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We present a theoretical study of light-induced drift (LID) of light alkali-metal atoms ( 7 ~ i  and 
2 3 ~ a )  in an atmosphere of a heavy inert gas (Xe or Kr). We show that as the radiative 
intensity grows, the LID spectrum may undergo an appreciable variation: the ratio of the peak 
velocities for positive and negative radiation frequency offset can vary by a factor of 1.3 
to 1.5. The characteristic radiative intensity lo at which the LID spectrum begins to change 
depends on the buffer gas pressure and can be arbitrarily low. The effect is caused by 
the optical pumping to the hyperfine components of the ground states and the large difference 
between the rates of collisional relaxation in the orientations and absolute value of the 
velocity v of the resonant particles, provided that M <  M b  , where M  and M b  are the masses of 
the resonant and buffer particles. We also show that at intensities P I o ,  an increase in the 
mass of buffer particles from values M b 5 M  to values Mb%M may diminish the LID effect (all 
other conditions being equal) by a factor of 1.2 to 1.3. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

Light-induced drift,' or LID, has been studied fairly well 
both theoretically and experimentally (see, e.g. Refs. 2-8 
and the references cited therein). The essence of this effect is 
the emergence of a directional macroscopic flux of absorbing 
particles that interacts with a traveling light wave and under- 
goes collisions with the particles of a buffer gas. 

The theory predicts the most vivid manifestation of LID 
in atomic gases in the absorption of radiation from the 
ground state. Among the existing sources of radiation, vapors 
of alkali metals are the most suitable objects of investigation. 
Most experiments in LID of atomic gases have been carried 
out with alkali-metal vapors in the atmospheres of various 
inert gases. It is in these experiments that LID shows up 
most readily?.10 Undoubtedly, alkali-metal vapors will be 
widely used in future in studies of LID and its applications- 
hence the stimulus for a theoretical analysis of LID of atoms 
of alkali metals. 

The LID phenomenon is a highly nonequilibrium effect, 
and only by imposing certain restrictions on the parameters 
of the system is it possible to describe it by rigorous meth- 
ods. A rigorous solution can be obtained, for instance, in the 
limit of heavy buffer particles, M < M t ,  (a Lorentzian gas, 
with M and M h  the masses of the resonant and buffer par- 
ticles, respectively).""2 For the light atoms of alkali metals 
(Li and Na) in an atmosphere of heavy inert gases (Xe and 
Kr), the requirement that the system be described by a 
Lorentzian gas, M 4 M t , ,  is met fairly well. 

In a Lorentzian gas the rate v i M I M b  of collisional re- 
laxation of isotropic nonequilibrium structures in the popu- 
lation distributions in the velocities v of the resonant par- 
ticles is low compared to the rate v i  of anisotropic 
nonequilibrium structures, where v i  is the effective transport 
rate of collisions of particles in the ith level with the buffer 

gas). This fact together with the optical pumping to the hy- 
perfine components of the ground state of atoms of alkali 
metals can lead to a situation in which, beginning at a certain 
characteristic radiative intensity I,, there emerge sharp iso- 
tropic nonequilibrium structures involving the hyperfine 
~ o m ~ o n e n t s . ' ~  The intensity I. depends on the buffer gas 
pressure, and at low pressures can be arbitrarily low. The 
presence of such structures drastically changes the absorp- 
tion spectrum of light alkali-metal atomsI3 and, as a result, 
leads to an appreciable change in the magnitude of the LID 
effect and its spectrum. 

In this paper we study by theoretical methods the fea- 
tures of LID in a Lorentzian gas, using the example of three- 
level particles-with a A configuration of the levels-that 
model the light alkali-metal atoms. 

2. KINETIC EQUATION FOR A LORENTZIAN GAS 

We examine the interaction of a traveling electromag- 
netic wave 

with three-level absorbing particles in a mixture with buffer 
particles. The level diagram for the absorbing particles is 
depicted in Fig. I .  Here the levels n and 1 are the compo- 
nents of the hyperfine structure of the ground state, and the 
level m corresponds to the excited state, with g i  the statisti- 
cal weight of the ith level ( i=n,l ,rn).  We ignore collisions 
between the absorbing particles, assuming the buffer gas 
concentration N h  to be much higher than the absorbing gas 
concentration N, or NbB N. 

