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The kinetics of the behavior of nonequilibrium electrons in a quantum cascade laser, which take 
into account the strong interaction of the electrons with optical phonons, is investigated. A 
system of kinetic equations for the distribution functions of the electrons and nonequilibrium 
phonons is obtained, and its exact solution is found. It is shown that optical phonons 
accumulate and are reabsorbed with resultant smearing of the electron energy distribution and an 
additional increase in the threshold current, which is already very high due to the interband 
emission of optical phonons in a quantum cascade laser. The possibility of lowering the threshold 
current by increasing the effective lifetime of the electrons in the upper subband as a result 
of the reabsorption of phonons and the buildup of electrons in the lower subband at energies which 
are multiples of the phonon energy is demonstrated. The threshold lasing conditions are also 
found with consideration of the nonparabolicity of the subbands. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

Semiconductor lasers (including diode lasers and Q W  
lasers) operate on electron transitions between the valence 
band and the conduction band. The emission wavelength is 
determined by the width of the band gap. Although injected 
nonequilibrium electrons (or holes) fill a fairly large energy 
range, the radiative transitions occur in a narrow energy re- 
gion near Fermi quasilevels. This is attributed to the different 
signs of the effective masses of the bands and restrictions 
imposed by the energy and momentum conservation laws. 

A new type of semiconductor laser, which differs in a 
fundamental way from those mentioned above, was recently 
demonstrated in Ref. 1. The laser, which was called a quan- 
tum cascade laser by the authors, operates on electronic tran- 
sitions between subbands in the conduction band (i.e., they 
use one type of carrier), which appear as a result of size 
quantization in the semiconductor heterostructure. 

The work on the creation of such lasers began with the 
pioneering theoretical paper by Kazarinov and ~ur i s?  and an 
appropriate review was presented in Ref. 1. The advantage of 
quantum cascade lasers stems from the possibility of tuning 
the emission wavelength from the infrared range to the sub- 
millimeter range. Quantum cascade lasers' were prepared by 
molecular epitaxy and consist of a set of quantum wells with 
approximately parallel energy subbands. As a result, the elec- 
trons undergoing radiative transitions between subbands (for 
example, n = 2 and 1) emit photons of the same frequency 
R with an energy ha= 82,-  8 ,, (Fig. 1). Injected electrons 
accumulate in upper working level 2 and are rapidly emptied 
from lower working level 1 by resonant tunneling in an elec- 
tric field (which is achieved by appropriately selecting the 
parameters of the quantum wells). 

Despite some obvious merits, quantum cascade lasers 
are plagued by some significant shortcomings, primarily the 

high values of the threshold current Jth (in Ref. 1 Jth- lo4 
Ncm2). They are due to the absence of a prohibition against 
intersubband electron transitions with phonon emission, as 
well as impurity and electron-electron scattering. In fact, the 
parallel character of the subbands (the identical sign of the 
mass) actually means that there is no band gap. The greatest 
contribution to these radiationless transitions is made by op- 
tical phonons (the corresponding lifetimes are 
- 10-'2-10-13 s). Therefore, the lifetime of an electron in 70 - 

the upper working level is very short (approximately two 
orders of magnitude shorter than in a semiconductor laser), 
and therefore large threshold injection currents are required 
to create the necessary population inversion. The short life- 
time is responsible for another special feature of quantum 
cascade lasers, viz., the highly nonequilibrium state of the 
electrons. We recall that in interband semiconductor lasers 
the lifetime in the bands is large compared with the energy 
relaxation times. Hence follows the need for a kinetic ap- 
proach to describe the energy relaxation of electrons in quan- 
tum cascade lasers. 

