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The relaxation kinetics of electrons generated by light in double quantum wells has been 
analyzed in quantum-mechanically under the conditions when the splitting energy AT between 
tunneling-coupled states is comparable to their scattering broadening energy h l r .  
Scattering from both short-range and long-range inhomogeneities of a heterostructure has been 
considered. Within a unified approach, the coherent oscillations of the electron density 
and slow tunneling relaxation of the electron population in a well have been described. The rate 
of this relaxation has been calculated for both high tunneling-electron energy ( E a h l r )  
and the case E < hl r .  In the latter case, the difference between scattering rates affects the relaxation 
rate in the resonant region A T < h / r .  The calculations of the relaxation rate versus A T ,  
which describe the shape of the resonant relaxation peak, are compared to available experimental 
data. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The tunneling relaxation of electrons generated by light 
in double quantum wells has been studied by time-resolved 
luminescence spectroscopy.'-8 This technique yields decay 
times of photoluminescence signals due to electrons in states 
of quantum wells coupled through tunneling annihilating 
with holes localized in either left ( I )  or right ( r )  well with- 
out tunnelling between them. If the electron-hole recombina- 
tion time is much longer than the typical time of tunneling, 
decay curves of luminescence lines due to different electron 
states yield information about the population kinetics in 
coupled quantum wells. Such processes have been studied 
theoret ica~l~~- '~ taking into account various scattering pro- 
cesses for the case in which the splitting energy AT between 
coupled levels ( A T =  dm, where A is the nonper- 
turbed energy difference controlled by the transverse electric 
field, and T is the tunneling matrix element, which deter- 
mines the minimum splitting 2T)  is much larger than the 
typical level width due to scattering, h17. The kinetic equa- 
tions for the electron density in this case are derived from the 
kinetic equation system for the function of electron distribu- 
tion among tunnel-coupled states (the nondiagonal compo- 
nents of the density matrix are small in hl +AT). In this paper 
we also consider the case h / 7 3 A T ,  quantum interference 
between coupled states is partly or fully destroyed by scat- 
tering, and classical approach cannot be applied to the ki- 
netic equation. 

A consistent quantum approach based on the nonequilib- 
rium Feynman diagram technique should be applied to the 
resonant tunneling relaxation in the case when h / 7 2 A T .  
The difference from the conventional approachL3 is that elec- 
tron Green's functions in the problem are considered in the 
isospin (two-level) formalism. It is convenient to select the 
ground-state functions of the left and right quantum wells as 
basis functions describing the motion along z. The technique 
developed for scattering from steady-state heterostructure in- 
homogeneities was presented in our previous publicationL4 
describing in-plane electron transport. In this work we have 

derived kinetic equations for electron concentration under 
the conditions of scattering from short-range and long-range 
inhomogeneities of a heterostructure using nonequilibrium 
diagram techniques. The resulting equations describe both 
the slow tunneling relaxation of electron density and coher- 
ent oscillations of the dipole moment between two quantum 
wells, which were previously studied in experiment-l7 and 
theoretical We shall discuss the qualitative differ- 
ence between the oscillations and exponential decay of elec- 
tron density due to tunneling between quantum wells. Fea- 
tures of the tunneling relaxation related to the mixing of 
quantum states due to scattering from barrier 
no nun if or mi tie^'^ and tunneling of low-energy electrons 
(when the average kinetic energy E is less than hl?) will be 
discussed. The calculated relaxation rate versus splitting en- 
ergy A, controlled by the external electric field, and versus 
the tunneling matrix element T is compared to experimental 
data measured in the resonant relaxation mode. 

In Sec. 2 kinetic equations describing the three- 
dimensional electron distribution under resonant tunneling 
conditions are derived. In Sec. 3 the case when the average 
electron kinetic energy E is much larger than both the level 
broadening due to scattering and the splitting between levels, 
and the scattering potential is short-range is considered. The 
solutions of these equations which describe the evolution of 
the population over a time shorter than 7  (in this case the 
conditions of the oscillating regime are analyzed) and over a 
time much longer than 7  when the slow tunnelling relaxation 
is essential are given. In Sec. 4 we derive the expression for 
the slow relaxation rate not limited to the case of the short- 
range scattering potential for all splitting energies. In Sec. 5 
we shall discuss the population equation for slow relaxation 
when E S h /  7 ,  calculate the relaxation rate, and consider the 
effect of difference between scattering rates on the tunneling. 
The final section discusses available experimental data and 
compares them to calculations. 
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2. GENERALIZED KINETIC EQUATION 

Electron states in coupled quantum wells are described 
by a delayed Green's function, which is a 2 X 2 matrix in the 
basis formed by states in the right and left wells:'4 

where ~ , = ~ ~ / 2 n i  is the kinetic energy of lateral motion in 
the case of equal effective masses in the left and right wells, 
i=(A/2)6,+TGx is the matrix of potential energy ex- 
pressed in terms of Pauli matrices k i .  The nonequilibrium 
distribution of electrons among the states described by Eq. 
(1) is derived from the equation for the function fp(e,t)13 
(in this section h = 1 ): 

= '1 dt' I del{exd-2i(e -el)( t  - t l ) ]  
IT 

where 6;= ~ : * ( e ) .  In the Born approximation the self- 
energy functions Sp(e,t) and $;.*(e') are 