This level diagram gives a good picture of the real struc- 
ture of the ground and first excited states of light atoms of 
alkali metals ( 7 ~ i  and * ' ~ a ) .  Indeed the separation of the two 
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FIG. I .  Energy level diagram. The straight arrows indicate stimulated tran- 
sitions, wavy arrows indicate spontaneous radiative transitions. 

hyperfine components of the ground state is comparable to 
the Doppler linewidth, with the result that the ground state 
can be modeled by two levels, n and 1 (for 6 ~ i  atoms the 
ground state is well modeled by a single level in view of the 
smallness of the hyperfine splitting). 

The level m models the group of levels that are the com- 
ponents of the hyperfine structure of the excited states, P1,2 
and P I 2 .  Representing a group of levels by a single level is 
possible here because of the smallness of the hyperfine split- 
ting in these states in comparison to the Doppler absorption 
linewidth. Emission of radiation involves only one of the fine 
components, or P3/2, of the excited state. 

The interaction of particles with radiation in steady-state 
and spatially homogeneous conditions is described by the 
following equations for the density matrix:I4 

where 

BZ 
NP,(v) = - 2 Re[iG*pmi(v)], lC21 = - 

2 Ti- ' 

Here pi(v) is the velocity distribution of particles in the ith 
level; N = N,, + NI+ N ,  is the concentration (number den- 
sity) of the absorbing particles (Ni=Jpi(v)dv); I',l,i is the 
rate of spontaneous relaxation of the rnth level via the 
m4i channel; X is the radiation wavelength; of,,i is the fre- 
quency of the m-i transition; Sn,(v), Si(v), and S,,i(v) are 
the collision integrals; and I=  C ~ E ~ I ~ T ~  is the radiative inten- 
sity. In the formula for the Einstein B coefficient [see Eqs. 
(2.3)] we have allowed for the fact that the ratio of the rates 
of radiative transitions from the rnth level to the hyperfine 
components n and 1 is determined by the ratio of statistical 
weights:I5 I',,,,, /Tn,I=g,, Ig,. The probability P,(v) of radia- 
tive absorption per unit time (the absorption rate) in the m-i 
transition by a particle with tixed velocity v is determined by 

the off-diagonal matrix element of the density matrix (or 
coherence) ~ , , , ~ ( v ) .  Note that the last equation in (2.2) for the 
off-diagonal element p,,,;(v) holds if one ignores the coher- 
ence pl,,(v) between the hyperfine components n and 1. For 
7 ~ i  and 2 ' ~ a  atoms such an approximation holds if the ra- 
diative intensities are not too high, I <  10 W cm-2 (see Ref. 
16). 

In the absence of a phase memory involving collision- 
induced optical transitions (a customary assumption in non- 
linear atomic spectroscopy), the off-diagonal collision inte- 
gral has the form 

where vmi(u) and Ami(v) are the impact broadening and the 
collisional shift of levels, respectively. Combining this with 
the formula in (2.2) for the absorption rate P,(v),  we get 

where 

Here r l ( v )  and r 2 ( v )  are the homogeneous halfwidths of 
the absorption lines in the m-n and m-1 transitions, respec- 
tively. 

In what follows we ignore the collisional transitions be- 
tween the hyperfine components of the ground state, which is 
a valid assumption for alkali-metal atoms in an atmosphere 
of inert gases.'7 This creates the conditions needed for opti- 
cal pumping to take place. 

For a Lorentzian gas the diagonal collision integrals 
have the form1* 

X [ ~ i ( v ' ) - ~ i ( v ) l ,  

where 

Here v and v' are the velocities of the absorbing particle 
before and after a collision, k B  is the Boltzmann constant, T 
is the temperature, u i ( u , 6 )  is the elastic scattering cross 
section ( v f = u )  of an absorbing particle in the ith state 
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through the angle 6, and a , ( v )  and v , ( v )  are the transport 
cross section and collision rate. For a Lorentzian gas the 
transport rate v i ( v )  is responsible for collisions that change 
only the direction of velocity but not the velocity's magni- 
tude. An appreciable change in the absolute value of the 
velocity of light absorbing particles occurs only as a result of 
MbIM I collisions, while even one collision is enough to 
change the direction of velocity. The differential and integral 
terms on the right-hand side of (27) reflect the changes, re- 
spectively, in the absolute value and direction of velocity of 
the light absorbing particles in collisions. 

