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A method for interpolating the Debye approximation, which describes the crystalline state of a 
substance, to the liquid and gaseous regions is described. The method formally reduces 
to multiplying the Debye temperature by the factor 1 +L, where L is proportional to the ratio of 
the mean amplitude of thermal vibrations of the atoms in the substance to the mean 
interparticle distance (the Lindemann parameter). In the crystalline state L< 1, but LAW upon 
transition to the gas. Thermodynamics with a Debye temperature renormalized in such a 
manner, i.e., a generalized Debye approximation, which describes the solid state and the ideal 
gas in limiting cases, is constructed. It is shown that under this approximation the 
dependence of the Debye temperature on the volume and the corresponding Griineisen coefficient 
can be found from the condition that the calculated values of the entropy on the coexistence 
curves of different phases correspond to the tabulated values. It is thereby possible to obtain a 
unified description of the different states of a substance. The thermodynamics of neon is 
considered. The special features of the behavior of the thermal and elastic components of the 
pressure upon transition from the liquid to the solid are discussed. It is shown that the 
constancy of the known Lindemann parameter in the melting region is attributable to equality 
between the thermal components of the pressure of the solid and liquid phases during 
melting. Surfaces of state are constructed for the solid and fluid phases. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)00901-21 

I. INTRODUCTION 

Thermodynamic functions, which realistically describe 
the characteristics of a substance in different parts of its 
phase diagram, are fundamental characteristics of matter. 
The use of such functions has always been appropriate and is 
constantly growing. At the present time, empirical methods 
have achieved complete dominance in this area. For ex- 
ample, the modem broad-range equations of state, which 
were derived to describe metals over a broad range of com- 
pression parameters, contain tens of free and empirical 
parameters.'-5 The latter are determined on the basis of data 
from shock-wave experiments, measurements of the release 
isentropes of porous samples, and other experimental ther- 
modynamic information over a broad region of the phase 
diagram. 

At the same time, since the monumental work of van der 
Waals, the attempts to construct the thermodynamics of a 
substance by interpolating known thermodynamic functions 
from different regions of the phase diagram have never 
ceased. The Debye interpolation formula, which describes 
the state of a solid in the high- and low-temperature limits, is 
well known.627 In the melting region the coexistence curves 
are determined on the basis of the Lindemann method: from 
which an equation similar to Simon's empirical equation is 
derived. However, these methods are valid only over re- 
stricted portions of the phase diagram. 

In this paper we propose an interpolation that extends 
the Debye approximation into the region of the liquid and the 
gas. This is achieved by introducing an effective Debye tem- 
perature, which differs from the ordinary Debye temperature 
by multiplication by a certain function that depends on a 

parameter similar to the familiar Lindemann parameter. In 
the solid-state region the correction associated with this 
function is small. However, when we move into the gaseous 
region, it increases and provides for conversion of the ther- 
modynamic functions of the solid into those of the ideal gas. 
The thermodynamic functions formally have the form of De- 
bye functions, which have been supplemented by terms as- 
sociated with the temperature dependence of the effective 
Debye temperature. The thermodynamics thus constructed, 
which we call a generalized Debye approximation, contains 
one determinable dependence, viz., the dependence of the 
Debye temperature on the volume. The latter can be deter- 
mined from experimental or theoretical data, and once it is 
found, the thermodynamics of the substance will have been 
constructed over a broad range of states. 

The thermodynamics of the inert gas neon is considered 
as an example. The tabulated theoretical data in Ref. 8, 
which were obtained with consideration of the entire set of 
experimental results available at that time, are used. The val- 
ues of the entropy on the coexistence curves taken from Ref. 
8 are set equal to the expression for the entropy following 
from the thermodynamics considered here. The equation thus 
obtained is used to determine the Debye temperature as a 
function of the volume in the region of states corresponding 
to the cold solid, through the melting region, and in the re- 
gion corresponding to the ideal gas. The Grijneisen coeffi- 
cient is found from it by logarithmic differentiation. 