S;sA(e)= 2 2 wjj' 
jj' 'I 

(3) 

fkp(e,t) = z z wjjt e ~ p ( - ~ ~ 1 ; f / 4 ) F ~ f i ~ - ~ ( e , t ) F ~ ~ ,  
jj' q 

(4) 

where the projection operators (j= l,r,t) are defined as 

and scattering due to the random potential in the left and 
right wells is described by the Gaussian correlator with cor- 
relation lengths equal to 1, for all the potentials. Explicit 
expressions for the correlator amplitudes wjj' in terms of the 
electron quantization energy in both wells, e l  and E,, widths 
of the wells, dl and d, , and the reciprocal ranges of the wave 
functions under the barrier between wells, K ,  for the model 
of scattering due to interface r ~ u ~ h n e s s ' ~ - ' ~  in the approxi- 
mation of rectangular potential wells were given in Ref. 14. 

The density operator jp(t) for electrons is expressed in 
the momentum representation in terms of Green's functions: 

and the function LkP(e, t) satisfies the equation 

I 
= -1 ?I- d t ' l  d e ' x  jjf s wjjtexp(- q) 

X [ F F ~ - ~ ( & , ~ ' ) F ~ , ~ : ( & ' )  

- . i p ( ~ , t r ) F j E ~ - q ( ~  ')Fjl] 

+exp[2i(s - e l ) ( t -  t '  ) 1 [ B j 6 : - q ( s ' ) F j l . & P ( ~ , t 1 )  

-d : (e l )F j&p-q (e , t l )F j r~ } .  (7) 

In deriving this equation, we used the identity 

[ q e )  - d;(e),6] 

x{[2~(e)-2;(e)li;;(e1)-[d;(e) 

- 6;(e)lS;(e1) +H.c.), (8) 

which can be verified by integrating with respect to e '  and 
t', taking into account Eq. (1). In order to derive the equa- 
tion for the density operator from Eq. (7), it is integrated 
with respect to E using the expression for Fp(e , t )  in terms 
of bp(f), 

@ p ( ~ , t ) = 2 [ b p ( t ) e ; ( ~ ) - ~ ; ( ~ ) i p ( t ) l ,  (9) 

which is a generalization of the respective equation for scalar 
Green's functions13 and is proved using the identity 

The result is the generalized kinetic equation 

in which the right-hand side (collision integral) is expressed 
in terms of time representation of the Green's functions in- 
troduced above: 
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The expression for the collision integral at AT+h/7 de- 
rived for this scattering mechanism in Ref. 12 is obtained by 
substituting the Green's function of free motion into Eq. (1 1) 
and diagonalizing the density operator [this can be done by 
the unitary transformation exp(i&,,cp), where 
2 cp = t an- ' (2~1 A), which transforms the hamiltonian to 
the diagonal form (AT/2)&,]. In the diagonal representation, 
the matrix equation (11) is separated into two Boltzmann 
kinetic equations, which describes the evolution of the elec- 
tron distribution function over well-defined tunnel-coupled 
states. If the resonant tunneling relaxation is considered un- 
der the condition when the coherent interference of tunnel- 
coupled states is disrupted by scattering, this separation of 
the kinetic equation is impossible, and the matrix nature of 
the collision integral is essential. 

In what follows, we shall not search for a general solu- 
tion of the matrix integral equation (7) or ( l l ) ,  but investi- 
gate several limiting cases, when these equations are reduced 
to equations for components of the density matrix I ( r )  de- 
fined as 

where S is the heterostructure area, i is the unit matrix, 
ni(t) (i=x,y,z) are the components of the introduced "vec- 
tor" of the isospin density, n(t)= (n,,n, ,nz). The scalar 
part no of the density operator is time independent because 
scattering does not change the total number of electrons in 
the system (their annihilation is ignored in this approxima- 
tion). The operator i ( r )  determines the distribution of elec- 
trons along z in the system, 

through the wave functions of the left and right wells, 
q ,(z), j = 1 ,  r. Hence the electron density in the left and right 
well, nl(r) and nr(t), and the electric dipole moment of the 
structure 

are expressed in terms of the z-component of the isospin 
density, nz(t): 

where (Az) =$dz z[cp:(z) - cp;(z)] is the parameter whose 
order of magnitude equals to the distance between quantum 
well centers, and Do is a time-independent part of the dipole 
moment. 

3. POPULATION DYNAMICS FOR THE MODEL OF SHORT- 
RANGE SCATTERING POTENTIAL 

In this and subsequent sections, we limit our consider- 
ation to the case when the average kinetic energy G of elec- 
trons is much larger than the collision broadening energy: 

This is the case when electron states can be described in 
terms of the momentum p, and their kinetics can be analyzed 
using Eq. (11) for the density operator in the momentum 
representation. In our consideration of the resonant reiax- 
ation, we also assume E+AT, keeping in mind that in the 
case E d A T  the relation ATSr'i/7 would hold and the classi- 
cal approach would be applicable. If Eq. (16) is valid and 
ESAT holds, the matrix Green's functions can be approxi- 
mated by scalar expressions 

Since the typical time over which the density operator 
changes is determined either by the relaxation time 7 or by 
the period of "Bloch" oscillations, &/A, (both these times 
are much longer than f i / i ) ,  we may also take 
Bp(t+ ~ / 2 ) =  Ijp(t), i.e., the non-Markovian nature of the col- 
lision integral is neglected. Besides, in this section we pre- 
sume that .5efi2/(ml:) so that the scattering potential can be 
treated as short-range, i.e., the dependence of the scattering 
amplitude on the imparted momentum fiq on the right of Eq. 
(11) can be ignored. 