3. DRIFT VELOCITY 

We seek the solution of Eqs. (2.2) in the form 

~ i ( v ) = ~ i ( u ) + ~ i ( n )  ( i = n , l , m ) ,  (3.1) 

where 

with p i ( v )  the isotropic part of the distribution function, and 
pi(n)  the anisotropic part. Then the LID velocity is given by 
the following expression: 

p ( v ) = p , ( v ) +  P ~ ( v ) + P , ( v ) ,  (3.3)  

p ( ' ) ( v )  =p(nl)(v) + p j l ) ( u ) + p ; ) ( v ) ,  

where 

By multiplying the first two equations in (2.2) by 
naklk and integrating the products over d n / 4 7 ~  we get 

v , (u )p : ' ( v )+  v , ( u ) p j ' ) ( v )  + v , ( v ) p : ) ( v ) = o ,  

r r n i P ~ ) ( ~ ) = ~ ~ j 1 ) ( v ) +  v ~ ( ~ ) ~ ~ ' ) ( v )  ( i = n , l ) ,  
(3.5)  

where P ; ' ) ( V )  can be expressed in terms of P i ( v )  in the 
same way that p j ' ) ( v )  was expressed in terms of p i ( v )  in Eq. 
(3.4). For the hyperfine components we can assume with a 
high degree of accuracy that the transport collision rates are 
equal: 

v1(u)= v t , ( v ) .  (3.6) 

If we also solve (3.5) for p j l ' ( v ) ,  we can write the LID 
velocity (3.3) in the form 

u=  - 477 v 3 r ( v ) [  f k 1 ) ( v )  + ~ I I ' ( v ) ] d v ,  1: I," 

To find the function P ; ' ) ( V )  in (3.7) ,  we restrict the ra- 
diative intensity by the following conditions: 
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where ( P , )  = S  p , ( v ) d 3 v  is the total probability of absorption 
of radiation in the nl-i transition; y = l ' ( v ) l k G ,  with I ' ( v )  
defined in (3.10); and v,, is the effective transport rate of 
elastic collisions between particles in level n and the buffer 
gas. The rate v,, is related to the coefficient Dt, of diffusion 
of particles in state n by the formula D , , = ~ 2 / 2 v l , .  Analysis 
shows that if conditions (3.8) are met, in Eq. (2.5) for 
P , ( v )  we can ignore the population p,,,(v) and the aniso- 
tropic part of the distribution function p i ( v ) .  Then 

where p i ( v )  is the isotropic part of the distribution p i ( v ) .  In 
alkali-metal atoms the homogeneous halfwidths I ' l ( v )  and 
T , ( v )  of absorption lines in the m-n and m-1 transitions are 
essentially the same, with the result that in (3.9) we put 

To obtain the final equations describing the LID effect, 
we need only find p i ( v ) .  The sum of equations for the diag- 
onal elements in (2.2) integrated over d n / 4 a  and combined 
with the conditions (3.6) and (3.8) implies that 

where W ( v )  is the Maxwellian velocity distribution. Another 
relationship for p i (u )  can be obtained from the second equa- 
tion in (2.2) integrated over d n / 4 a :  

where P i ( v )  can be expressed in terms of P i ( v )  in exactly 
the same way that p i ( v )  can be expressed in terms of 
p i ( v )  in (3.2) .  

Analysis of Eq. (3.12) shows that within the conditions 
(3.8) there exist two drastically different limits, which we 
will call cases of low and enhanced radiative intensity. 

In the case of low-intensity radiation, i.e., 

the differential term in Eq. (3.12) vanishes, which yields 

By integrating the second equation in (2 .2)  with respect to v 
we obtain (SS , ( v )dv=O in elastic collisions) 

TlniNt1, = N ( P i )  ( i  = n, l ) .  (3.15) 

Combining (3.9), (3.14), and (3.15) and applying the normal- 
ization condition N,,+ N I = N ,  where we have allowed for 
the fact that in conditions (3.8)  N ,@N,  we obtain 

w . = -  

(3.16) 
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( y i ) =  I Yi(v)W(v)dv ( i = n ,  j = l ;  i = l ,  j = n ) .  

In the case of enhanced radiative intensity, i.e., 

the differential term in (3.12) can be neglected, and from 
(3.9), (3.1 I), and (3.12) we obtain 

where 

The case (3.17) can be implemented only in a Lorentzian gas 
( M e  M,), in which two scales of collisional relaxation rates 
can be singled out: in the orientations (v,) and absolute val- 
ues (vnMIMb) of the velocity v of resonant particles. If 
conditions (3.17) are met, the anisotropic part pi(n) of the 
distribution pi(v) is negligible, but the stimulated transition 
rate is still high enough for sharp nonequilibrium structures 
to develop in the isotropic part pi(v) of the distribution.I3 

Substituting (3.9) into (3.7) and allowing for (3.16) and 
(3.18), we arrive at the following expression for the drift 
velocity: 

where 

in the case of low-intensity radiation [conditions (3.13)] and 

in the case of enhanced radiative intensity (3.17). 
The effect of field variation of the LID spectrum is 

caused by the change that the function A, undergoes as the 
radiative intensity grows. When the hyperfine components n 
and 1 formally merge (the transition frequency between them 
tends to zero, or wl,,+O), Eq. (3.20) for u transforms into 
the formula for a two-level system with allowance for level 
degeneracy (fIl(t) = fl( t)= f(t)) :  

This formula does not depend on A,, which means that the 
effect does not emerge in a two-level system and is a specific 
feature of a three-level A-system. 

