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We study the dynamics of surface and space charges induced by a fast charged particle 
traversing a layer of insulator or conductor. We show that the polarization of the layer is of an 
oscillatory nature, and the net induced charge in an insulating layer and in a layer of a 
conductor thinner than u/2.rra, where u is the particle velocity and a is the DC conductivity, 
remains zero at all stages of the motion. In a conducting layer thicker than u12.rra the 
net induced charge is also time independent but, as with a half-space, is equal to the charge of 
the particle with the opposite sign. O 1996 American Institute of Physics. O 1996 
American Institute of Physics. [S 1063-776 1 (96)O 140 1-21 

The study of charges induced by a charged point particle 
traveling in a material medium has a long history. On the one 
hand, a point charge at rest is known to induce on the surface 
of a conductor an "image charge," and various methods have 
been developed for calculating such charges.1x2 Fairly re- 
cently, in connection with problems of emission electronics 
and optoelectronics, the image charge induced by a moving 
particle has also been investigated. To describe the process of 
formation of the image charge, various approaches (the 
quantum mechanical, the hydrodynamic, etc.) and various 
models of the medium have been employed (see Ref. 3 and 
the literature cited therein). On the other hand, many re- 
searchers have studied the induced charge for the case where 
the particle is inside the medium and boundary effects can be 
ignored. A fast-moving particle leaves behind it a trace in the 
form of an induced oscillating which is known as 
the wake charge. It is the excitation of wake waves that 
causes particles traveling through the medium to lose energy 
to polarization.6-9 

In a previous paper10 we studied a process in which a 
fast particle crossed the boundary of a semi-infinite conduct- 
ing medium (plasma). There we showed that the transforma- 
tion of the image charge into a wake charge is accompanied 
by oscillations of the surface charge at the plasma frequency 
w, and at the frequency of surface oscillations, 
wo= wp/ fi. 

In the present work we study the passage of a fast 
charged particle through an insulating or conducting layer. 
We analyze the dynamics of reversal of the sign of the 
charges induced at the layer's boundary (repolarization of the 
layer) as the particle crosses the interface. The process is 
found to be of a nonmonotonic, oscillatory nature. Here, in 
the case of a conductor, the value of the net induced charge 
depends on the layer's thickness and conductivity. If the con- 
ducting layer is thinner than u/2~rcr, with u the particle ve- 
locity and a the DC conductivity, it acts as an insulator, and 
the net charge induced in it remains zero at all stages of the 
particle's motion, which are the approach stage, the passage 
through the layer, and the recession stage. When the conduct- 
ing layer is thicker than u / 2 ~ r u ,  the net charge induced in it 

is equal in absolute value to the particle's charge but has the 
opposite sign. In this sense the situation is similar to the one 
with the image charge of a semi-infinite conductor. 

1. GENERAL RELATIONSHIPS 

Let us examine the behavior of a test charge Q moving 
with a velocity u along the z axis perpendicular to the flat 
interfaces between three media. We assume that the particle 
is in the first medium (z<O) when the time is in the interval 
-m<t<O, in the second medium ( O S z G a )  when 
O<t<a lu ,  and in the third medium (z>a)  when 
a l u <  t < + m. We also assume that the particle is nonrelativ- 
istic and has a velocity much lower than the velocity of light 
( u 6 c ) .  The potential of the particle is then determined by 
the Poisson equation 

where r= ( x , y ) ,  and 6 is the dielectric constant operator.' 
To find cp, we go over to the Fourier representation in 

time t and position r in Eq. (I): 

The action of the linear operator E" on an arbitrary function 
f (r,z, t)  reduces to multiplying the Fourier transform 
f(k,w,z) by the medium's dielectric constant r ( w )  (see Ref. 
2). Substituting the expansions (2) and (3) into Eq. ( I ) ,  we 
arrive at the following equation for cp(k,w,z): 

