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The Kramers-Henneberger method is used to investigate the stimulated bremsstrahlung 
absorption (emission) of photons accompanying the scattering of an electron by a one- 
dimensional quantum system in an ultrastrong electromagnetic field. The properties of the 
bremsstrahlung spectra are discussed for different intensities of the radiation. The results are 
compared with calculations made by direct numerical integration of the one-dimensional time- 
dependent Schrodinger equation. The limits of applicability of the Kramers-Henneberger 
approximation for the model are established. O 1996 Anlerican Institute of Physics. [S1063- 
776 1 (96)0070 1-21 

1. INTRODUCTION 

Bremsstrahlung absorption (emission) of photons ac- 
companying the scattering of electrons by atoms in a strong 
electromagnetic field is one of the most important elemen- 
tary processes that determine the dynamics of the interaction 
of rarefied gases and plasmas with intense laser radiation. 
Stimulated bremsstrahlung was first considered outside the 
framework of perturbation theory with respect to the interac- 
tion of a quantum system with the field of an electromagnetic 
wave in Refs. 1 and 2. The following connection between the 
amplitude of n-photon stimulated bremsstrahlung and the 
elastic scattering amplitude fppo was obtained in the Born 
approximation for the scattering potential, with Volkov func- 
tions describing the state of a free electron in the field of an 
electromagnetic wave: 

Here po and p are the initial and final values of the electron 
momentum, J ,  is a cylindrical Bessel function of argument 

E is the amplitude of the electric field of the wave with fre- 
quency w, and 6 p=p-p, is the change in the momentum 
during the scattering process. 

In subsequent years, numerous attempts were made (see, 
for example, Refs. 3-10) to generalized the expression (1) 
beyond the Born approximation. A general theory of stimu- 
lated bremsstrahlung in the case of potential scattering in an 
electromagnetic field has yet to be created. In ultrastrong 
optical fields, in which the field strength of the wave exceeds 
the strength of the atomic field, the dynamics of the quantum 
system in the electromagnetic field can be treated by the 
Kramers-Henneberger method." Interest in the investigation 
of the elementary processes in a strong electromagnetic field 
in the Kramers-Henneberger approximation is due to the 
successful use of this approach to describe the stabilization 
of atoms in an ultrastrong fieldi2-l4 and continues to be 
stimulated by recent discussion of the physical utility of 
Kramers  coordinate^.^^ For example, it is emphasized in Ref. 

15 that the elementary concepts of the Kramers- 
Henneberger formalism, such as the Kramers-Henneberger 
potential, the Kramers-Henneberger stationary states, and 
the wave functions that correspond to them are real charac- 
teristics of elementary processes in strong fields, and in this 
sense the Kramers coordinate system is distinguished among 
other possible coordinate systems. In fact, given that the lim- 
its of applicability of the Kramers-Henneberger approxima- 
tion has yet to be adequately investigated, the question raised 
above is perhaps largely a methodological one. 

This paper is devoted to an investigation of electron 
scattering by a one-dimensional quantum system with short- 
range potential in the Kramers-Henneberger formalism. The 
results are compared with calculations based on direct nu- 
merical integration of the time-dependent Schrodinger equa- 
tion for a quantum system in the field of an electromagnetic 
wave. 

2. THE KRAMERS COORDINATE SYSTEM AND THE 
KRAMERS-HENNEBERGER APPROXIMATION 

By definition, the Kramers coordinate system is attached 
to a free electron oscillating in the field of an electromag- 
netic wave. The coordinates x  of the laboratory system and 
the coordinates x '  of the Kramers coordinate system are re- 
lated by 

x' =x -a ,  cos wt ,  

where a,= esolrnw2 is the amplitude of the oscillatory mo- 
tion of the electron, and eo and w a e  the amplitude and 
frequency of the wave field. The transition to this coordinate 
system is made by means of a time-dependent unitary trans- 
formation 

where 

in which Hi, , , ( t )  is the operator of the interaction of the elec- 
tron with the field of the electromagnetic wave. 
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In the dipole approximation in the d E  gauge, this opera- 
tor has the form 

Hi , , (? )=  -ex&, cos wt. (3) 

Choosing as basis {fi (x,t)) in the laboratory system the 
Volkov functions 

iP-  sin w t  j d t l ] )  

- lrn 2m 

and applying the transformation (2), we obtain in the Kram- 
ers coordinate system the plane-wave basis 

(eiF is a phase factor that does not depend on the coordinate 
and momentum and therefore vanishes in the calculation of 
the matrix elements between the states k,(x,t)). 