Equation (3.20) can be simplified in the case of low- 
intensity radiation [conditions (3.13)], with A,= (Y,), if the 
collision characteristics are assumed to be velocity- 
independent, or 

v,(v), ( v )  Ami(v) = const. (3.25) 

Then the drift velocity is given by the expression 
(vi (v)= vi= const) 

where 

Here (P)= (P,) + (PI) is the total cumulative probability of 
radiative absorption, and w(z) is the error function of a 
complex-valued argument, which is tabulated in Ref. 19. 
Equation (3.26) coincides with the one obtained for the LID 
velocity of three-level particles with the A-configuration of 
levels in the strong-collision modeL20 

4. DISCUSSION 

To identify the effect of field variation of the LID spec- 
trum in "pure" form, we assume from now on that the col- 
lision characteristics are independent of velocity [see Eq. 
(3.25)]. Maximum manifestation of the effect should be ex- 
pected in the Doppler broadening limit (y 4 I) .  If the condi- 
tions (3.25) are met and 

Eq. (20) assumes the form 

where 

Here 6 is the dimensionless separation of the components of 
the hyperfine structure, and xo is the dimensionless offset of 
the radiation frequency from the arithmetic-mean frequency 

of the n-n and nz-1 transitions. The absorption probabil- 
ity ( P )  is given by the expression 

(4.4) 

in the case of low-intensity radiation (3.13) and by the ex- 
pression 
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FIG. 2. Drift velocity of 7 ~ i  atoms as a function of the radiation frequency 
offset at T = 3 0 0  K (o l , ,=5.049X lo9 s-I, according to Ref. 21, and 
S= 0.636) .  Here v ,  > v, . The solid vertical lines F = 1 and F = 2 designate 
resonant frequencies of the nt-n and m-I  transitions. The curves I and 2 
correspond, respectively, to the strong-collision model and a Lorentzian gas 
at enhanced radiative intensity [conditions (3 .17)] .  Curve 1 also describes 
the LID spectrum in a Lorentzian gas with low-intensity radiation [condi- 
tions (3.13)].  

in the case of enhanced radiative intensity (3.17). 
As Eq. (4.2) shows, the effect of variation of the LID 

spectrum with the increase in the radiative intensity is en- 
tirely due to the variation in the spectrum of the cumulative 
probability of radiative absorption ( P ) .  A detailed analysis 
of the variation of the spectrum of (P) was carried out in 
Ref. 13. 

Note that in the strong-collision model with Doppler 
broadening, the LID velocity is described by Eq. (4.2) with 
the absorption probability ( P )  specified by Eq. (4.4) for both 
low-intensity radiation [conditions (3.13)] and enhanced ra- 
diative intensity [conditions (3.17)] (see Ref. 20). Since 
4> 4, (only at point xo=O is 4 equal to 4L), in the event of 
enhanced radiative intensity [conditions (3.17)] the calcula- 
tion of LID done in the strong-collision model yields an 
overestimated value for the drift velocity. This fact is illus- 
trated by Figs. 2 and 3, which depict the spectral dependence 
of the drift velocity of 7 ~ i  and 2 3 ~ a  atoms in an atmosphere 
of heavy inert buffer gases. 

The most suitable inert buffer gas from the viewpoint of 
registering the effect of LID spectrum variations caused by 
an increasing radiative intensity is xenon. In the 7 ~ i - ~ e  sys- 
tem the mass ratio MhIM is 18.9 and in the 2 3 ~ a - ~ e  system 
this ratio is 5.7, so that a Lorentzian gas ( M b l M 9  1) de- 
scribes both systems fairly well. As Figs. 2 and 3 show, in 
the strong-collision model the height of the left peak (near 
F = 2 )  in the LID velocity is overestimated by a factor of 
1.55 for 7 ~ i  atoms and by a factor of 1.95 for 2 3 ~ a  atoms, 
while the height of the right maximum (which is greater in 
amplitude) is overestimated by a factor of 1.22 and 1.30, 
respectively. In other words, for enhanced radiative intensity 
[conditions (3.17)] an increase in the mass of buffer particles 
from M , s M  to M h 9 M  can decrease the LID effect (all 
other things being equal) by a factor of 1.2 to 1.3 (in the 

FIG. 3.  Drift velocity of 2 3 ~ a  atoms as a function of the radiation frequency 
offset at T =  1000 K ( o , , , =  1 . 1  13X lo9 s-' ,  according to Ref. 21, and 
S= 1.227). Here v,,,> v,, . Curves I and 2 correspond to the same cases as in 
Fig. 2. 

strong-collision model the rates of collisional relaxation in 
the orientations and magnitude of the velocity v of the reso- 
nant particles are the same, which is equivalent to the con- 
dition that Mb d M). 

