 6. Poincarc plot of  X ( A ) ~ , , = ,  for the csse of c;~ptc~re of  the kink by the 
inho~nogcncity, p=0.3, V=0.055 I .  Stochastization of  the process. 

Thus, analysis of the field problem (1) using the effec- 
tive Lagrangian (17) leads to a very varied picture of solu- 
tions not found in the potential approximation: The kink can 
be captured by the impurity and reflected backward from the 
attractive impurity. There are windows in which the kink 
passes over the impurity. There exists a critical kink velocity, 
above which the kink is not captured by the impurity but 
passes above it, merely losing some of its energy. A11 these 
predictions are confirmed by direct calculations of Eq. (2 )  of 
the exact field problem. 

4. EXACT FIELD PROBLEM 

The solution of the Cauchy problem for Eq. ( 2 )  requires 
much more computing time than the integration of the sys- 
tem of ordinary differential equations (18). As initial condi- 
tions, we chose a kink moving with constant velocity V far 
from the impurity: 

+(x,O) = tanh y ( x - x , ) ,  +,= - V y  c o ~ h - ~  y ( x - x a ) .  

In the numerical experiments, we used a Gaussian approxi- 
mation for the 6 function in Eq. (2) ,  defining it so that 
6 ( x ,  a )  - q x ) :  

a+m 

In connection with this substitution, the results of the calcu- 
lations begin to depend, in general, on the parameter a. In 
our computational scheme, the limit a-+m, with which one 
should compare the results of the calculation in accordance 
with the effective Lagrangian (17),  cannot be realized liter- 
ally. Therefore, although Eq. (2)  was calculated for different 
fairly large values of the parameter a, such that the diameter 
of the impurity was much less than the diameter of the kink, 
we cannot require complete numerical agreement of the re- 
sults of the exact theory and the model (17). However, in the 
exact problem we discuss the observables that depend 
weakly on the particular value of the parameter a. For ex- 
ample, the difference between the critical velocities when a 
was changed from a = 5  to a= 10 was found to be less than 
5%. 

The results of solving the exact equation (2 )  with allow- 
ance for the substitution (20) confirm the main results ob- 
tained with the model effective Lagrangian (17). When the 
kink passes over the impurity, the exact theory determines 
the critical velocity V,, for capture of the kink by the impu- 
rity, the passage of the kink over the impurity for V>V, , ,  
and the reflection of the kink by the attractive impurity, and 
also windows of transmission below V,, .  The value of the 
critical velocity is reproduced rather accurately. For example, 
for p=0.3  the critical velocity for the effective potential is 
~ : $ ~ 0 . 0 6 8 6 ,  while for the exact equation we have 

-0.069 for a = 5  and ~ ~ ~ ' ~ ' = 0 . 0 7 3 0  for a= 10. VS:act= 
Nevertheless, the exact calculation leads to some impor- 

tant differences for several predictions. Thus, for p=0.3 and 
p=0.5 we found in each case only one window of kink 
reflection by the inhomogeneity. It appears that study of the 
kink in the field problem leads to smearing of the windows. 
A similar effect was also observed in the case of KK inter- 
actions for velocities near V,,.; see Ref. 18. In addition, as 

821 JETP 81 (4), October 1995 T. I. Belova and A. E. Kudryavtsev 821 



FIG. 7. Behavior of the kink in the exact field theory (2) for p=0.3, a=5 
for different initial velocities: a-transmission, b--capture, c-reflection. 

can be seen from Figs. 1-3, in this problem there is a strong 
mismatch of the periods of the motions with respect to the 
"slow" X ( t )  and "fast" A ( t )  coordinates. In this connection, 
the escape windows, which impose the condition that one 
period of the motion with respect to the two coordinates is 
multiple of the other, are very narrow. Therefore, on the one 
hand, energy loss to the continuum of excitations may lead to 
disappearance of some of the windows. On the other hand, 
some of the remaining windows in the exact problem may be 
too narrow and may be missed in the numerical calculation. 