In this approximation, the operator equation (11) is re- 
duced after integration with respect to the momentum p to 
the system of Bloch equations for the components of the 
isospin density "vector" 

I d  1 A I . .  

and to the obvious equation dnoldt= 0 due to the conserva- 
tion of the total number of electrons. The three characteristic 
frequencies in Eq. (17) are 

Since the correlators wl, and w,, are proportional to the tun- 
nelling matrix element T and w,, T2,I4 the following rela- 
tions hold: wll,,,S wl,,,,+ w,, . Nonetheless, we retain the 
terms with v and 1/rZ in Eq. (17) if they are responsible for 
radically new effects. For example, the term llr, in the lower 
diagonal component of the matrix leads to a direct (i.e., not 
caused by quantum mixing of states) relaxation of the com- 
ponent n,, and the parameter v in xz and zx components 
leads to an asymmetry in the relaxation rate with respect to 
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FIG. 1 .  Diagram of regions with different regimes of electron density relax- 
ation in double quantum wells. In the hatched area the function n i ( t )  con- 
tains only three decaying components, and beyond this region only one 
purely decaying and two oscillating components with decaying amplitudes. 

the sign reversal of A. These effects are more pronounced 
for ( A ]  - ~ ~ , , l ( ~ d ~ , , ) , ' ~  which is in the range of the assumed 
two-level approximation in the case of "deep" states 
( ~d,,,%- 1 ) . Around the resonance (I A 1 - T) , the terms pro- 
portional to v and 117, may be omitted in most cases. One 
can see in Eq. (17) that the effective relaxation time 7 is the 
averaged scattering time r within one well. If the analogy 
between Eq. (17) and the Bloch equations for magnetic mo- 
ment evolution theoryz1 is considered, r is similar to the 
"transverse relaxation time" of the magnetization vector. In 
Eq. (17) we have omitted in the xy and y x  components the 
terms due to the inequality between scattering rates in differ- 
ent wells (wll # w,,). These terms emerge when real parts of 
the Green functions are taken into account and make non- 
symmetrical contributions to these components, so their con- 
tribution can be considered as a renormalization of A, and 
their presence in Eq. (17) is not essential. Similar terms lead- 
ing to renormalization of the tunnelling matrix element T 
emerge in y z  and zy components due to the correlators w,, 
and w,, , but their contribution is negligible by virtue of the 
inequality 

which we assume to hold throughout this paper. 
Analysis of the cubic equation, which determines eigen- 

values of the equation system (17), reveals that each compo- 
nent n i  contains either three terms which decay with differ- 
ent time constants or two terms one of which decays and the 
other one oscillates with a decaying amplitude, the decay 
times always being of the order of r ,  and in the range where 
three decaying components coexist, at least two of them de- 
cay with time constants of the order of r. Figure I shows the 
regions of dimensionless parameters 2 Tr/A and ( A  1 r lh cor- 
responding to these two cases (in our calculation 
v =  l/rz=O). In principle, the oscillating regime takes place 
in a wide range of parameters, but the amplitude of oscillat- 

ing components drops more sharply with the ratio IAIIT in 
comparison to the nonoscillating components. 

The ratios of these terms are determined by initial con- 
ditions, which are not included in the discussed approxima- 
tion. They derive from initial stages of the process, namely 
generation of electrons by light and their fast relaxation due 
to emission of optical phonons (the latter is essential if the 
typical energy of generated electrons is larger than that of an 
optical phonon). In order to demonstrate features of the os- 
cillating relaxation, let us consider electron generation by an 
ultrashort laser pulse with a width r,, of the order of 100 
femto~econds. '~~'~ In this case a time-dependent parameter 
G(r), which describes the generation of carriers3' and deter- 
mines the initial conditions, is added to the right-hand side of 
Eq. (17). The function G(t) is most simple when the width 
of the laser pulse is much less than the times h/AT and r. In 
this case the electrons, which are generated either in the left 
or right quantum well owing to their a ~ ~ m m e t r ~ , ' ~ - 2 0  can- 
not penetrate into another well during r p ,  so G(r) can be 
approximated by a delta-function 

where the plus sign corresponds to the "instantaneous" gen- 
eration of electrons in the left well, and the minus sign in the 
right well. We stress that the characteristic energy of gener- 
ated electrons in such experiments is controlled by the laser 
pulse spectral width fil rp , which is larger than h l r  and AT 
in the case of ultrashort pulses, hence this approximation is 
applicable. 