As a result of the calculation, it is found that the transi- 
tion from the solid to the liquid state is accompanied not only 
by a discontinuous change in the specific volume, but also by 
an abrupt decrease in the Debye temperature. This circum- 
stance was noted back in Ref. 9. The Debye temperature 
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decreases monotonically from the liquid to the gaseous state. 
When the dependence of the Debye temperature on the vol- 
ume is known, any thermodynamic function can be calcu- 
lated using the generalized Debye approximation. The be- 
havior of the Lindemann parameter on the coexistence 
curves is interesting. In particular, it remains practically con- 
stant on the solidification and melting curves, in agreement 
with Lindemann's original hypothesis. In the generalized De- 
bye approximation this is a consequence of the constancy of 
the pressure upon melting. 

The elastic (cold) and thermal components of the pres- 
sure on all the coexistence curves are calculated. The varia- 
tion of these components upon passage from the crystalline 
to the liquid state and from the liquid to the gaseous state is 
discussed. Surfaces of states are constructed in the volume- 
temperature plane, and the phase equilibrium curves are 
shown. 

2. EFFECTIVE DEBYE TEMPERATURE 

Let us consider the thermal component of the free energy 
of a solid in the Debye approximation for high temperatures: 

Here R is the universal gas constant, p is the atomic weight, 
T is the temperature, and 

where Oo is the Debye temperature at T=O,  at which the 
specific volume of the gas v = vo,  and T, is the Griineisen 
coefficient. We note that the expression (1) holds when 
OD/TG 1. 

We write the thermal component of the free energy of an 
ideal gas: 

where g, is the partition function of a gas atom and 
~ ~ = h ~ / ( 2 m n k ~ ) ' / ~  is the thermal de Broglie wavelength for 
a particle of mass m. We note that Eq. (3) can be rewritten in 
the form 

where 

h 
TF= 

( 2 ~ r m k ) ( ~ , r n u ) ~ / ~  

is actually the Fermi temperature. It differs from the exact 
ratio determined from the condition kTF=EF (EF is the 
Fermi energy) by an insignificant numerical factor. 

We introduce the effective Debye temperature 

O=@,+JT.T, (6) 

and note that the following inequality holds at temperatures 
and densities corresponding to the solid state: 

This means that in the solid state O r O D .  However, as the 
temperature T and the volume u increase, the second term in 
(6) begins to dominate (OD decreases exponentially with in- 
creasing volume, and decreases only as llu "'). 

We also note that (6) can be represented in the form 

O = O , ( l + L ) ,  (8) 

where 

The quantity mv equals n, i.e., the concentration of the 
substance, and n"' is of the order of the mean distance r 
between atoms. Therefore, L ~ ,  which is the ratio between the 
mean-square amplitude of thermal vibrations and the square 
of the mean interparticle distance, is a natural generalization 
of the familiar Lindemann parameter from the theory of 
melting.7 Lindemann considered the ratio between the mean- 
square amplitude of the thermal vibrations and the square of 
the lattice constant. In the solid state L< 1. The value of L 
increases upon transition to the gas. 

As we know, the logarithmic derivative of O with re- 
spect to the volume defines the Griineisen coefficient. Using 
(6), we obtain an expression for the effective Griineisen co- 
efficient 

It is seen that when L+m, the value of r tends to the "ideal- 
gas" value of 113. 

We substitute the effective Debye temperature thus in- 
troduced into the expression for the thermal component of 
the free energy in the Debye approximation: 

where 

is the Debye function. As L--too, D+ I, and Eq. (I I )  trans- 
forms in Eq. (3) for an ideal gas. All the quantities in it, 
except the function OD(v) ,  are known. We determine the 
latter from the condition that the thermodynamic functions 
obtained on the basis of ( I  I),  correspond to the most accurate 
presently available tabulated data. The latter are consistent 
with the entire body of existing experimental data. This is the 
main idea of the interpolation described in this paper. 