The purpose of the present work is to investigate the 
kinetics of the behavior of nonequilibrium electrons in a 
quantum cascade laser with consideration of the strong inter- 
action of the electrons with optical phonons. A system of 
kinetic equations for the distribution functions of the elec- 
trons and nonequilibrium phonons is obtained, and an exact 
solution is found. It is shown that optical phonons accumu- 
late and are reabsorbed with resultant smearing of the elec- 
tron energy distribution and an additional increase in the 
threshold current, which is already very high due to the in- 
terband emission of optical phonons. 

At the same time, the possibility of lowering the thresh- 
old current by increasing the effective lifetime of the elec- 
trons in the upper subband as a result of the reabsorption of 
phonons and the buildup of electrons in the lower subband at 
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FIG. 1 .  Dependence of the energy of the subbands on the quasimomentum. 
The dashed lines correspond to transitions with the emission of  an optical 
phonon, and the wavy lines correspond to transitions with the emission of a 
photon. 

energies which are multiples of the optical phonon energy is 
demonstrated. This can be achieved by increasing the tunnel- 
ing escape time r, of the electrons from the lower subband, 
for example, by increasing the thickness of the barrier. 

The format of this paper is as follows. The model con- 
sidered is described in Sec. 2, where the kinetic equations for 
the electrons and phonons, as well as expressions for the gain 
coefficient are derived. Sec. 3 is devoted to finding the 
threshold conditions for lasing in quantum cascade lasers 
with consideration of the nonparabolicity of the subbands. 
The transition is made from the integral kinetic equations to 
a system of coupled equations, and a solution is found for 
them in the absence of phonons in Sec. 4. An exact solution 
of the linearized system of equations is obtained in Sec. 5. 
The limiting values of the nonequilibrium phonon number 
and the distribution functions, as well as the threshold cur- 
rents, are calculated in Sec. 6. In Sec. 7 the results are gen- 
eralized to any lasing frequency. The electron-electron re- 
laxation time is estimated in Conclusions. 

2. FORMULATION OF THE PROBLEM AND BASIC 
EQUATIONS 

The real scheme of a quantum cascade laser' is quite 
complex. To study only the kinetics of the energy relaxation 
between the two working subbands in the conduction band, 
we consider the following simplified model (see Fig. 1). Let 
there be two subbands with the energies E~, , .  and E I , ,  be- 
tween which transitions occur with the emisslon of photons 
having an energy h 0 .  The subbands can belong to either one 
or several quantum wells (as for example, in Ref. 1). Elec- 
trons are injected into band 2 at a rate Q, which is much 
greater than the rate of the direct transition to a neighboring 
well. At the same time, the transition from band 1 (due to 
resonant tunneling) takes place with a fairly high probability 
- 1 

rt . Such conditions are achieved by appropriately select- 

ing the parameters of the heterostructure (see Ref. 1). The 
injection rate is related to the injection current J by the ex- 
pression 

The interaction of electrons with phonons and electrons 
results in intraband and interband scattering. In A"'B" semi- 
conductors the main contribution is made by the interaction 
with the optical phonons (rO= 1 0 - ' ~ - 1 0 ' ~  s), SO that the 
acoustic phonons can be neglected. As for electron-electron 
collisions, we shall discuss their contribution later on. 

The Hamiltonian which describes the present model and 
takes into account the interaction of electrons with the reso- 
nant electromagnetic field E ( t )  = E cos Qt has the form (see, 
for example, Refs. 3 and 4) 

where 

where a rp,  a; , and c: are, respectively, the creation opera- 
tors of electrons in subbands 1 and 2 and of phonons, e lp  
and E~~ are the energy spectra of the electrons in the first and 
second subbands. 

is the matrix element of the transition between subbands with 
the wave functions $lp and $2p, and mo is the free electron 
mass. 