Figure 2a,b shows the dipole moment of the structure 
derived from Eq. (17) with the function from Eq. (20) on the 
right versus time at different ratios among the parameters 
A, T, and h l  r ( v  and 1/r2 are neglected because 1 A1 - T). At 
TS-hIr the oscillation period is determined by the period 
2 r h l A T  of Bloch oscillations, but for T-h/r  also depends 
on r. The coherence is lost, i.e., oscillations of the dipole 
moment decay in a time of the order of r. For A # 0 there is 
a nonoscillating component in the dipole moment. The oscil- 
lation amplitude decreases with A. Note that at A=O the 
solution of Eq. (17) with respect to n , ( t )  can be expressed in 
a simple analytical form: 

which describes an oscillating process for a 2 > 0  and an ex- 
ponential decay for a 2 < 0 ,  the decay time constant at 
( 2 ~ r / f i ) ~ < .  1 being ( 2 ~ l h ) - ' r - ' .  

A solution of the Bloch equations (17) can be derived 
without any initial conditions if the electron density relax- 
ation is considered at t P r .  This solution is interesting if 
there is a slow relaxation of the isospin density components 
characterized by a time constant rO% 7. AS follows from the 
analysis of the eigenvalue equation (see above), this relax- 
ation may be due to one of the three terms which determine 
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the time dependence of the components ni(t), and this term 
does not oscillate. Let us seek the solution of Eq. (17) by 
iterations with small parameters 

T dn, r dn,, -- and -- 
n, dt n, dt ' 

In the lowest order approximation, the equation system is 
reduced to a single equation, which describes the relaxation 
of the component n,(t) (and the related components nl(t) 
and nr(t)): 

FIG. 2. Evolution of electric dipole mo- 
ment of double quantum wells after gen- 
eration of electrons in one well by an 
ultrashort laser pulse at 2 T ~ / f i =  3 (solid 
lines) and 2 T ~ / h =  1 (dashed lines): a) 
A=O; b) A = 2 T .  

naturally derived from the Bloch equation system (17) ob- 
tained in the approximation of short-range scattering poten- 
tial and small difference between energies of levels in 
coupled quantum wells, A T 9 i  (otherwise the generalized 
kinetic equation (11) cannot be separated into the kinetic 
equations for populations and remains in operator form). But 
an analysis of the slow tunneling regime based on the small- 
ness of the tunneling matrix element (Eq.(24)) is also pos- 
sible beyond this approximation. This analysis in the case of 
large average electron energy in Eq. (16) is discussed in the 
next section 

dnz(t) n,(t) - nr(t> = -2-= - 4. SLOW RELAXATION OF THE POPULATION: 

To '-0 
(22) THE CASE OF LARGE ENERGY 

The characteristic time TO is given by the Breit-Wigner ex- Another approach not based on the assumption about 
pression short-range scattering potential can be applied to the slow 

1 relaxation of the system over a time longer than r. This 
2fT {T2+2TA- <=Em7 approach implies that after a sufficiently long time electrons 

are thermalized owing to nonelastic scattering (for example, 
(23) due to acoustic phonons) which determines their energy dis- 

which has been derived by omitting terms with small param- tribution but contributes little to transitions between quantum 
eters r / rz  and ( v T ) ~ .  Equation (23) also determines the wells (for this reason, a collision integral including this scat- 
range of parameters in which the slow relaxation is possible: tering is not added to the right of Eq. (1 1)). We shall seek the 
rO* T when electron density matrix in the form 

i.e., when the tunneling coupling is weakened either by the 
nonresonant condition (large A) or by scattering. 

The time r0 describes the tunneling relaxation between 
quantum wells, which is much slower in these conditions 
than the electron scattering within one well characterized by 
the time r. The second and third terms on the right of Eq. 
(23) are not essential around the resonance (1 A1 S h/ r) ,  but 
they may be important in the classical region 1 A1 S=-fi/r, 
where they affect the dependence of the relaxation time r0 
on A (note the asymmetry of the relaxation time with respect 
to the sign of A). 

In this case the average energy i equals the electron tem- 
perature T,. Substituting the density matrix from Eq. (25) 
into Eq. (I I), summing over the momentum p, and neglect- 
ing the non-Markovian nature of the collision integral owing 
to the slow relaxation rate, we obtain the kinetic equation for 
the components ni(t) in the form 

The description of the slow tunneling relaxation of the d 
-ni(t)+[Ln(t)li- Miilni,(t)= KinO, 

population and the range of parameters of this regime are dt (26) 
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where the vector L is by definition L= (2Tlfi ,O,Alh),  and 
the real matrix Miit and column K i  are defined as follows: 

1 
M,, ,  = -x 2 w j j 1  exp 

N S ~  j j f  ppt 

x&;(- r )  G i l P j t  exp - - I * 

Note that Eq. (26) has the form of the Bloch equation sys- 
tem. As in the previous section, we omit the derivatives 
dn,ldt and dnyldt  in solving the equation for the case of 
slow relaxation, then we express the components n, and ny 
in terms of n,  and no and obtain a single equation 

whose coefficients are functions of M i i t ,  K i ,  A ,  and T .  In 
calculation of these coefficients, we retain only terms of the 
lowest order in T2 and make the integration over r in Eqs. 
(27) and (28) easier by taking into account Eq. (16), which 
allows us to use the expressions 

After simple transformations we obtain 

with the time r0 defined by Eq. (23),  in which 

where 1 0 ( x )  is the first-kind Bessel function of an imaginary 
argument. For l,+O Eq. (30) is identical to the expression 
for r-I in Eq. (18). In deriving Eqs. (29) and (30) we as- 
sumed the condition h2/(rnl;)*h/r,  keeping in mind that 
the scattering angle from smooth potential is so small that 
the electron momentum p is no longer a good quantum pa- 
rameter. Note that in the classical region, l A l s h/ T,  the ex- 
pression (23) for 70 with r taken from Eq. (30) is identical to 
the result of Ref. 12, in which the problem was solved using 
the classical approach and the same scattering mechanism 
was assumed. It is also natural that at h2/(rnl;)%Te and 
T,%A all the results of this section are equivalent to those 
given at the end of the previous section. 