3. GENERALIZED DEBYE APPROXIMATION 

We formally introduce the effective Debye temperature 
and an expression for the total free energy in the Debye 
approximation: 
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where U is the elastic (cold) component of the energy at 
T=O. We call the free energy in the form (13) and the ther- 
modynamic functions following from it a generalized Debye 
approximation. We obtain the latter from (1 3) on the basis of 
the ordinary equations of thermodynamics, taking into ac- 
count the dependence of the effective Debye temperature on 
the volume and the temperature. Then the expression for the 
entropy has the form 

When L is large, it is easy to show that (14) corresponds 
exactly to the expression for an ideal gas: 

The energy is 

It equals 3RTIp  at small L and 3RTI2p at large L, i.e., a 
transition to an ideal gas occurs. 

The pressure is 

where 

is the elastic (cold) component of the pressure. As we see, 
the pressure is written in the Mie-Griineisen form. At large L 
and T Eq. (17) gives the ideal gas pressure. 

The specific heat at constant volume is 

At low temperatures, at which @ I T 9  1, we have c , ~ T ~ .  At 
high temperatures, at which @ I T 6  1 and L 4  1, we have 
Cu=3RIp .  Finally, at high temperatures and large values of 
L, the specific heat becomes equal to the specific heat of an 
ideal gas C u = 3  R12,u. 

Thus, we can pass from the thermodynamics of a solid to 
the thermodynamics of an ideal gas using the effective De- 
bye temperature without introducing any undetermined inter- 
polation parameters. Equations (13)-(19) contain the func- 
tion OD(u)  and the corresponding Griineisen coefficient T,y, 
as well as the elastic component of the pressure. Once these 
functions are found, the thermodynamics is thereby con- 
structed over a fairly extensive region of the phase diagram. 
We note that these functions must be determined on the basis 
of a variety of considerations when the ordinary Debye ap- 
proximation is used. In this sense the generalized Debye ap- 
proximation does not raise new problems. The only differ- 

ence is that in the latter case @,(v) and n ( u )  must be 
determined over a broader range of variation of v. 

4. DETERMINATION OF THE DEBYE FUNCTION AND THE 
GRUNEISEN COEFFICIENT 

We determine the unknown function Ol,(v) from the 
condition that the thermodynamics constructed on the basis 
of Eqs. (13)-(19) corresponds to the tabulated data for the 
thermodynamic functions of various substances. We choose 
the inert gas neon as an object. Its thermodynamic properties 
have been thoroughly studied and were tabulated in Ref. 8. 
The tables in Ref. 8 were obtained by theoretical means and 
were reconciled with the entire body of experimental data on 
the thermodynamic properties of inert gases. 

Since the thermodynamics developed above has the cor- 
rect asymptotes, its correspondence to the tabulated data on 
the coexistence curves is most important. The tables in Ref. 8 
give the entropy on the melting, solidification, vaporization, 
and condensation curves. Unfortunately, there are no values 
of the entropy on the sublimation curve. Only values of the 
entropy in the crystalline state as a function of the tempera- 
ture at constant pressure are given. However, in that state the 
entropy is a very weak function of the pressure. For example, 
when the pressure is varied from 1 to 100 atm, the difference 
in the entropy values of xenon taken at T=T, amounts to 
0.5%. This suggests that the values of the entropy on the 
sublimation curve are virtually independent of the pressure. 
We used the data for p = 1 atm. 

