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Experiments on the stratification of a liquid-metal conductor with current associated with an 
electric explosion are discussed. A model of the initial state of the separation of the conductor and 
current into transverse strata is proposed and investigated. It is shown that the stratification 
is the result of the generation of large-scale vortex structures in the liquid-metal current-carrying 
conductor. The stratification process has a threshold, and the type of bifurcation of the 
solution for the amplitude of the surface perturbation corresponds to subcritical bifurcation. A 
simplified model for describing the essentially nonlinear stages of stratification of a 
conductor (division into "particles" on the scale of the diameter) is investigated. O 1996 
American Institute of Physics. [S 1063-776 1 (96)00902-41 

1. INTRODUCTION 

The electric explosion of conductors'.* is a typical ex- 
ample of a nonequilibrium phase transition, as a result of 
which a current-carrying conductor breaks up into transverse 
strata, forming high-temperature plasma jets and shock 
waves in the surrounding medium. Stratification of an ex- 
ploding conductor occurs both in the range of microsecond 
characteristic and in the range of nanosecond times? 
when there are no grounds for assuming that the strata are 
formed as the result of the magnetohydrodynamic sausage 
instability.576 

In the construction in Refs. 7-9 of theoretical models of 
the stratification of an exploding conductor, the stratification 
was assumed to be due to a thermal instability initiated by 
the magnetohydrodynamic sausage instability. The aim of the 
present paper is to discuss the experiments on the stratifica- 
tion of an exploding conductor with current described in Ref. 
2 (Sec. 2) and also to construct and investigate a theoretical 
model of the stratification that does not invoke the thermal 
instability (Sec. 3). In the construction of the model, we as- 
sume that the liquid-metal current-carrying conductor is in- 
compressible (its density is p=const) and that its transport 
coefficients (electrical conductivity a and shear viscosity 7) 
are constant. This enables us to concentrate attention on the 
dynamical nature of the nonequilibrium phase transition, as a 
result of which the current-carrying conductor is stratified. 
As is shown in Refs. 10-13, large-scale vortex structures 
with perturbation wavelength of the order of the radius of the 
conductor develop in the conductor. In accordance with Refs. 
14 and 15, it is these structures that determine the nature of 
the development of the perturbation of the surface, namely, 
the surface of the conductor between the vortex rings can be 
pulled in, as a result of which narrow annular channels form 
that grow inside the conductor and cause it to stratify. On the 
other hand, the generation of the vortex structures has a 
t h r e s h ~ l d , ' ~ ~ ' ~  and it is natural to assume that the coefficient 
of supercriticality depends on the state of the surface of the 
conductor. The existence of this feedback makes it necessary 
to construct a self-consistent model of the interaction of the 
vortex structures with the moving boundary of the current- 
carrying conductor. 

In this paper, we propose and investigate such a model. 
In Sec. 2, we discuss the experimental results relating to 
stratification of a conductor. In Sec. 3.1, it is shown that the 
effect of the perturbation of the boundary on the develop- 
ment of the large-scale vortex structures in the conductor can 
be taken into account using the Swift-Hohenberg model 
equationI6 with additional terms associated with the pertur- 
bation of the surface. Analysis of the self-consistent model 
shows that the type of bifurcation (which is subcritical) and 
also the nature of the near-critical behavior of the system are 
determined by these terms, i.e., by the state of the conductor 
surface. We propose and investigate (Sec. 3.2) a very simple 
model of the growth of a narrow channel within a conductor; 
this model gives a qualitative description of the nonlinear 
stages of the stratification of the conductor. 

2. THE EXPERIMENT 

The electrical circuit of the experiment is shown in Fig. 
1. An aluminum wire of diameter d-0.58 mm and length 
1=10 cm was exploded in an electrical circuit with the fol- 
lowing parameters: storage capacitance Co=4.2. F, 
charging voltage U0=3.104 V, circuit oscillation period 
T=2.rr(LC)1/2=4.10-5 S. 

The value of Uo was maintained with a precision 
6UolUo-10-3 by means of a special control circuit. The 

FIG. I .  Electrical circuit of the arrangement for experimental investigation 
of the electric explosion of conductors ( R ,  and R ,  are the resistances of 
voltage dividers; R ,  is the shunt resistance; the conditions of the experiment 
are described in Sec. 2). 

228 JETP 82 (2), February 1996 1063-77611961020228-06$10.00 O 1996 American Institute of Physics 228 



FIG. 2. Curve of the voltage u ( t )  and two pairs of  x-ray images of the same 
section of an exploding wire of diameter cl=5.8. m and length 1=0. I m 
at different times T = t - (t,+2.1. [ t ,  is the time at which the melting 
of the conductor ends (the units of T are seconds); the conditions of the 
experiment are described in Sec. 21. 

current i( t)  through the conductor and the voltage u(t)  
across it were measured by a special two-channel circuit with 
fast (conversion time -7. lop9 s) ADCs possessing an am- 
plitude resolution of -1%. The i( t)  and u(t) oscilloscope 
traces agreed in time to within - lop9 s. In the current mea- 
suring circuit, a bridge-circuit shunt was used which ensured 
measurement of the current with a small (GI%) systematic 
error. 