When T is calculated in the resonant region 
( 1  A 1 s fit T) , parameters proportional to A/ T ,  and 
r n 1 ; ~ / 2 i i ~  may be omitted, after which we have instead of 
Eq. (30) the equation 

which describes how the time of scattering within a single 
quantum well and the related time of resonant tunnelling 
relaxation change with the correlation length 
[ h 2 / ( r n l : ) ~ T e ] .  This expression should be also used in the 
energetic denominator of Eq. (23) at all A.  Note also that Eq. 
(29) in the resonant region is identical to Eq. (22). Our analy- 
sis demonstrates that the general trend of the tunneling re- 
laxation time as a function of A depends on whether the 
scattering potential is long-range or short-range only far 
from the resonance. Near the resonance only the value of r 
depends on the shape of scattering potential [compare Eqs. 
(31) and (18)],  and its dependence on A is not affected. 

It follows from Eq. (29) that the populations in the left 
and right well under conditions of slow tunnelling relaxation 
change exponentially with a time constant 

The time constant 7 d  can be compared to measurements of 
the decay (or build-up) time of photoluminescence due to 
annihilation of electrons in one of coupled quantum wells 
because the drop of the electron population in one well leads 
to its increase in the other we11.~.~ Around the resonance we 
have r,,= r0/2 since exp(-AlT,)=l. In the case of exact 
resonance ( A  = 0 j we have a simple formula 

Note that because of the temperature dependence of r at 
h 2 / ( r n l : ) < ~ ,  this parameter drops with the temperature. 
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5. SLOW RELAXATION OF THE POPULATION: THE CASE 
OF LOW ENERGY 

In this section we shall consider slow tunnelling relax- 
ation of electrons in the case of a small average energy 
i A/ T ,  when electron states cannot be classified according 
to the momentum p. The technique based on the Keldysh 
diagram method and used in Sec. 2 can be applied in this 
situation. Moreover, in the short-range-potential approxima- 
tion used below in this section, there is no need to solve 
integral equations. 

Let us start with Eq. (7) for the function $ p ( ~ , t ) .  Since 
we study the slow relaxation, we may neglect the non- 
Markovian nature of the collision integral in this equation, 
after which integration with respect to E '  and r '  is easy: 

1 q212 
{ i  S ( & , t ) i j l G $ ( & )  =-x T. .r  x q wj j lexp(-+)  , p - f i q  

11 

- t3 ; (&) i ,&p-f iq(&, t ) i j l  + i j G ; - f i q ( & ) i j l & p ( & , t )  

- @ p ( & , t ) i j t 3 $ - f i q ( & ) i j r } .  (33)  

Introducing the components of the matrix .!kp(&,t) in the 
isospin representation: 

we find that the operator equation (33)  is reduced to a system 
of three integral equations for F i p ( e , t )  ( i = x , y  , x )  and the 
equation d F O p ( &  , t )d t  = 0, from which follows 
FOP(& , t )   fop(^,). If the components F X p ( & , t )  and 
F y p ( & , f )  are expressed through F Z P ( & , t ) ,  we obtain a 
single integral equation for F Z p ( & , t ) :  

where w , = ( w l l +  wrr ) / 2 ,  and the terms including correla- 
tors of higher orders w l , ,  w, ,  , and w, ,  are omitted. Equation 
(35) includes the real and imaginary components (marked by 
one and two primes, respectively) of advanced Green's func- 
tions and self-energy functions in the isospin formalism. In 
calculating these components, terms of higher order in T 
should be omitted. The inclusion of these terms would not be 
appropriate to the actual accuracy of calculations of the slow 
tunneling relaxation under the conditions when the tunneling 
coupling is suppressed by electron scattering within a single 
quantum well. In the zero-order approximation in T, the 
states in quantum wells are independent of each other and 
described by the Green's functions for the left and right 
wells, G l p ( & )  and G r p ( & ) :  

where j =  l , r ,  and plus and minus signs are taken for the 
indices 1 and r, respectively. The components of the Green's 
and self-energy functions in Eq. (35)  are expressed as fol- 
lows: 

In the short-range-potential approximation, the integral equa- 
tion (35)  is reduced to an algebraic equation. By introducing 
the functions N 1 ( & , t )  and N r ( & , t )  defined as 

[integrals of these functions over energy equal the electron 
densities in the left and right quantum wells, n l ( t )  and 
n r ( t ) ] ,  and integrating Eq. (35)  with respect to the momen- 
tum p, we obtain equations for N1(&, t )  and N, (&, t )  which 
describe the tunnelling relaxation: 

where the function R ( e )  symmetrical with respect to the 
change of the left well by the right one is expressed as 
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These equations also take into account that in the short- 
range-potential approximation the eigenfunctions are con- 
stant with the momentum. These functions are found by sub- 
stituting Eq. (36) into Eq. (37) and integrating with respect to 
the momentum, as a result, we have complex equations for 
XI(&): 

where E, is the cut-off energy introduced to get rid of diver- 
gence of integrakZ2 The nondefined logarithm Ine, is ex- 
cluded from Eq. (44) by renormalizing real parts of Xi(&) 
concurrently with the renormalization of the energy e and 
energy difference A . ~ ~  In this procedure Eq. (42) does not 
change, as was expected (see below). 