The solution of this equation is the sum of the particular 
solution of the inhomogeneous equation and the general so- 

111 JETP 82 (I),  January 1996 1063-7761/96/010111-07$10.00 @ 1996 American Institute of Physics 111 



lution of the corresponding homogeneous equation. Bearing 
in mind that the boundary effects diminish as the distance 
from the interface grows, we can write the solution in the 
form 

x exp i;z +p(k,w)e-" [ ( " 1  

where 

The constants a, P ,  y, and 6 can be found from a sys- 
tem of equations following from the boundary conditions 
that the normal component of the induction and the tangen- 
tial component of the electric field at z = 0  and z=  a are 
continuous: 

a + ~ =  ye-ka, (1 1) 

y+ ~ = p e - ~ " .  (12) 

Solving the system of equations (9)-(12) yields 

L 
a= -1 ( E ~  - E ~ ) [ E ~ C O S ~  ( k a ) + ~ ~ s i n h  (ka)] 

D(k,w) 

+ E ~ ( E ~ - E ~ ) ~ X P  i-a , i : i i  

2 
a= - [ E ~ ( E ~ - E ~ ) ~ ( E ~ - E ~ ) [ E ~ C O S ~  D(k,w) (ka) 

The first terms on the right-hand sides of Eqs. (5)-(7) 
determine the potentials that the particle generates in infinite 
media. The other terms appear in Eqs. (5)-(7) because of the 
interfaces. 

The equation D(k, w) = 0 gives the law of dispersion for 
surface oscillations in a where 

The surface charge density induced at the interfaces is re- 
lated to the jump in the normal component of the electric 
field. Equations (5)-(7) and (13)-(16) yield 

where the subscript i=O, a refers to the front and rear 
boundaries of the layer, respectively: 

X { i-exp ( i-a : ) +- D ~ W ) ( ~ ~ ( " - ' ~ )  

+ ( E ~ - E ~ ) [ &  I C O S ~  (ka) 

+ ~ ~ s i n h ( k a ) ] e x p  i-a . ( : 111 
Equations (18)-(20) make it possible to find the net in- 

duced surface charge 

where ai(w) = ui(k= 0,w). Thus, the net charge induced at 
the surface of the layer is determined by the values of the 
functions (19) and (20) in the limit of k+O. 

2. THE DYNAMICS OF CHARGES IN AN INSULATING 
LAYER 

In the case of an insulating layer, the well-known 
Sochozki-Plemelj formula2 for the ui(w) can be applied. As 
a result, at E ,  = c3= 1 and s2= E(W)  (the layer is in a 
vacuum) Eqs. (19) and (20) yield 
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where P stands for the principal value of the integral. Equa- 
tions (22) and (23) were obtained on the assumption that the 
layer's dielectric constant ~ ( w )  acquires no singularities as 
w+O, which is not the case for conductors. 

The first terms on the right-hand sides of Eqs. (19), 
(20), (22), and (23) emerge because of the jump in the elec- 
tric fields that the particle induces in infinite media. The 
other terms are caused by the surface fields. We see that 
because of the delta functions the contribution of the latter to 
the surface charge (21) is zero. Hence the net charge at the 
surface of a dielectric layer is determined solely by the fields 
generated by the particle in infinite media: 

where r = t - a / u ,  and 

To calculate the function 4 ( t )  we examine the following 
contour integral: 

where the contour C in the complex w plane consists of the 
real axis, a semicircle of infinitesimal radius that encom- 
passes from below the singularity at w=O, and a semicircle 
with an infinitely large circle in the upper or lower half- 
plane, depending on the sign of t (the contour is closed from 
above if t<O and from below if t>O). Since ~ ( w )  is ana- 
lytic in the complex w plane, has zeros (symmetric with 
respect to the imaginary w axis; see Ref. 2) only in the lower 
half-plane, and tends to unity as I w l 4 ~ 0 ,  the residue 
theoremI3 can be applied to a o ( t ) :  

where EO=E(O=O) is the DC dielectric constant of the sub- 
stance, B(t) is the Heaviside step function (8(0)= f), 
-C wj-ivj the solutions of the equation E(E)=O, and 

Here the prime stands for the derivative with respect to the 
argument, or E ' ( W  ) = d ~ ( w ) l d  w . Summation is over all 
the roots of the equation E(  W) = 0. 