In the Kramers coordinate system, the Schrodinger equa- 
tion for the electron wave function fiKH(xl,t) can be written 
in the form 

K H  n2 J ~ G K H  - - - - i n  -- + V(xf +a ,  cos wt) 
dt 2m dx2 

where V(x) is the atomic potential. Thus, the atom-field 
interaction has been reduced to a time-dependent shift in the 
argument of the potential. 

Expanding the potential V(xf f a ,  cos wt) in a Fourier 
series, we obtain 

where 

V(xl+a,  cos ~ t ) e - ' " ~ ' d ( w t ) .  
2%- 

(6) 

The Kramers-Henneberger approximation consists of ignor- 
ing in (4) all the terms of the series except the zeroth: n =O. 
As a result, the motion of the electron in the atomic potential 
in the presence of the alternating wave field is reduced to the 
problem for a Schrodinger equation with time-independent 
potential Vo(x,a,) (Kramers-Henneberger potential): 

Here and in what follows, we omit the prime. 
All the terms of the series (5) with n # O  are assumed to 

be small; they can then be regarded as a perturbation: 

GV(x,a, ,t) = V(x+a, cos wt)- Vo(x,u,). (8) 

A key concern in this process is to establish that the modes 
V, are small and to find the regime in which the Kramers- 

FIG. 1 .  Kramers-Henneberger potential for the following intensities of the 
laser radiation ( ~ / c m ~ ) :  1 )  lot4, 2) IO", 3) 1 0 ' ~ ;  4) the original atomic 
potential. 

Hemeberger approximation works well, i.e., to find the con- 
straints that must be imposed on the permissible parameters 
of the laser radiation: the frequency, intensity, duration, and 
shape of the pulse. It is obvious that in contrast to the ion- 
ization problem, in the case of the stimulated bremsstrahlung 
we need not discuss the constraints on the duration of the 
wavefront and on the pulse shape, i.e., questions associated 
with turning the field on and off and the occupation of the 
Kramers-Henneberger states.I6 

3. ONE-DIMENSIONAL MODEL OF THE QUANTUM SYSTEM 

In this paper, we consider a rectangular potential well of 
depth V,=5 eV and width d = 2  A, which was used previ- 
ously in Ref. 16. In such a well, there is a single bound state 
with energy E,=-2.55 eV and wave function cp,(x), the ei- 
genvalue and eigenfunction of the model potential V(x). The 
atomic intensity for this well is P*=8.1013 w/cm2. The 
Kramers-Henneberger potential for this atom for different 
intensities and Rw=2.5 eV is shown in Fig. 1. At high inten- 
sities (p>l0I4 w/cm2), it has a characteristic double-well 
shape (the distance between the wells is 2a,). Such a shape 
of the Kramers-Henneberger potential is typical and does 
not depend on the particular details of the original potential. 

In this model, the harmonics V,,(x,a,) can be calculated 
analytically, and the perturbation SV(x,a, , t)  in the region 
x E (-a,- d/2,ae+d/2) has the form 

cos n u t  
- m u - l - 2 ~ l s i n n ~ ~ ] .  (9) 

Here 

sin((n + i )cosP' 5) 
Ufl( 5) = sin 5 

are the Chebyshev polynomials of the second kind,17 with 
arguments 5,,2=(a Tx) la , ,  a = d/2, 
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In the expression (9), cos nwt  and sin nwt  correspond to 
even and odd n ,  respectively. 

A similar model was considered in Ref. 16, an investi- 
gation of ionization in the Kramers-Henneberger approxi- 
mation. The existence of stabilization in such a system en- 
ables to draw some a  priori conclusions about the spectrum 
of stimulated bremsstrahlung. Indeed, in the general 
Kramers-Henneberger formalism above, what happens in 
the Kramers system is electron scattering by a corresponding 
potential in the presence of the field of the harmonics V ,  . In 
lowest-order perturbation theory, each harmonic V,, gives 
rise to transitions between continuum states separated in en- 
ergy by n h w .  Then the main results of Ref. 16 enable us to 
conclude that the intensity is increased, the number of mul- 
tiphoton peaks in the stimulated bremsstrahlung spectrum 
must increase, while their absolute magnitude must decrease. 