The Hamiltonian Hph describes the interaction with 
phonons, being the matrix elements for scattering 
within a band (n, = n 2 )  and between subbands ( n l  Z n2):  

According to Refs. 3 and 4, it is convenient to use the 
unitary transformation 

to make the transition to a representation in which H o  does 
not depend explicitly on the time: 
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As we know, the output of a laser is determined by the 
gain coefficient (see, for example, Refs. 4 and 5) 

where p12(p) is an off-diagonal element of the density ma- 
trix 

which obeys the equation4" 

Here y(p) is the damping of the off-diagonal density matrix, 
and the f ip  are the distribution functions of the electrons in 
subbands 1 and 2: 

Equation (10) and the equations for f l p  and f2p can be ob- 
tained by Bogolyubov's Here we shall not present 
the explicit form of the function y(p), which depends on the 
interaction matrix element and the electron distribution func- 
tion. The magnitude of y does not exceed (and can be 
smaller than) r i  and 71 and will henceforth be assumed 
not to depend on p. 

It is seen from (9) and (10) that the gain coefficient 
a(n) depends on the supersaturation f2p- f l p .  We shall 
find fip from the solution of the kinetic equations. Following 
Refs. 4 and 5, we obtain a system of equations for f l p ,  

f i p ,  and Nq=(c;cq): 

J f l p -  f l p  1 
at 

C { ~ ( ~ l p - ~ l ~ ' - ~ ~ ) [ f l ~ ( l  
71 7 o p p 1  

dNq Nq-Nq(T) 1 C -=- +-- 
dt T O P ~ / ~ .  P,P 1 { ~ E Z ~ E Z ~ '  

7 esc 

where Nq(T) is the thermal phonon number, re,, is the pho- 
non escape time from a region with the dimension d, s is the 
velocity of the phonons, v is the coefficient of their penetra- 
bility through the barrier, r, is the escape time of the elec- 
trons (by means of resonant tunneling) from subband 1, Q is 
the rate of injection of electrons into subband 2, p= m / 2 ~  is 
the density of states, m is the electron effective mass, 
q = I p- p'l , and l/rO is the probability of scattering on opti- 
cal phonons: 

which is assumed not to depend on the energy. 
The terms that depend on the field E, which is small 

near the threshold, were omitted in Eqs. (1 1) and (12). Equa- 
tion (13) is needed to describe the intensity of the emission 
of the optical phonons, which can accumulate and play a 
significant role in the kinetics even at low temperatures. 

The particle number and energy conservation laws can 
be obtained in the usual manner from Eqs. (11)-(13). In a 
stationary state they have the form 

Here we utilized the fact that the spectrum of optical 
phonons does not depend on q ,  i.e., w,= wo, and 
Nq= N(wo)=N. 

3. LASING THRESHOLD 

Solving Eq. (10) and substituting pI2(p) into (9), we find 
the gain (absorption) coefficient a ( R )  (per well):4 

where K is the dielectric constant. 
Amplification (a>O) in a certain range of frequencies 

becomes possible, if population inversion appears as a 
result of injection in a certain energy range, i.e., if 
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Lasing begins when a ( a )  achieves a value of 117, 
where 7 is the lifetime of photon in the cavity (which is 
determined by the total losses). This first occurs at the fre- 
quency (lo corresponding to the maximum of ~ ( f l ) :  

Conditions (19) determine the lasing frequency Qo,  the 
threshold gain coefficient, the threshold functions f2th and 
f l th ,  and, therefore, the threshold current Jlh(Q rh). 

Since the integrand in (17) depends only on E ,  we re- 
write a ( R )  in the following form 

If we neglect the nonparabolicity of the subbands, the 
energies of the subbands in the effective mass approximation 
equal 

where o is the size-quantization energy between the sub- 
bands when p= 0. The difference c2 - t1 = o - R = s does 
not depend on the momentum. This means that photons are 
emitted over the entire population-inversion region, and ex- 
pression (20) takes the form 

if it is assumed that 

Af, O < E < P ,  
f2-f1=[  0, P<&. 