According to the definitions (25) and (26), the functions 
@,(t) and @(t) are related thus: 

Hence the function @(t) in (24) has the form 

Note that the expressions (27)-(30) lead to the following 
sum rule: 

Thus, Eqs. (24) and (30) make it possible to find the net 
surface charge if the solutions of the equation E(o)=O are 
known. 

Now let us turn to the problem of calculating the space 
(wake) charge in the layer. Integrating the respective charge 
densityI2 over the volume, we get 

Let us analyze the formulas (24), (25), and (32). As the 
particle approaches the surface of the layer from the vacuum 
(t<O), we have 

Since both boundaries of the layer have the same net surface 
charges of opposite signs, the net charge induced in the layer 
is also zero. 

As the particle moves inside the layer (O<t<alu) ,  the 
corresponding quantities are 
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(35) 

Equations (33)-(35) show that the charge at the front 
boundary of the layer oscillates and decreases, while in the 
volume the charge increases correspondingly. The charge at 
the rear boundary remains the same. 

After the particle crosses the rear boundary and leaves 
the layer ( t>a lu )  we have 

(37) 

Equations (33), (36), and (37) imply that the charge at 
the front boundary decreases and tends to the limit 

Q(  1 - 1 1 ~ ~ ) .  At the rear edge the charge increases and for 

assumes the maximum value of 

Here the wake charge in the volume of the layer vanishes. It 
can easily be shown that at each moment of time the net 
induced charge in the layer is zero. 

The above analysis suggests that after the particle 
crosses the first boundary the surface charge transforms into 
a wake charge, whereas after it crosses the second boundary 
the wake charge is transformed back to a surface charge. 

3. THE MODEL OF SINGLE-FREQUENCY OSCILLATORS 

Let us now analyze the above formulas for the induced 
charges in the simplest model of one-frequency  oscillator^,'^ 
where 

w, is an averaged atomic transition frequency, 

6 i=4rrnoe2/m,  no is the electron number density in the 
substance, and v is an atom's reciprocal lifetime in an ex- 
cited state, which we assume to be small ( ~ G m i n ( w , , 6 ~ ) ) .  
Equation (38) implies that its root e ( o )  = O  has the follow- 
ing form: 

where f 1 2 = w i + 6 i .  Substituting (38) and (39) into Eq. 
(29), we find the coefficients determining the net induced 
charges: 

When the particle traveling in the vacuum approaches 
the surface of the layer (t<O), we have 
Qos= - pQ/2 ,Qas=  p Q / 2 ,  and Q,= 0. For solid insulators, 
go%- 1 and ,u= = 1 (see Ref. 15). Hence as the particle ap- 
proaches the boundary of such an insulator, it induces a sur- 
face charge whose absolute value is half the particle's 
charge. For other moments in time in the limit of v e f l ,  Eqs. 
(33)-(37) yield 

for O<t<a lu ,  and 

FIG. I. The dynamics of the net induced charge at the front boundary (solid 
curve), the rear boundary (dashed curve), and in the volume of an insulator 
layer (dotted curve): p=0.9, h o / w , =  3, via =0.2, and Onlrr= 13. 
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d s  
for tutu. x I ) ( ~ ' + ( ~ ~ ~ 1 2 v ~ ) ' )  

Figure I depicts the time dependence of Qos,  Q,, , and 
Q, . The following values of the parameters were taken for 