It should also be noted here that our model, which en- 
ables us to implement the Kramers-Henneberger transfor- 
mation analytically, is not at all well suited for demonstrating 
the applicability of this approximation in a strong field for 
either ionization or stimulated bremsstrahlung. This is due to 
the fact that for a piecewise continuous potential, the har- 
monics V ,  decrease more slowly than for a smooth function 
V ( x ) .  

4. INVESTIGATION OF THE STIMULATED 
BREMSSTRAHLUNG SPECTRUM 

4.1. Analytic estimates in the Kramers-Henneberger 
method 

The basic idea of the proposed solution is that by using 
the Kramers-Henneberger method we can reduce scattering 
by the model potential in the ultrastrong field to scattering by 
an effective potential in a weak field, i.e., to a problem that 
can be solved with perturbation theory. This possibility arises 
because in the presence of electric field strengths greater than 
the atomic field strength, there is a Kramers-Henneberger 
regime in which the harmonics V ,  are small in the sense that 
they excite only single-photon processes with photon energy 
n f i w .  

It is easy to estimate the intensity at which this regime 
commences for the model considered. As is shown in Ref. 1, 
multiphoton processes can be ignored if 

and this can be rewritten in the form 

where u , = e c l m w  is the oscillatory velocity of the electron 
in the field of the electromagnetic wave, and u,,=plm is the 
electron drift velocity. In our case, the condition ( 1  1) has the 
form 

mu,K"ud 
N =  --- 

nii w 
e 1 

V,, rel. units 

t 

-1.5 t 
V , ,  rel. units 

FIG. 2. Harmonics o f  the potential: 1 )  V , ( x ) ,  2 )  V , ( x ) ,  3 )  V , , ( x ) ,  4 )  V,,(x) 
for the Kramers-Henneberger potential and ho=2.5 eV. 

and must hold for all n .  Here u f H  is the characteristic oscil- 
latory velocity of the electron in the field of the harmonic 
V ,  . Bearing in mind that the harmonics V ,  are nonzero in a 
region of order a ,  and have a highly nonuniform coordinate 
dependence (Fig. 2), we estimate the mean field created by 
the harmonic V ,  to be E,,- V , J e a , .  Then the oscillatory ve- 
locity vy of the electron in the field E,, in (12)  is u t H  
- e i ,  lmn  w .  Bearing in mind that the characteristic depth of 
the Kramers-Henneberger potential is related to the depth of 
the original potential by 

VKH= V o ( a l a , ) ,  

and V,=V,,  , we find that 

Then for a photon multiplicity N we have 
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Estimating N for the energy hw=2.5 eV of the photon of the 
electromagnetic field and for u , , ~ 1 0 ~  crnls, we find that 
N =  l for an intensity P*= l0I4 w/cm2. 

In this paper, the stimulated bremsstrahlung spectrum is 
investigated in first-order perturbation theory in the 
Kramers-Henneberger potential and the field of the harmon- 
ics V,, . There is no doubt that the Born approximation holds 
in a Kramers-Henneberger scattering potential over a wide 
range of initial velocities vd in the Kramers-Henneberger 
regime. Then for the probability w'" of absorption or emis- 
sion of n photons by the electron we obtain 

where Ek ,En, ,Ep=Ek+nfiw are, respectively, the initial, in- 
termediate, and final energies of the electron, and the matrix 
elements 

have the form 

VKH(Ap)=2Voa sine (A:a) - lo(% a,), 

S(n> 
Vn(Ap) = 2V0a s i n c ( T )  Jn( % a,). 

Here Ap denotes either pp - p,, or p,, - pk (pp ,pm ,pk are, 
respectively, the final, intermediate, and initial electron mo- 
menta): 

1, n-even, 

Further, following the standard scheme, we obtain 

where v ( ~ )  is the two-photon matrix element in (14), and na 
is the number density (the number of particles per unit 
length). 

We define the coefficients of reflection and transmission 
accompanied by the absorption (emission) of n photons, R'" 
and T'", respectively, by 

where W i n  and w;" are the probabilities of reflection and 
transmission accompanied by the absorption (emission) of n 
photons. 

Going over in (15) from summation to integration and 
using the pole approximation, we obtain the following ex- 
pression for vk2)= v ( ~ )  for p p  , pk<O and ~ ( , 2 ) =  v ( ~ )  for p P '  

pk>O: 

Here h = p p / p k  = d-, ~ = 2 r n v ~ a ~ / f i ~ ,  k=pk/fi ,  
and L is the normalization volume. 