The gain coefficient maximum is achieved when S=O, 
R o  = w, and the value of 

increases in proportion to p ly .  
From threshold conditions (19) and (24) it is not difficult 

to determine the threshold value A f th:  

The nonparabolicity of the subbands restricts the lasing 
region. To illustrate this, we used the simplest approximation 
for the spectrum K near the bottom of the conduction band in 
G ~ A S ~  

where %, is the width of the band gap. Then, assuming that 
e2, and e , ,  correspond to the two lowest subbands of a deep 
quantum well, we find the difference 

Assuming that equality (23) is again satisfied, for ~ ( 0 )  we 
obtain 

It is not difficult to see from (28) that the lasing frequency 
corresponding to the maximum of a ( a )  equals 

i.e., it is shifted by ,412. 
The gain coefficient at flo, 

increases with increasing p l y ,  but at p p > 2 y  it subse- 
quently reaches a limiting value 

Using (31), we finding the threshold value Afth with 
consideration of the nonparabolicity 

The fact that the nonparabolicity restricts the range of 
energies from which lasing takes place is responsible for the 
insensitivity of "(a,) to the form of the electron distribution 
function at high energies. 

N 

In fact, let f 2 p  - f = A f be nonzero (wid have either 
sign) when E =  wo in a range of width p. We evaluate the 
contribution to "(ao) ,  which we denote by G(Ro): 

If ooPl y 9  1 and o o 9 p ,  for the ratio & / a  we obtain (when 
N 

Af - A n  

N 

The insensitivity of ..(ao) to A f at E -  o0 is an impor- 
tant circumstance, since it is no longer necessary to rapidly 
remove the electrons from all of subband 1. If the case of 
"resonance," in which o = rt oo , n = 2, 3, . . . , is ignored, 
the electrons do not fall into the "dangerous" range 
O <  E <p at the bottom of subband 1 when optical phonons 
are emitted, and consequently f l p = O  in that range. There- 
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fore, there is a possibility to increase r, and, as we shall see 
below, to significantly lower the threshold current. 

4. ELECTRON DISTRIBUTION FUNCTIONS IN THE ABSENCE 
OF NONEQUlLlBRlUM PHONONS 

Relations (25) and (32) give us the threshold values 
A f ,I,. To relate them to the threshold current J,h Q ,,, , the 
solution of the system of kinetic equations (1 1)-(13) must be 
found. The influence of the interaction of the electrons with 
the equilibrium optical phonons on the threshold current was 
previously studied in Ref. 8. 

If it is taken into account that the energy of an optical 
phonon and the matrix element of the electron-phonon in- 
teraction do not depend on the momentum (and if the small 
contribution of the nonparabolicity of the subbands is ig- 
nored here), the integral equations (11) and (12) can be re- 
duced to a system of coupled equations. In addition, we shall 
assume that the source Q creates electrons in subband 2 in 
the energy range p4 wo: 

Q, o<E<w+,u, 

0, elsewhere. 

Then the electrons will concentrate in a range of width p at 
the energies E = o + n wo , where n is an integer. For simplic- 
ity, we restrict ourselves to the situation in which 
w0<w<2w0 (the general case in Sec. 7). It is convenient to 
introduce the discrete variable n in the distribution functions: 

With consideration of the foregoing, the system (1 1) and 
(12) takes the form 

where Q = Q r, and 5 = r0 / r, . One more equation for N ( 13) 
should be added to this system. However, it is more conve- 
nient to use the equivalent equation (16) instead. Thus, we 
have a closed system of equations for f ,(n),  f2(n), and N. 

Here and in the following we shall consider the case of T= 0 
and N,(T) = 0. The generalization to T # 0 presents no difti- 
culty. 

We first study the simplest situation, in which the non- 
equilibrium phonon number is small. As follows from (16), 
this is realized, if the phonon escape time re,, is small (exact 
criteria are presented below). Then the system (37)-(41) be- 
comes simplified and reduces to two equations 

whose solution has the form 

Let us consider the limiting cases of weak and intense 
injection. For weak injection (Q < 1 ) , from (43) and (44) it is 
not difficult to find 

We see that the electron distribution function f2 ( l )  is deter- 
mined by the very short time r0 for the emission of an opti- 
cal phonon. The corresponding threshold current 

is proportional to the probability of the emission of an opti- 
cal phonon l / rO,  which accounts for its large value. 