Besides the electrical measurements, a special two- 
channel scheme of x-ray shadow photography was realized. 
X-ray photography was necessary because at the onset of the 
abrupt growth in the voltage ["the initial point" of the ex- 
plosion, corresponding to the instant of time r ,  on the curve 
u(t) in Fig. 21 a shell is formed around the conductor that is 
opaque in visible light, on the outer boundary of which there 
is a shock wave, and the interval between the shock front and 
the surface of the conductor is filled with opaque metal va- 
por. 

The circuit for the two-channel x-ray photography incor- 
porated two pulsed voltage generators that made it possible 
to obtain bell-shaped voltage pulses of amplitude -3. lo5 V 
and width at half-maximum -2.5. lop8 s. The anticathode of 
the pulsed x-ray tube was a thin copper foil. The cathode was 
a thin tube with sharp edges placed 1-2 mm from the foil. 
The radiation passed into the air through a beryllium win- 
dow. The diameter of the tube focal spot was -0.3 mm, the 
radiation dose at distance 0.14 m from the anode was -0.2 
R, and the effective radiation rigidity was -40 keV. 

The radiation beams from the two x-ray tubes were col- 
limated angle so that it was possible to obtain two nonover- 
lapping images. The smearing of the edge of the photograph 
in this arrangement is determined by a ratio of distances, 
namely, that of the focal spot to the conductor (25 cm) and 
that of the conductor to the x-ray film (I cm), and also by the 

diameter of the focal spot of the tube. To shield the film from 
the effect of the shock wave developed in the air on the 
explosion of the conductor, a special screen transparent for x 
rays of the given energy range was placed in the gap between 
the conductor and the film. By varying the time interval be- 
tween the times of firing of the two sources, it was possible 
to obtain two photographs of different phases of the process. 

The quality of the images can be characterized by the 
following numbers: Smearing of the edge of the image 
-2 .10-~ m, number of resolved density gradations > lo ,  
minimum resolved thickness -5. m for the aluminum 
and a maximum m for the copper, and accuracy of 
the matching of the photographs to the voltage and current 
oscillograms -2. lop8 s. 

We discuss the experimental data that, in our view, have 
a direct bearing on the theoretical model proposed below. We 
first consider the stage of heating of the liquid metal, which 
begins on the melting of the current-carrying conductor is 
complete. During this stage, the transverse dimension of the 
conductor grows monotonically; this growth can be attrib- 
uted to the thermal expansion of the metal in the liquid state. 
In the x-ray photographs, the boundary of the conductor re- 
mains fairly sharp; visible perturbations of the conductor sur- 
face are not observed during this time interval. Vapor is emit- 
ted from the surface, giving rise to a vapor piston and shock 
wave in the air. There is no way to know when the region of 
energy content in which the surface reaches the boiling point 
at atmospheric pressure is crossed using the data of the elec- 
trical measurements, and the initial point of the explosion 
(see below) occurs at significantly higher temperatures. This 
stage ends ["the initial point of the explosion," correspond- 
ing to the time t, on the curve u(t)  in Fig. 21, when smearing 
of the outer boundary is observed in the x-ray photographs, 
and one can also begin to see the characteristic modulation 
of the transverse diameter of the conductor. At this time, the 
rate of interruption of the current increases sharply, and the 
voltage begins to grow rapidly (Fig. 2). 

The next stage (in which the current ceases abruptly) is 
bounded on the left by the "initial point of the explosion" t, . 
It is shown in Refs. 10 and 13 that a significant cause of such 
behavior of the electric current in the conductor and decrease 
of the voltage across it is the formation and development of 
hydrodynamic and current vortex structures that block the 
passage of the laminar component of the current (the part of 
the total current that is short-circuited through the outer elec- 
tric circuit). In Refs. 14 and 15 it is also conjectured that 
besides the growth of the "turbulent" resistance due to the 
increase in the amplitude of the vortices, interruption of the 
current may result from the breakup of the conductor into 
transverse strata when the outer surface is "pulled" into it') 
("strata" form in accordance with the model proposed in 
Sec. 3). 