In order to derive from Eqs. (42) and (43) kinetic equa- 
tions for electron densities, let us note that 

where 

is the density of states of two-dimensional electrons in the 
nonhomogeneous potential of the j-th quantum well and T, 
is the electron temperature. In deriving Eq. (45) we assumed 
the Boltzmann distribution of electrons after thermalization 
in their respective wells (at a higher electron density the 
Fermi distribution may be considered). By integrating Eq. 
(42) with respect to the energy, we obtain an equation similar 
to Eq. (29): 

where the time rO,  as in the previous section, is the time of 
transition from the left to right well due to the slow tunneling 
relaxation. In this case it is determined by the formula 

in which the integrand on the right contains the product of 
electron density of states in the left and right well by both the 
tunnelling probability between these wells described by the 
function R(E) and the energy distribution function. The sec- 
ond term on the right of Eq. (46) describes the reverse flow 
of electrons and is controlled by the factor NIINr, which 

equals exp(-AlT,) in the case of symmetric scattering 
(wll= w,,). Note that both the time TO and the function 
R(E) are proportional to T ~ .  The time constant of the lumi- 
nescence decay (build-up) is determined by the formula 

(compare to Eq. (32)). This parameter is invariant with re- 
spect to the exchange of wells. 

In calculating r0 and rd we use the following expres- 
sions for real parts of Z , ( E )  in terms of dimensionless imagi- 
nary parts a,(&) = X;(E)IB, : 

The imaginary parts are derived from an algebraic equation 
system28 

where AR= A - Bl[ 1 - ln(Bl/Te)]+Br[l -ln(B,/T,)]. In deriv- 
ing Eqs. (49) and (50) from Eq. (44) we used the renormal- 
izations 

which cancel out the cut-off energy, and the following shift 
of the energy zero: E-+E + A/2- Bl[ 1 - ln(BIITe)], which 
shifts it to the band edge in the left well, where C;(E) drops 
to zero (the latter renormalization is not essential and is per- 
formed for convenience). 

It is expedient to compare r0 and rd as functions of the 
energy difference A to similar functions for the case of high 
electron temperature obtained in the previous section at 
fi2/(ml:) G T, ,A  without terms including wl, , w,, , and 
vv,, : 
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where r is determined by the first part of Eq. (18). Figures 
3-5 show the decay rates 7;' and ri' normalized to 
(2Tlh)*r (the resonant value from Eq. (52)) versus A at 
different ratios of the electron temperature to the collision 
broadening h/r.  Figures 3-5b,c demonstrate the effect of the 
difference between scattering rates in the two wells (i.e., dif- 
ference between the correlators wll and w,,) on these curves. 
This effect not only leads to the shift of the resonant peak (it 
can be eliminated by renormalizing A) but also to a consid- 
erable asymmetry of the peak. This asymmetry is more sig- 
nificant in the intermediate temperature range (Fig. 4) than at 
low temperature (Fig. 3). At high temperature the asymmetry 
is not so pronounced, and in the high-temperature limit, 
when Eq. (52) is valid, the peak should be symmetrical. 

The calculations shown in Figs. 3-5 indicate that 7:' 

and ri ' increase with the decreasing temperature around the 
resonance. This increase is not too large: the ratio of the 

FIG. 3. 1 )  Relaxation rate of the electron 
5 population in double quantum wells, 7;' , 

and 2 )  departure rate from the left well, 
70 , at low temperatures (T ,~ / f i=0 .25)  at 
different ratios of scattering frequencies in 
two wells: a) wll= w,,; b) w,,/wll= 1/3; c) 
w,,lwl,=3. The solid lines are calculations 
using Eqs. (47) and (48). dashed lines are 
calculations using Eq. (52). All calculations 
are normalized to ( 2 ~ 1 ~ 5 ) ~ ~ .  

resonance relaxation rate at T, = 0.25hl r to that in the high- 
temperature limit (Eq. (52)) is about two and changes little 
with decreasing temperature. The widths of the resonance 
peaks on the curves of 7,' and 7;' versus A also increase 
with decreasing temperature, but this increase is even 
smaller. The differences between calculations of 7;' and 

' , on one side, and their high-temperature limits, on the 
other side, are less significant at larger A. Thus we have 
found that although the relaxation mechanism at low tem- 
perature is radically different from that at high temperatures, 
the relaxation rates may be roughly estimated at all tempera- 
tures using the high-temperature limit given by Eq. (52). 