It is here worth noting that in the exact field problem the 
step in the initial velocity, AV=2.1oP3, was four times 
greater than the step for the model problem (17) 
( A V = ~  - This was dictated by the limitations on the 
computing time. Because of this, some of the narrow "win- 
dows" may have been lost. In addition, a detailed study was 
made only for the case p=0.3. For ~ 3 0 . 5 ,  no study of the 
complete spectrum was made. The main aim of the numeri- 
cal solution of the field problem (2) made here was to con- 
firm the qualitative conclusions concerning the diversity of 
solutions that follow from the effective Lagrangian (17). It 
can be seen from analysis of our solutions that the detailed 
information, i.e., the position of the windows of reflection 
and transmission, is fairly sensitive to the choice of the ap- 
proximation of the S function and requires more detailed 
investigation. It appears that the same is true of the results of 
the numerical calculation of Eq. (2) published recently in 
Ref. 5, where the 6 function was replaced by a rectangular 
well without a discussion of the consequences of such a re- 
placement. 

Examples of the behavior of the kink of the exact prob- 
lem (2) for three different initial velocities V are given in 
Fig. 7 (p=0.3). 

5. CONCLUSIONS 

As can be seen from the above calculations, further im- 
provement in the description of the behavior of the kink near 

the inhomogeneity must take into account the effects of en- 
ergy loss to the continuum excitation modes and to the dis- 
crete impurity mode. In the case of the sine-Gordon equa- 
tion, an attempt to take into account the discrete impurity 
mode was made in Ref. 13. A formalism similar to the one 
discussed above was used, i.e., a solution to the problem 
with the effective Lagrangian was sought for an ansatz in the 
form a sum of a kink and the discrete impurity mode for all 
separations between the kink and the impurity. 

As follows from Sec. 2 of this paper, at short distances 
between the kink and the impurity the impurity mode is ab- 
sent altogether, and therefore in the ansatz of Ref. 13 the 
derivative of the field is discontinuous in x in the form of the 
discrete mode, which should not happen in this region be- 
tween the kink and the impurity. Therefore, the success of 
the effective description of the motion of the kink near the 
inhomogeneity for the sine-Gordon equation of Ref. 13 re- 
quires further investigation. With regard to the ~4~ theory, 
the role of the discrete mode of kink excitation is decisive. 
The same conclusion was drawn by the authors of Ref. 5 by 
analyzing the distribution of the energy between the discrete 
mode of the kink and the impurity mode when the kink in- 
teracts with the impurity. Unfortunately, we were not able to 
make a detailed comparison of the results of our calculations 
with those of Ref. 5, since the case p=0.3 that we studied in 
detail in Ref. 12 was not discussed in Ref. 5. 

The results obtained in the present paper continue a se- 
ries of studies on classical nonintegrable field theories in 
which there are solitary waves possessing at least two de- 
grees of freedom, for example, the frequency of vibrations of 
the solitary wave in a potential and a discrete mode of exci- 
tation of it. If one frequency is a multiple of the other, the 
solution of the problem exhibits the specific resonance ef- 
fects that were first found in the A& theory17 and then for the 
modified sine-Gordon equation19 and for the double sine- 
Gordon equation.'' In Ref. 12, we found for the first time the 
same effect for the kink of the A& theory interacting with an 
impurity, and in Ref. 13 the same effect was found later for 
interaction with an impurity of the kink of the sine-Gordon 
equation. 

At the same time, the investigation begun in Ref. 18 into 
the properties of a model effective Lagrangian with a finite 
number of degrees of freedom provides a qualitative under- 
standing of the fact that outside the escape windows the mo- 
tion is nearly stochastic. Here we should also mention the 
studies of Refs. 21-23, which discussed problems of sto- 
chastization when solitonlike solutions interact in systems 
that are not integrable by the inverse scattering method. 

We thank the Russian Fund for Fundamental Research 
for financial support of this work (Grant No. 95-02-04681- 
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