The tabulated entropy value for specific values of T and 
v along a coexistence curve was set equal to the expression 
following from Eq. (14). The value of OD(v)  was found 
numerically from the equation thus obtained. This procedure 
was carried out for all five coexistence curves. The results 
are presented in Fig. 1, which shows the dependence of O D  
on ulv, (v, is the specific volume at the critical point). Fig- 
ure l(a) contains the coexistence curves for the solid phase, 
viz. the sublimation curve (curve 1) and the solidification 
curve (curve 2), as well as the melting curve (curve 3)  for the 
liquid phase. As is seen from Fig. l(a), the values of the 
Debye temperatures on the sublimation and solidification 
curves differ somewhat. Such a disparity is not surprising, 
since the sublimation curve was drawn according to the 
p = I atm isobar and the accuracy of the tabulated data is not 
high enough to detect volume changes at very low tempera- 
tures. Apparently, the high-temperature portion of the solidi- 
fication curve is also known to poor accuracy. Curve 3 cor- 
responds to the liquid phase. The transition from the 
solidification curve to the melting curve is accompanied by 
abrupt changes in the volume and the Debye temperature. 
This corresponds to the idea advanced in Ref. 9 that the 
transition from the solid to the liquid should be accompanied 
not only by an abrupt increase in volume, but also by a 
certain decrease in the mean vibrational frequency, i.e., the 
Debye temperature. The discontinuity with respect to v in 
Fig. I(a) corresponds to the portion of the melting curve at 
high temperatures and pressures, for which there are no data 
in the tables in Ref. 8. 

Plots of OD(vlv,) for the liquid and gaseous branches 
of the coexistence curves are shown in Fig. l(b). Vaporiza- 
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FIG. 1 .  Dependence of the Debye tempera- 
ture OD on v l v , :  I )  sublimation curve; 2) 
solidification curve; 3)  melting curve; 4) va- 
porization curve; 5) condensation curve. The 
same numbering is used in the subsequent 
figures. 

tion curve 4 and condensation curve 5 have been added to 
melting curve 3. As is seen, the curves pass smoothly into 
one another, and 0, decreases monotonically with increas- 
ing v. 

These calculations demonstrate the feasibility of using a 
single dependence of 0, to describe different portions of the 
phase diagram. The slight ambiguity in the determination of 
0, in the solid state is probably due to insufficient accuracy 
of the existing data on the solid phase at low values of v. 

In Fig. 2 0, and 0 (dashed curve) are plotted as func- 
tions of the temperature for all the coexistence curves. As is 
seen, the Debye temperature increases with increasing vol- 
ume along the solidification curve. The transition to the fluid 
branches is discontinuous. Experimental low-temperature 
values of the Debye temperature,10 which were obtained by 
processing the isochoric values of the specific heat for the 
volume corresponding to T=O, are also plotted in this figure. 
As is seen from the figure, the experimental values lie near 
our plot of 0,. It should also be noted that the differences 

FIG. 2. Debye temperature for Ne: experiment in Ref. I0 (asterisks); calcu- 
lations in the present work for O,, (solid curves) and O (dashed curves). 

between OD and 0 are within the range of error of the ex- 
perimental data. 

The plots of @,(v) found were used to construct plots 
of ln[O,(v)] as a function of In v,  and the values of the 
Griineisen coefficient were found by numerical differentia- 
tion. The results are presented in Figs. 3 and 4. On the sub- 
limation and solidification curves we have r s ~ 2 . 6 7 .  In the 
liquid state the Griineisen coefficient becomes slightly 
smaller on the melting curve (rs=2.57), and then it de- 
creases smoothly on the vaporization curve, continuing along 
the condensation curve at rs=1.17. 

The effective Griineisen coefficient defined by (10) var- 
ies more smoothly. It is plotted as dashed lines for the cor- 
responding phase regions in Fig. 3. 