In the case X S l ,  (17) and (18) take the form 

from which it can be seen that I~(,2)1= Ivk2)I2. 
In all that follows, we shall consider the case X S l ,  cor- 

responding to the absorption of a large number of photons 
and f iw2Ek.  Then for the coefficient R'" we obtain, follow- 
ing the scheme described above, 

where 

is the reflection coefficient calculated in the Born approxi- 
mation for the scattering of an electron with energy 
Ep  = Ek+- nfiw by the rectangular potential well. 

For T'", we have a similar result. 
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W, rel. units W, rel. units 

FIG. 3. Energy spectra of back-scattered 
electrons for the radiation intensities P 
(w/cm2)= 1012 (a), 10'' (b), 1OI4 (c ) ,  
(d); E =  10 eV. 

W, rel. units W, rel. units 

Analysis of the expression (21) enables us to make the The initial-state wave function was specified in the form 
following remarks concerning the stimulated bremsstrahlung of a Gaussian packet: 
spectrum. 

1. Comparing the argument of the Bessel function with 1 

the index, we estimate the number of peaks in the stimulated cpo(x> = - 
AX & 

bremsstrahlung spectrum: 
where Ax is the half-width, and xo and p o  are the initial 

n,,= Aka,. (22) mean values of the position and momentum. If po9f i lAx,  

Bearing in mind that in the case we consider, corresponding then Po determines the mean energy of the electron packet: 

to the absorption of a large number of photons, ~ ^ - ~ ; / 2 m .  In our calculations, we assumed Ax=20 A. The 

A = ( n h w l ~ , ) " ~ ,  we obtain field of the electromagnetic wave was specified in the form 

Thus, as the intensity is increased the number of peaks in the 
stimulated bremsstrahlung spectrum increases. 

2. Using the asymptotic representation for the Bessel 
function at large values of the argument, 

we obtain from (21) the following intensity dependence of 
the probability of the n-photon process: 

R?NCCp- 112 

3. Taking (22) and (24) into account, we obtain from 
(21) the following dependence of the height of the peaks in 
the stimulated bremsstrahlung spectrum on n: 

R?nocn-4 

4.2. Numerical experiment 

The main conclusions presented above are confirmed by 
a numerical experiment that we made for the model de- 
scribed in Sec. 3. 

E = & o  COS W t .  

The numerical solution of Eqs. (4) and (7) with initial 
condition (25) was analyzed for times at which electron scat- 
tering by the oscillating potential (or the Kramers- 
Henneberger potential) had ended and two wave packets- 
one reflected by the scattering potential and one transmitted 
through it-had formed. 

In what follows, we restrict ourselves to an analysis of 
the energy spectra of back-scattered electrons. These spectra 
were determined by means of the relation 

Here E = h2k2/2m, (l (x,t) is the result of numerical solution 
of (4) with the initial condition (25), and the integral is taken 
over the region to the left of the potential. 

The increase in the number of harmonics with increasing 
intensity is demonstrated in Fig. 3, in which we have plotted 
on a logarithmic scale the energy spectra of the back- 
scattered electrons with initial energy E= 10 eV in a radia- 
tion field with hw=2.5 eV in the intensity range 1 0 ~ ~ - 1 0 ' ~  
w/cm2. For the given set of parameters, the two-well 
Kramers-Henneberger potential begins to be formed at the 
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W, rel. units W, rel. units 

FIG. 4. Energy spectra of back-scattered 
electrons for the radiation intensities 
~ ( ~ l c m ~ ) =  lo i4  (a), 3.  l o t 4  (b), l o t 5  (c); 
E = 2  eV. 

W, rel. units 

intensity p==loL4 w/cm2. Tracing the change in the spectra 
with increasing intensity, we can readily see that the ap- 
proach to the Kramers-Henneberger regime is manifested by 
a significant increase in the number of harmonics in the spec- 
tra shown in Figs. 3c and 3d. The set of energy spectra of 
electrons with initial energy E = 2  eV for intensities 
10 '~ -10 '~  w/cm2, shown on a linear scale in Fig. 4, also 
makes it possible to follow the onset of the Kramers- 
Henneberger regime. In the indicated intensity range, we ob- 
serve a rapid increase in the number of multiphoton peaks of 
approximately equal height, in the stimulated bremsstrahlung 
spectrum with a simultaneous decrease in the intensity of the 

W. rel. units W, rel. units 

adjacent peaks (n=l-5) compared with the peak corre- 
sponding to elastic scattering by the Kramers-Henneberger 
potential. 