Measuring the ratio of the heights of the right and left 
peaks in the drift velocity is a convenient way of registering 
variations in the LID spectrum in experiments. For instance, 
for 2 3 ~ a  atoms this ratio is 1.30 for low-intensity radiation 
[conditions (3.13); curve 1 in Fig. 31 and 1.95 for enhanced 
radiative intensity [conditions (3.17); curve 2 in Fig. 31. 

The extent to which the LID spectrum varies as the ra- 
diative intensity grows depends on the separation of the hy- 
perfine components and manifests itself most clearly at 
S- 1. Since the parameter S is temperature-dependent, so is 
the size of the effect. In view of this, the variation of the LID 
spectrum for 7 ~ i  atoms manifests itself more strongly at low 
temperatures ( T 3 0 0  K), while for 2 3 ~ a  atoms it manifests 
itself more strongly at elevated temperatures (T- 1000 K). 

Let us estimate the radiative intensity lo at which the 
LID spectrum begins to change. In the case of Doppler 
broadening (y< I ) ,  the boundary between the cases of low- 
intensity radiation [conditions (3.13)] and enhanced radiative 
intensity [conditions (3.17)] can be specified by the condition 

v,MIMb. This yields 

For 7 ~ i  and 2 3 ~ a ,  the Einstein B coefficient is, respec- 
tively, 1.39X 10'~w,,  [cmP2 W-' sf2] and 1.57X 1 0 ' ~  w, 
[cm2 W-' sC2]. When the buffer gas pressure is roughly 
I Torr, we have vr,- lo7 s - '  and 1'-5 X lo7 s-'. Assuming 
that w , -  I, from (4.6) we arrive at the following estimate of 
the radiative intensity: lo-0.5X W cmP2 for the 
7 ~ i - ~ e  mixture and 1,-2x 1 0 - 9  cm-2 for the 
2 3 ~ a - ~ e  mixture. At pressures far below 1 Torr the charac- 
teristic intensity lo is much lower than l o f 3  W cm-'. 
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In the limit 1 ~ ~ 1 %  1, which is inipleniented in the case of 
homogeneous broadening y+ l or at large values of the ra- 
diation frequency offset, 1 ~ ~ 1 %  I ,  the drift velocity is speci- 
fied by a single expression, 

in the cases of low-intensity radiation [conditions (3.13)] and 
enhanced radiative intensity [conditions (3.17)]. Thus, in the 
event of homogeneous broadening, y B I, the LID spectrum 
does not change as the radiative intensity grows from values 
specified by (3.13) to values specified by (3.17). 

5. CONCLUSION 

We have described the effect of field variation of the LID 
spectrum of light alkali-metal atoms ( 7 ~ i  and 2 3 ~ a )  in an 
atmosphere of heavy buffer particles of an inert gas (Xe and 
Kr). For the effect to manifest itself, it is important that there 
be optical pumping to the hyperfine components of the 
ground state and a large difference between the masses of the 
resonant and buffer particles, MIMb+ 1 (a Lorentzian gas). 
These factors make it possible to identify two scales of the 
rate of collisional relaxation in the orientations (v,) and ab- 
solute value (v,MIMb) of the velocity v of the resonant 
particles. The effect is present at all radiative intensities, and 
depends on the buffer gas pressure. 

As is known, one of the main scientific applications of 
LID is the measurement of the relative variation 
(v, - vn)l V, of the classical transport collision rates when a 
particle is excited from state n to state nz (see Refs. 1, 5, and 
6). We have found that calculations of the LID velocity of 
7 ~ i  and 2 3 ~ a  atoms in the strong-collision model, which is 
usually employed for processing the experimental data, can 
overestimate the peak velocity value by a factor of 1.2 to 1.3. 
In other words, if the experimental data are processed by the 
strong-collision model instead of the Lorentzian gas model 
considered here, the measured value of (v, - v,)l v, may be 

smaller than the true value by a factor of 1.2 to 1.3. 
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