5. INVESTIGATION OF THE THERMODYNAMICS. 
DETERMINATION OF THE ELASTIC COMPONENT OF THE 
PRESSURE 

The Lindemann parameter L on the equilibrium curves is 
plotted as a function of Tin Fig. 4. On the sublimation curve 

FIG. 3. G~uneisen coefficient. The dashed curve was calculated from Eq. 
(10). 
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n. atm 

FIG. 4. Temperature dependence of the Lindemann parameter on the coex- FIG. 6. Thermal and elastic components of the pressure on the coexistence 
istence curves. curves. Dashed linespressure in the melting region. 

it increases from small values to 0.1 at the temperature of the 
triple point. The value of L remains essentially constant on 
the solidification and melting curves, in agreement with Lin- 
demann's hypothesis." The value of L increases again on the 
vaporization curve, reaching values of the order of unity at 
the critical point. On the gaseous branch of the binodal (5) 
(Fig. 5) L increases rapidly, and a transition to ideal gas ther- 
modynamics takes place. The reason for the constancy of L 
in the melting region will be discussed below. 

After determining O D  and T,,  we can easily calculate 
any thermodynamic quantity from (13)-(19). Figure 5 pre- 
sents the values of the specific heat C, on the phase equilib- 
rium curves. The numbering of these curves is the same as in 
the preceding figures. It is seen that the specific heat C, 
increases on the sublimation curve according to a C,xTe 
law. The behavior of C, on the solidification and melting 
curves is peculiar. The value of C, decreases smoothly along 
the vaporization curve from a peak value of -2Rl,u, passing 
onto the condensation curve after the critical point and tend- 
ing to a value of 3R/2p,  which corresponds to an ideal gas. 

FIG. 5. The specific heat C, (in units of R l p )  on the coexistence curves. 

It should be noted that C ,  never takes the value 3Rl,u, 
which corresponds to the high-temperature limit of the solid. 
This is due to the fact that the Debye temperature O0 for Ne 
is 74  K, while the critical temperature is Tc=44.4 K. The 
temperature at the triple point for inert gases is T,=0.556Tc. 
All this results in the fact that the high-temperature limit of 
the Debye theory O D I T 4  1 is not realized in Ne. 

It would be interesting to use the tabulated data in Ref. 8 
and the values found for O D  and T, to obtain information on 
the relation between the thermal and elastic components of 
the pressure in different portions of the phase diagram. The 
elastic component of the pressure can be calculated from 
(17) if the tabulated values are used for p. We note that the 
resultant pressure on the sublimation and vaporization curves 
is small compared with the thermal and elastic components. 
Thus, we have 

0 T,+L/3 
rI(v)=- D - - 

3RT , u V  ( T )  I + L  . 

In the melting region the exact equation (17) should be used 
to perform the calculation. 

The thermal and elastic components of the pressure (in 
atm) as functions of the specific volume in the form of vlv, 
are presented in Fig. 6 for different states. The vertical 
dashed lines in the figure correspond to the volumes of the 
solid and liquid phases at the triple point v,,lv,=0.336 and 
v,,lu,=0.387. On sublimation curve 1 the thermal and elas- 
tic components are close to one another. The difference be- 
tween them, which is equal to the pressure on the sublima- 
tion curve, is small compared with the values of the thermal 
and elastic pressures. Curves 2 were constructed from the 
data on the solidification curve. As expected, the cold com- 
ponent determined from these data nearly coincides with that 
found from the sublimation curve. The thermal component 
decreases with increasing volume. At high pressures and 
small volumes it greatly exceeds the elastic pressure, so that 
the pressure on the solidification curve becomes essentially 
equal to the thermal pressure. We note that the highest pos- 
sible specific volume for the solid state is achieved at the 
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triple point. The solidification of inert gases is associated 
with a decrease in the specific volume. This property is not 
universal, but is typical of the type of substance under con- 
sideration, in which the solidification and melting curves are 
"tilted" toward smaller volumes. As we know, the situation 
in the case of water is different. 

Curves 3 were constructed from the data on the melting 
curve. As we see, they are similar to curves 2 to some extent, 
being only displaced toward larger volumes by an amount 
corresponding to the jump in the volume at the triple point. 
This graphically supports the familiar idea of abrupt passage 
from the crystal to the liquid. Curves 4 were constructed on 
the basis of the vaporization curves. Curves 5, which are 
smooth extensions of curves 4, are not shown in Fig. 6 .  
"Cold" curves 3 and 4 reach a minimum and then descend 
smoothly, tending to zero in the range of negative pressure 
values. 