We note that in semiconductor lasers operating on inter- 
band transitions (see, for example, Ref. 4) the role of r0 is 
played by the interband recombination time, which is two 
orders of magnitude greater than 70. We also note that in 
quantum cascade lasers1 the ratio rO / r t=  5 is great (- lo), 
so that f (0) < f2( 1 ). Such a ratio was chosen to ensure the 
rapid removal of electrons from subband 1 and, therefore, 
population inversion over the entire band. 

However, it is apparently not necessary, since owing to 
the nonparabolicity of the subbands, a(f l0)  is insensitive to 
the form of the distribution function with E >  wo (see Sec.2 
above). Therefore, the presence of electrons with energies 
e' wo makes a small contribution to the absorption and does 
not alter the population inversion in the crucial energy range. 

In the limiting case of intense injection (Q% 1) the ex- 
pressions (43) and (44) give 

i.e., in the situation in Ref. 1, in which 5% 1, the values 
f2( I)= 1 - l lQrO and f ,(0)= 115 are achieved when 
Qro> 1. If C< 1, the relations 
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hold when Q> I ,  i.e., at a value of Q which is T, / r O  times 
smaller. Therefore, it is possible to lower Q,,, by a factor of 
I / .$  by accumulating electrons in band 1 at E -  w - wo . 

5. ELECTRON DISTRIBUTION FUNCTIONS IN THE 
PRESENCE OF NONEQUlLlBRlUM PHONONS 

As we shall see below, the real phonon escape times 
T , , ~  are such that nonequilibrium phonons accumulate in the 
system, the limiting value of the phonon number for the situ- 
ation under consideration ( w o < w < 2 C o )  being approxi- 
mately equal to unity. Electrons which reabsorb phonons in- 
crease their energy again, and, in particular, return from 
subband 1 to 2.  Thus, their effective lifetime in subband 2 
increases. The increase becomes especially marked, if the 
residence time of the electrons in subband 1 ,  i.e., T , ,  in- 
creases. Therefore, it is possible to lower the threshold cur- 
rent by means of phonon reabsorption, of course, provided 
the subbands are nonparabolic. 

Phonon reabsorption also results in "smearing" of the 
electron energy distribution, so that the values of f i ( n )  re- 
main small compared with, for example, 1 + 3 N  even when 
Q -  1. (This approximation actually "works" when Q - N . )  

For this reason we can neglect the nonlinear terms in 
Eqs. (37)-(41), (15),  and (16). Passing to the new functions 

f i (n )=Q5$i (n ) ,  (49) 

instead of (37)-(41), (15), and (16) we obtain the following 
system of equations: 

The parameter 77 in (56) specifies the concentration of 
nonequilibrium phonons. Setting v =  I ,  s= 10' cm/s (the ve- 
locity for optical phonons is small), and d= l op4  cm, we 
obtain re,,- 1 0 - ~ - 1 0 - ~  S. Even when d s  cm and 
TO= 1 0 - ' ~ - 1 0 - ~ ~  S, we have 7 7 = 1 0 - ~ .  

The system (50)-(55) has an exact solution. We seek the 
functions fii(n) for n 1 in the form 

f i l ( n ) = A  lea",  fi2(tz)=A2ean. (57) 

Substituting (57) into (52) and (54),  we obtain the system of 
homogeneous equations 

where 

b = 2 ( 1 + 2 N ) ,  C = ( l  + N ) e m + N e - " ,  

whence follows the equation for cr: 

e 2 a -  b ( c +  b ) e m  N 
( I  + ~ ) ( 5 + 2 b )  + 1 + ~ =  0 .  