- 
Q kpa --- 

numerical calculations: p = 0.9 ( d o  1 w, = 3), ~ l a =  0.2, and 2 kpa+2vlw,, '  (49) 

f l a l u =  13. We see that as the   article crosses the boundarv, . . 
the surface and space charges oscillate with a frequency f l ,  where k ~ =  w , ~ l u .  

although the net induced charge remains equal to zero. With allowance for Eqs. (24), (28), (32), and (49), the 
expressions for the charges induced at the surface and in the 
volume of the conducting layer are 

4. THE DYNAMICS OF CHARGES IN A CONDUCTING LAYER 

Up to this point we have considered insulators. Now we 
examine a conducting layer with a dielectric constant 

The above formulas for the net surface charge do not work in 
this case since the dielectric constant of a plasma has a sin- 
gularity at w+O. 

As shown above, the net surface charge (21) is deter- 
mined by the value of a i (w) .  Here the terms in Eqs. (19) and 
(20) proportional to the hyperbolic sine sinh ka (we assume 
that = E ~ =  1 and E ~ =  E(w) )  tend to finite limits. Hence, 
in contrast to insulators, in conductors the net surface charge 
is determined also by the surface fields generated by the 
particle. 

To allow for this effect, let us examine the terms in Eqs. 
(13) and (20) that do not vanish as k - + O :  

d m  exp( - iwt) 
Aao(k,t)  = - - Quk sinh ( k a ) j - m  

"2+kZU2 ( 2 d 3  

(8-  1)2 
X 

( c 2 +  1)sinh (ka)+2scosh (ka)  ' (44) 

A a , ( k , t ) = A a ~ ( k , r ) ,  (45) 

where ~ ( w )  is determined by (43). 
The contributions of the terms (44) and (45) to the net 

surface charge are, respectively, 

A Q , ( ~ ) =  ( 2 r r ) 2 ~ a o ( k = ~ , t ) ,  (4.6) 

A Q , ( ~ ) =  ( 2 r r ) ' ~ a ~ ( k = 0 , r ) .  (47) 

Let us first find the integral in (44). To this end we write 
the expression (44) in the following form: 

kpa + vl up 
- 

kpa + 2 vlwp 

vl wp 

Qas( t )=Q kp a + 2 v l w p  

Q,(t)= -Q[O(t)- O(r)] 

- exp( - E) o s (  wPt)]. 

The net charge induced in the conductor is 

Note that in deriving (50)-(53) we employed the condition 
that v< up . 

Equation (53) implies that for thick layers (a%u/2.rra, 
where a= w;/4n-v is the conductivity of the plasma) the net 
induced charge is equal to - Q, which corresponds to the 
results obtained for a semi-infinite condu~tor . '~  For a thin 
layer (a4u12rra)  the induced charge Q r  is equal to 
- ~ w ; a / 2 v u ,  and tends to zero as a+O. Figure 2 depicts 
the time dependence of the charges induced in a plasma layer 
for aPu12n-a  at VI up= 0.2 and wpalu = 15. 

+ m  exp(-ikust) 
( 2 ~ ) ~ ~ a , ( k , t ) =  - 

5. CONCLUSION 

Let us briefly discuss the conditions in which the pro- 
[ I - l l ~ ( k u s ) ] ~  cesses taking place at the boundaries of the layer can be 

X 
[ 1 + lls2(kus) + [21s(kus)lcoth(ka) ' considered independent and the boundary can be interpreted 

as that of a half-space, as was done in Ref. 10. To this end we 
(48) examine the net induced charges at the layer boundaries at 

Substituting (43) into this expression, we go to the limit the moment when the particle crosses the second boundary 
k+O. As a result, for AQo and AQ, we find that ( t=a lu ) :  
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FIG. 2. The dynamics of the induced charge at the front boundary (solid 
curve), the rear boundary (dashed curve), and in the volume (dotted curve) 
of a thick plasma layer: a S u / 2 ~ r u ,  vlw,,=0.2, and o, ulu= 15. 