We note that in curves 4 and their extensions 5 up to the 
critical point, the difference between the thermal and elastic 
pressure which determines the resultant pressure on the va- 
porization curve, is also small compared with these pres- 
sures. 

Some important conclusions regarding the behavior of 
the substance in the melting region can be drawn from the 
curves in Fig. 6. We use F ,  to denote the free energy of the 
solid phase and F2 to denote that of the liquid phase. The 
condition of phase equilibrium has the form 

where AU = v 2 -  u , is the volume jump upon melting. At 
relatively small Au, F2  can be expanded in Au:  

where F2(u ,) is the thermal component of the free energy of 
the liquid when Au=O. It differs from the corresponding 
energy of the crystal by another value of the Debye tempera- 
ture: @ 2 = @ , - A @ ,  where A 0  is the jump in the Debye tem- 
perature upon passage from the solid to the liquid. Therefore, 
if A 0 l T 4  1, the relation F l ( u ) ~ F 2 ( u )  holds on the high- 
temperature portion of the melting curve. Then 
F,- F , s p A u ,  and condition (21)  is satisfied. A more inter- 
esting consequence follows from the equality between the 
pressures of the phases p 2 = p , .  On the solidification and 
melting curves we have @ I T 4  1 and D ( @ I T ) =  1 .  As follows 
from Fig. 6, the contribution of the elastic component to the 
pressure can be neglected at high temperatures. Then the 
pressures of the phases are equal if 

Since L ,  , L 2 4 1  in the melting region, (22)  reduces to the 
simpler condition 

As was shown above, I', and I', maintain constant values on 
the solidification and melting curves (I', =2.67, r2=2.57) .  
Therefore, L ,  and L2 should also remain constant. This is 

FIG. 7. p(u ,T)  surfaces of neon: I-solid state; II-liquid and gas states; 
I-4-phase equilibrium curves. 

equivalent to Lindemann's hypothesis. Therefore, in the in- 
terpolation model considered here, this hypothesis follows 
from the condition of equality between the thermal compo- 
nents of the pressures of the phases during melting. 

The data obtained are sufficient for formulating a broad- 
range equation of state for Ne. To illustrate this, p ( u , T )  
surfaces have been constructed in the ulu,-TIT,  plane in 
Fig. 7 .  Surface I corresponds to the solid state. The cross 
sections formed by T=const planes form a family of iso- 
therms, which monotonically decrease with increasing u .  
Surface I1 is the fluid surface, that exists at T >  T , .  Its iso- 
therms at T <  T ,  have the van der Waals form. The solid and 
fluid surfaces do not intersect. Passage from one surface to 
the other occurs on freezing curve 2 and melting curve 3 at 
constant pressure. Sublimation curve 1 and vaporization 
curve 4 are also plotted in Fig. 7 .  

Thus, the generalized Debye approximation proposed 
here has made it possible to obtain a unified description of 
the passage of a substance from the solid crystalline state to 
the gaseous state, including the melting region. The function 
0 , ( u )  appearing in this approximation was found from 
tables of thermodynamic functions. Their approximation is 
thereby minimized. This tnakes it possible to calculate any 
thermodynamic quantity comparatively easily from Eqs. 
(13)-(19)  with an accuracy corresponding to the accuracy of 
the data in Ref. 8. Howevel; this does not exhaust the results 
following from the generalized approximation. The very pos- 
sibility of using ordinary terms to describe the phases of a 
substance that are difficult to calculate opens up a new ap- 
proach for investigating them. The interpretation of the rea- 
sons for the constancy of the Lindemann parameter in the 
melting region obtained in the present work is fairly convinc- 
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ing, but not the only illustration of the possibilities of such 
an approach. 
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