The solution of Eq. (59) satisfying the conditions 

cCI i (n )~o ,  n - t m ,  

has the form 

Substituting rCI1(l) and e 2 ( l ) ,  as well as $ 1 ( 0 )  from 
(50), into (51) and (53), we arrive at a system of equations 
for A ,  and A2: 

A , ( [ +  1 + 3 ~ - y ) - A , y = 0 ,  

whose solution is written in the form 

where 

A = ( 1 + 3 N ) ( 5 +  1 + 3 N ) - y ( 5 + 2 + 6 N ) ,  

Solution (62) gives the useful exact relation 

which can be used together with (50) to find 

The nonequilibrium phonon number can be found from 
Eq. (56). Summing the series, we bring (56) into the form 

Using (55),  we can write Eq. (66) in an even more conve- 
nient form: 
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Thus, Eqs. (57), (60), (62), and (65) together with the equa- 
tion for N (67) give us the complete solution of the problem. 

6. LIMITING VALUES OF THE NONEQUlLlBRlUM PHONON 
NUMBER AND THE ELECTRON DISTRIBUTION 
FUNCTIONS 

Let us first consider the situation in which 59  1 and 
(SN,  which is characteristic of quantum cascade lasers.' 
Performing the expansion in 115 in (62) and (63), we find the 
expression for I&~( 1 ) 

where 

$2( 1 ) and Q2(l ) increase sharply. Then, when N> 1, elec- 
trons begin to go to higher levels, and the functions fi2(1) 
and ( 1 ) decrease. 

Substituting the values of 4b2(N) from (72) and (73) into 
the equation for N and solving it, we obtain 

The limiting value No, which is achieved when 174 5, equals 
No = 1, and accordingly 

Comparing the values of t,b2(1) from (75) and (71) (for 
fixed rO), we obtain 

and the equation for the phonon number N = N / ~  Therefore, an improvement in the threshold current by a fac- 
tor of 115 is possible. As the evaluations show (see below), 

ip(N)-ea 
Nrl= (69) the value c=0.1 ( r t=3  X 1 0 1 2  s) is perfectly permissible, 

1-ea ' and, accordingly, the expected decrease in the threshold cur- 

where rent amounts to approximately one to two orders. 

- 1  

i p ( ~ ) = [ ( 1 + 2 ~ ) [ 3 - % ( e ~ + & ) ] ]  . 7. ELECTRON ENERGY DISTRIBUTION AND LIMITING 
PHONON NUMBER FOR ANY w 

If 74 1, expanding (69) in small N, we obtain the lim- 
iting value No: The foregoing analysis can be generalized to the case of 

5 6  
w- kwo, in which k optical phonons fall within w (for ex- 

No' (70) ample, in Ref. 1 k= 7-8). It is not difficult to show that Eqs. 

( 1 + 6 ) 8 '  (51)-(54) for fi(n) with n 1 remain unchanged, while Eq. 
(50) takes the form 

which becomes equal to NO= 1 when 5, 10. 
Substituting ea and No into (68), we have $1(0)(6+ 1 + ~ N ) = N @ I ( -  1)+(1+N)[*1(1) 

i.e., the reabsorption of nonequilibrium phonons decreases 
f2( I )  and increases Qth approximately three fold in compari- 
son with (45) and (46) for the relation between the times 
r09 r, , which was adopted in Ref. 1. 

Let us now consider the reverse situation, in which 
5 4  1. It is achieved, if rt is increased at a fixed value of 70 

by varying, for example, the thickness of the barrier. Of 
course, rt must remain smaller than the relaxation times on 
acoustic phonons and electrons. 