A n -  

X[Aj cos (kja)+Bj  sin (kja)], 

i /'-, : : : ,!" 
: : : :  ; . ,  : :  r ;  
I I ., 
, 8  , * . . . . 
" Q" 

[Aj cos (kja)+Bj  sin (kja)], 

, i \  ; ; - '. 
\ I ''t 
\ I  
'J Qu 

where kj= wjlu. We see that if the conditions 
u lwj<a<ulv j  are met, the - Q ( l -  1/c0) has no time to 
transform into the wake charge before the particle reaches 
the second boundary. For this reason the transformation of a 
surface charge into a wake charge and the transformation of 
the latter into a surface charge at the second boundary are 
interrelated. When the particle crosses the second boundary 
of the layel; near the boundary it excites electric field 
oscillations1° whose phase is related to that of the oscilla- 
tions of the electric field near the first boundary. For the 
fields at the boundaries to be completely independent, a must 
exceed ulvj  (for a conductor this condition has the form 
n>2ulv ) .  In this case not only the amplitudes but also the 
phases of oscillations of the electric fields at the boundaries 
are independent. 

As Eqs. (24), (30), and (32) imply, the net charge in- 
duced in an insulator layer at each moment of time is zero. In 
contrast, the net charge induced in a conducting layer is de- 
termined by the relationship between the quantities a and 
u12.rra. When a<u/2.rra, a conducting layer behaves like 
an insulator. When the layer is thick (a%u/2wa) ,  the net 
induced charge in the layer is equal to the particle charge 
with the opposite sign. In this limiting case, from the stand- 
point of the induced charges, the conducting layer behaves 
like a semi-infinite medium. 

-2 r r . . . . . m t - . . - n n . r ~ r ~ . . . ~ . . . .  

4 6 16 26 36 n t 

To explain the physical reason for this effect, let us first 
take a semi-infinite conductor. A charged particle at rest in- 
duces at the surface of the conductor a surface charge density 
whose field completely screens the field of the particle inside 
the conductor. If the particle is moving, the surface charge 
density necessary for screening its field has no time to set in. 
As a result the field penetrates the conductor. According to 
Ref. 10, a particle that is at a distance greater than ul v from 
the conducting surface of the plasma and is moving toward 
the bounda~y of the plasma generates inside the plasma a 
potential of the dipole form 

where 5= z- u t is the distance from the particle to the ob- 
servation point with the coordinates z and r ,  and p= Qd is 
the dipole moment, with d = u12.rra. 

The field penetrating the conducting layer generates a 
surface charge at the rear boundary, with the magnitude of 
this charge depending on the layer's thickness. Equation (7) 
implies that the potential at the rear boundary is 

where Jo(x) is the zeroth-order Bessel function, 
a i = l f  exp{-ka), g = v l u ,  and ko=wolu.  If a e d ,  the 
electric fields at the front and rear boundaries of the layer are 
of the same order of magnitude, and the charges they induce 
are practically equal. But if a P d ,  the field at the rear bound- 
ary of the layer is much weaker than that at the front bound- 
ary, where most of the induced charge is concentrated. 

The quantity a = u/2.rra= (2ulw p)(v/ wp) characterizes 
the thickness of the conducting layer at which its properties 
change in relation to the magnitude of the charge induced in 
the layer by the moving particle. For the sake of an example 
we take a layer of the semiconductor n-InSb with a carrier 
concentration 3 X 1 0 ' ~ c m - ~ ,  a plasma frequency 
6.4X 10 '~s -  and collision rate 1012 s-' (see, e.g., Ref. 16). 
For a 10-MeV proton we have a =  1.4X 1oP4cm. Obviously, 
the requirements on the quality of the layer's surface in this 
case are moderate and the surface roughness must be less 
than one micrometer. 

We would like to express our gratitude to A. G. Nar- 
gizyan for his help in doing the numerical calculations. 
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