Note that the formulas given in this section rely on the 
self-consistent Born approximation [Eqs. (3) and (4)] used to 
calculate the Green functions of low-energy electrons. This 
approximation, in particular, yields a sharp edge of the den- 
sity of state of two-dimensional electrons, which is not a 
satisfactory result from the physical viewpoint. Other meth- 
ods, such as functional must be used in a more 
detailed study. 
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FIG. 4. Plots similar to those of Fig. 3 for an 
intermediate temperature: T , ~ l f i  = 1. 

6. REVIEW OF EXPERIMENTAL DATA AND DISCUSSION 

The kinetics of nonequilibruim electrons in tunnel- 
coupled quantum wells is interesting both from the view- 
point of fundamental physics (study of tunneling between 
two-dimensional electron systems) and with a view of devel- 
oping new electronic devices.25 Their kinetics has been stud- 
ied extensively since the late 1980s, largely by optical spec- 
troscopy. Most publications (Refs. 1-8 and others) were 
dedicated to the slow resonant and nonresonant tunneling 
relaxation of electrons whose rate was measured by the de- 
cay (or build-up) of luminescence due to electrons in the left 
or right quantum well. The time resolution in such experi- 
ments is usually about several picoseconds, but with state- 
of-the-art techniques it is down to 100 femtose~onds.~ The 
energy difference A between levels in the well can be tuned 
by electric field aligned with the z-axis applied to the struc- 
ture in order to investigate the region of resonant tunnelling 
around A=O. On the other hand, several publications in re- 
cent years reported on investigation~ of electron density os- 
cillations due to coherent tunneling observed through oscil- 

lations of the probing pulse tran~mission'~ or detection of 
electromagnetic waves in the terahertz band.16.17 

The existing theoretical models of processes observed in 
these experiments are not satisfactory for the following rea- 
sons. First, the resonant relaxation of electrons in coupled 
quantum wells was not studied in detail; only a simple phe- 
nomenological model, which yielded a formula similar to 
Eq. (52), was proposed by Leo et a1.26 (note also an earlier 
publication by Kazarinov and ~ u r i s ? ~  in which a similar for- 
mula was derived from a microscopic theory for tunneling in 
superlattices). Second, the existing theories of coherent os- 
cillations in coupled quantum wells either ignore electron 
scatteringZ0 or include it in the form of phenomenological 
decay times introduced into dynamic equations.18.19 This 
model does not reveal any connection between coherent os- 
cillations and slow tunneling relaxation, although these are 
two manifestations of one process, namely the evolution of a 
space distribution of nonequilibrium electrons. 

In this work, we have investigated the evolution of elec- 
tron distribution in the regime of both coherent electron den- 
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Arlh 

FIG. 5. Plots similar to those of Fig. 3 at a 
high temperature: T,r/f i  = 4. 

Arlh  

sity oscillations and slow relaxation of the electron popula- 
tion using a unified approach based on the kinetic equation 
(7) or (11) and the model of scattering from time- 
independent structural nonuniformities (interface roughness). 
Let us reiterate the main features of the transition between 
these two regimes due to changes in parameters which con- 
trol the electronic system evolution. Slowly decaying oscil- 
lations are observable when the energy difference 2T be- 
tween tunnel-coupled levels is slightly larger than the 
collision broadening energy  IT. This condition was realized 
in the experiment by Roskos ef a1.,I6 in which 2T= 6 meV, 
and an estimate based on the measured decay time constant 
yielded &IT= 1 meV. On the contrary, if h l r  is larger than 
2T, there is a range of parameters in which oscillations are 
impossible (Fig. 1). If the energy difference A is increased, 
oscillations with smaller amplitude and period are seen 
against a nonoscillating decaying background (Fig. 2b), 
which makes their observation more difficult. After a time 
f -  T the oscillations decay and the system comes to equilib- 
rium. 

If the coherent tunneling is strongly suppressed by scat- 
tering or owing to a large energy difference A [Eq. (24)], the 

relaxation continues for t* T. This slow relaxation is due to 
the tunneling of electrons between quantum wells, which are 
well insulated from each other when the condition of Eq. 
(24) holds. This is the relaxation process observed in experi- 
ments on the photoluminescence decay, in which the relax- 
ation time is 10-100 ps even around the resonance, and this 
time is much longer than typical values of T .  In Secs. 3-5 
we attempted to give a detailed description of the slow tun- 
neling relaxation taking into account its features deriving 
from the following conditions: (a) the scattering couples the 
quantum wells owing to the nonuniformity of the barrier 
thickness (the correlators wl,  , w,, , and w,, are included); (b) 
the scattering potential is long-range (the correlation length 
I ,  is large); (c) electrons with energies less than h / r  tunnel 
between the wells (the electron temperature, T ,  is low). The 
conditions (a) and (b) have a notable effect on the curves of 
tunneling times TO and rd plotted against A only at a large 
A. The condition (c) is essential around the resonance, when 
) A ] <  h l r .  We have found that for T , < h / r  the tunneling 
relaxation rate is higher than for T,+f i l r  and the resonant 
peak is asymmetrical due to the difference between scatter- 
ing rates in the coupled wells. These conditions have little 
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effect on 70 and r,, , and experimental data on the tunnelling 
relaxation around the resonance can be analyzed using 
simple formulas of Eq. (52), which are valid at T,%h/r. 