Performing the expansion in 54 1 (59N)  in (60), (62), 
and (63), after some cumbersome calculations we find 

The function (0) decreases monotonically with increasing 
N owing to the phenomenon of reabsorption [compare with 
(45)], while 4b2(1 ) and $,(I)  each exhibit a maximum at 
N= 1. In fact, as N increases, the electrons which have ac- 
cumulated in the lowest level of subband 1 [ f ,(0)] pass into 
subband 2 [ f2 ( l ) ]  and into subband 1 [ f ,(I)], so that 

and the following equations must be added for the new func- 
tions Ql(-n): 

G I ( - k ) ( 5 + N ) = ( l + N ) t , b l ( - k +  1),  n=k.  (79) 

Relations (55) and (56) are also modified: 
* m 

It is easy to see that the results for the limit 5% 1 remain 
practically unchanged. In fact, as follows from Eqs. (78) and 
(79), all the new functions f ( - n) are small compared with 
f2(1) and f l (0 )  with respect to the parameter [-". There- 
fore, the system of equations [including (56)] remains un- 
changed, as do, consequently, the values of No and 
4b2( 1 )[see (68) and (70)l. 
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Let us analyze the limit 6 4  1. The new system of equa- 
tions can again be solved exactly in the general case. To 
avoid cumbersome expressions, we restrict ourselves to con- 
sideration of the limit of large k. In this case the limiting 
phonon number is large, being N~--kl&[see (85)]. This 
makes it possible to simplify Eqs. (78) and (79) and to easily 
obtain 

When relation (82) is taken into account, Eq. (77) is 
transformed back into its former form (50), and Eq. (81) for 
the phonons takes a different form: 

[when k =  1, it transforms into (56)l. 
Therefore, we have the former system of equations for 

the i+bi(n) with a different phonon number, and thus the 
former expressions (72) and (73) can be used. Substituting 
them into (83) we arrive at the following equation for N: 

When ~ 9 t ,  the limiting value of No equals 

Accordingly, the functions t,b2(1 ) and 1+9, (0) can be written 
in the form 

Setting w = 0.295 eV (Ref. I), wo = 0.036 eV, and k = 7, 
we find 

Comparing (87) with (75), we see a modest (20%) decrease 
in *2(1). 

Thus, the conclusion regarding the possibility of signifi- 
cantly lowering the threshold current remains valid for any 
k. 

8. CONCLUSIONS 

The treatment of the kinetics of the relaxation of the 
nonequilibrium electrons in quantum cascade lasers showed 
that its important features are the emission and accumulation 

of nonequilibrium optical phonons. Reabsorption of the non- 
equilibrium phonons results in smearing of the electron en- 
ergy distribution and an additional increase in the threshold 
current. 

The fundamental possibility of decreasing the threshold 
current Jth by increasing the time for the removal of elec- 
trons from the lower working subband was also demon- 
strated in this work. The decrease in Jth is attributed to an 
increase in the effective lifetime of the electrons in the upper 
subband due to the reabsorption of nonequilibrium phonons 
and the accumulation of electrons in the lower subband at 
energies equal to the multiples n wo . There are two necessary 
conditions here: the absence of a dependence of the energy 
of an optical phonon on the momentum and the nonparabo- 
licity of the subbands. The improvement in the threshold 
current is limited by the minimal electron-electron relax- 
ation time, which can be evaluated approximately in the two- 
dimensional case using the expression 

Taking mlmo=0.07, a dielectric constant K =  13.3, and 
p t  oo = 0.2-0.1, we obtain re,,= 3 X 10- l2 to 6 X 10- l2 s, 
and, therefore, 6 5  0.1. 

It must be stressed that the evaluations performed in this 
work have an approximate character, since knowledge of the 
matrix elements of the radiative phonon and electron- 
electron transitions with consideration of the concrete param- 
eters of the nanostructures is needed for rigorous quantitative 
results. Such calculations are beyond the scope of this paper. 
However, the qualitative results obtained make it possible to 
outline the procedure for optimizing the structure of quantum 
cascade lasers and to significantly lower the threshold current 
in these certainly promising lasers. 
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