The photoelectron spectra obtained during the solution 
of Eq. (7) with allowance for different numbers of harmonics 
V, (x ,a , )  (n=2-10, p=1015 w/cm2), which are shown in 
Fig. 5, illustrate the validity of the estimate (13) and, with it, 
the scheme proposed for analytic treatment of the stimulated 
bremsstrahlung spectrum. Indeed, in the spectra presented in 
Fig. 5, the number of peaks of comparable height is deter- 
mined by the number of harmonics V,, taken into account in 
the solution of the Schrodinger equation. 

W, rel. units 

proximation with allowance for different 
numbers of harmonics V,,(x,a,) ,  [n=2 (a), 
5 (b), 10(c)]. The radiation intensity is 
P =  10" w/cmZ, and the electron energy is 
E = 10 eV. 
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5. CONCLUSIONS 

To summarize, we must indicate the position accorded 
the Kramers-Henneberger approach in the general theory of 
the stimulated bremsstrahlung effect. In particular, it is inter- 
esting to compare the regions of applicability of this ap- 
proach and the approach developed in Ref. I .  The question 
of the applicability of the Born approximation with respect to 
the scattering potential in the presence of the strong field of 
an electromagnetic wave evidently requires separate study. 
However, if it is assumed that in the present case the Born 
approximation is valid when E* Vo (E is the electron kinetic 
energy), we must also require that 

vdpue (26) 

since otherwise the electron will be slow during certain in- 
tervals of time. The effect of the existence of classical turn- 
ing points of the electron on the applicability of the Born 
approximation is at present not clear, and it is therefore also 
unclear how important (26) is for the calculation in the Born 
approximation. 

On the other hand, following the general logic of the 
Kramers-Henneberger approach, averaging the potential 
V(x+ae cos or) over the period of the laser field is mean- 
ingful if 

07% 1, (27) 

where T =max{Ax/vd ,ae/ud} is the scattering time of a 
wave packet of width Ax by the Kramers-Henneberger po- 
tential. 

Bearing in mind that to have Ax%?ipo it is sufficient 
that Ax-a, (in this range of parameters of the laser radia- 
tion, poa,lfi = eepolmfiw2), from (27) we have aewlvdP1 
or ue%vd, i.e., the condition opposite to (26). 

Nevertheless, there is undoubted interest in carrying out 
in a comparative analysis of the results obtained in this paper 
with the results of calculations in the first Born approxima- 
tion in the scattering potential using Volkov functions in the 
laboratory coordinate system. For electrons back-scattered 
by a rectangular potential well in the field of an electromag- 
netic wave, the Bunkin-Fedorov approach yields 

Comparison of (28) and (21) shows that the two methods 
obtain the same estimate for the number of peaks in the 
stimulated bremsstrahlung spectrum and that they exhibit the 
same dependence of the probability of n-photon absorption 
on the radiation intensity. 

At the same time, it follows from (28) that the intensity 
of the different peaks in the stimulated bremsstrahlung spec- 
trum decreases as 

and this is different from the analogous dependence obtained 
via the Kramers-Henneberger approximation. 

This behavior is obtained for large n ,  and this circum- 
stance makes it difficult to obtain an unambiguous compari- 
son of the analytic calculations with the numerical model. 
Nevertheless, analysis of the stimulated bremsstrahlung 
spectra in Figs. 3c and 3d suggests that the dependence 
~ ' " m n - ~  gives a better description of the numerical esti- 
mates. However, detailed comparison of the Kramers- 
Henneberger approximation and the Bunkin-Fedorov ap- 
proach to the description of stimulated bremsstrahlung in 
ultrastrong fields requires additional numerical calculations 
to be made in the region of stronger fields, this being due to 
the need to increase the number of peaks in the spectrum of 
the scattered electrons. 

At the same time, it must be borne in mind that the upper 
limit of the Kramers-Henneberger regime is fixed by the 
choice of model. If the intensity is raised above 1 0 ' ~ ~ l c m ~  
under our conditions, this must take us beyond the dipole 
approximation. A corresponding estimate can be obtained by 
comparing the magnetic component of the Lorentz force and 
the intra-atomic force =Void acting on the electron. 
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