It is noteworthy that in most experiments on the resonant 
tunneling re~axation,"~'~-~ electrons tunnel between the 
ground state in the left quantum well and the second (or even 
third or fourth) dimensional subband of the right well. Under 
this condition, the electrons arriving in the right well rapidly 
relax to lower subbands, and there is no back flow of elec- 
trons to the left well. This means that the tunneling relax- 
ation is controlled by the time of transition from the left to 
the right well, rO. Note that the curve of this time plotted 
against A is asymmetrical because the factor exp(AlT,) is 
present for A <O and absent for A >0 (Eq. (52) and Figs. 
3-5). This asymmetry is clearly seen in experimental plots 
of r0 versus A . ~ ' ~ ' ~ ~ ~  Strictly speaking, our equations can be 
applied to this process only when the transition time between 
subbands is longer than r (for example, owing to a large 
momentum transferred in such transitions). If these times are 
comparable, the two-level model of the tunnelling relaxation 
is not suitable, and our results can be considered only as 
rough estimates. 

In comparing our calculations using Eq. (52) to experi- 
mental data on the tunneling relaxation, we estimated the 
broadening h / r  from both the luminescence decay time at 
resonance (the tunnelling matrix element T was calculated 
using parameters of heterostructures in the flat band approxi- 
mation) and from the relaxation time as a function of the 
energy difference A (i.e., from the resonant peak width). Es- 
timates from the decay time at resonance yielded 4.5  me^;^ 
1.1 and 3.0 meV (structures with barriers 6 and 8 nm wide, 
 respective^^);^ 0.7 and 0.7 meV (the structure with thick- 
nesses 13.516.5110.5 nm; tunnelling to the second and third 
level,  respective^^).^ The estimates from the resonance peak 
width are 9  me^,' 4.5 and 8.0  me^? 4.0 and 4.0  me^? 
respectively. The differences among these estimates may be 
caused by errors in T, since the slope of band edges due to 
electric field was not taken into account; given large widths 
of wells and barriers, this could change the estimates of T by 
a factor of two to three (four to nine in the case of 7). 
Another reason is that the two-level approximation is not 
applicable to this case (see the previous section). These two 
factors are not essential for experimental data by Mantsutsue 
et a1.: concerning a GaAs/AlAs/GaAs structure with a high 
thin barrier and fairly narrow quantum wells, in which the 
level in the right well was depleted through electron tunnel- 
ing across the thin barrier to continuum states. No asymme- 
try of the resonant peak, rO(A), due to the temperature was 
observed, which may be accounted for assuming that 
T,$A (the large width of luminescence lines supports this 
assertion). The experimental curve4 of the relaxation time 
r0 versus A was approximated fairly well by Eq. (23) at 
h / r =  5.7 meV, supposing that roughness amplitudes on all 
interfaces were equal (Fig. 6) (the assumed broadening, 
h l r ,  may be caused by monolayer irregularities with a cor- 
relation length of 3 nm, which are fairly reasonable param- 
eters). Since the condition ( ~ d , , , ) ~ %  I was satisfied in this 
structure, a weak asymmetry of the rO(A) curve [due to the 

FIG. 6. Time 70 of  tunneling relaxation from the left well of  the GaAd 
AIAdGaAs structure with widths of  7.113.115.1 nm versus the energy dif- 
ference A controlled by electric field. Experimental points are taken from 
Ref. 4. 

linear with A term in Eq. (23)] can be seen (see also Ref. 
12). 

At the resonance (A = 0)  the rate of slow tunnelling re- 
laxation is proportional to the square of the tunneling matrix 
element at all temperatures of tunneling electrons. This con- 
clusion is in a qualitative agreement with experimental data 
by Heberle et aL8 concerning tunneling relaxation of elec- 
trons between coupled quantum wells separated by barriers 
of different thicknesses when electrons from the first level of 
the left well went to the second level of the right well (Fig. 
7) (in our estimates we used T calculated in Ref. 8). The fit 
of experimental data to a simple formula TO 

= ( ~ l h ) - ~  r- '12 yields fLI r- 1 1 meV. Relaxation times 
when the first level of the left well was exactly tuned to the 
n-th level (n = 2,3,4) of the right well were also compared in 

FIG. 7. Time TO of tunneling relaxation from the left well in a 
GaAs/G~,Al0,,As/GaAs structure with thicknesses of  5/d/ 10 nm at A = 0 
versus the energy difference 2T controlled by the barrier width d .  Experi- 
mental points are taken from Ref. 8. 
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Ref. 8. The experimental points clid not fit the curve r0 
x ( 2 ~ ) - ~ ,  which may be accounted for by an increase in the 
broadening energy h/ r with the resonance number. This be- 
havior is typical of scattering from interface inhomogene- 
ities, but may be also interpreted in terms of other scattering 
mechanisms (such as transitions between subbands with 
emission of optical phonons). 

In conclusion, note that the shape of resonance peaks 
may be affected by another factor not mentioned in this pa- 
per. This is an nonhomogeneous broadening due to large- 
scale nonuniformities of quantum well widths ("islet" non- 
uniformities) that leads to variations in A over the structure 
area. In this case the relaxation rate should be lower and the 
peak width larger. This effect should be more pronounced in 
structures with narrow wells, and our analysis of experimen- 
tal data indeed indicates this tendency. 
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