We discuss the behavior of the conductor surface in this 
stage. Figure 2 shows two typical pairs of photographs of the 
same section of the conductor at different instants of time. 
The first photograph of the first pair of images was taken 
near t,. At this time the conductor maintains its integrity and 
that the liquid-vapor boundary is smooth. The second pho- 
tograph of the same pair is taken At-lop6 s later near the 
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maximum of u(t). It can be seen that at certain positions the 
conductor is broken up by low-density channels. One can 
make out large-scale structures with longitudinal dimension 
somewhat greater than the diameter of the conductor in the 
first photograph. In addition to this spatial harmonic, one can 
identify a higher harmonic. In the first photograph of the 
second pair of images, which was taken slightly later [after 
the u(t) maximum], one can see several dark fragments 
similar to the one distinguished in the previous photograph. 
Here there are five of these fragments, and one of them is 
large. Then (in the second photograph of the second pair of 
images) a characteristic stratification process takes place: 
The small fragments (except for one) are transformed into 
pairs of fragments, and the large fragment is transformed into 
a pair of fragment pairs. At the same time, a certain symme- 
try is respected: Three dark fragments in the first photograph 
form a pair of dark fragments in the second photograph with 
a relatively small distance between the elements, while the 
interval between such pairs is greater than the distance be- 
tween the elements of a pair. In what follows, we shall un- 
derstand by a stratum a pair of such closely spaced dark 
fragments of the conductor (see the second photograph of the 
second pair of images in Fig. 2). The finer structures visible 
in the second photograph of the first pair of images "die 
out." The mean characteristic diameter of a stratum is 
A-0.65 2 0.05 mm, so that Adp1- 1.2 -+ 0.1. In accordance 
with our proposal, such a stratum corresponds to a kind of 
particle: A pair of hydrodynamic vortex rings (toroids) in 
which the particles of the liquid counterstream at the conduc- 
tor axis. 

3. THE MODEL 

3.1. As the basic mathematical model of the initial stage 
of the stratification of a current-carrying conductor, we shall, 
as in Refs. 10 and 13, use the equations of magnetohydrody- 
namics. At the same time, in order to demonstrate explicitly 
the dynamical nature of the nonequilibrium phase transition 
investigated below, we assume that the conducting liquid is 
incompressible and that its transport coefficients are con- 
stant. Such an approach is also justified by the fact that the 
scenario for the development of the instability is the same for 
metals with different thermophysical properties. 

Bearing in mind that surface perturbations that do not 
curve the force lines of the magnetic field primarily 
develop,I7 we specify the surface of the conductor by the 
expression r,= ro+ r ,  (z,t), where ro is the unperturbed ra- 
dius of the conductor, and r ,  is an azimuthally symmetric 
small perturbation of it. We assume that the components of 
the velocity vector in cylindrical coordinates have the form 

and that the components of the vector of the magnetic field 
have the form 

which also correspond to the azimuthal symmetry of the 
problem. It is clear that there exists a potential function (I, 
such that u,= - d(I,/dz and u,= d(I,/dr + (I,/r. We seek a so- 
lution in the form of a sum of perturbations (I, and h that 

satisfy zero-value boundary conditions, $ I r E O  = 
- - h = h I ,= r,r = 0, and an unperturbed (i.e., corresponding 
to the conditions r s=ro  and (I,=O) distribution of the mag- 
netic field H ,  (r,t) over the section of the conductor. In what 
follows, we shall specify this distribution in the form 

where the function f satisfies zero-value boundary condi- 
tions, and Ho=211cro (I is the electric current through the 
conductor). Setting f 4 1, we obtain for the perturbations the 
system of equations 

dh h r  r )  Ho df d(I, A 

-= +---+v,Dh, 
dt d(r,z) ro  dlnr dz 

where v is the kinematic viscosity, v,= c 2 ( 4 r a ) -  ' is the 
magnetic viscosity, and 

and 

We differentiate (2) with respect to z and, using (I), 
eliminate h from the linearized system (1)-(2). Since in what 
follows we shall be interested only in near-critical effects, 
and in the near-critical region (I, is the sum of a rapidly 
damped part and a part with a small exponent A=d In (I,/dt, 
we can ignore the second derivative of (I, with respect to the 
time compared with the first, since it is of higher order in A. 
Then 

aD2@ S.B af a2+ 
dt r i  dlnr dz2 

+sD3@, 

where .W=H&-;(~ rp vv,) - ' is the magnetic Rayleigh 
number, and s= vv,l(v+ v,) is the reduced viscosity. 

Expanding (I, near r = ro in a Taylor series, we obtain for 
the boundary condition 

from which it can be seen that (I, is conveniently sought in 
the form (I,0+(I,,+(I,2+..., where 

- -,-,*I -; r ; g l  etc. (I,21r=r0- 
Or r= ro  r = r o  

We can write the function (I,o in the series form 
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where p,  is the nth zero of the Bessel function of first order, 
J l ,  which is an eigenfunction of the operator r n ~ .  

It was shown in Refs. 10-13 that the mode with n = l  
usually loses stability, and therefore we restrict ourselves for 
the perturbation $o to one mode with respect to r :  
$o(r ,z , r )=u(z ,r )J l (k , r ) ,  where we have denoted 
k , = p , l r o = 3 . 8 3 / r o .  

To ensure zero-value boundary conditions for the pertur- 
bations on the conductor axis, we set $l-r and $2-r. Then, 
taking into account what was said above, we make an ansatz 
that satisfies all the required boundary conditions: 

where c=,u,Jo(pl )  and q ( z ,  t )  = r l ( z , t ) l r o .  Ignoring the 
time derivatives of the nonlinear function w compared with 
the time derivatives of u  and retaining dependence on r only 
through the mode J l ( k l r ) ,  we obtain 

where we have introduced the coefficients 

df  J ' ( P ' x )  2  
p=2!o b ~ : ( p ' )  

x3dx and y= 
~ l J 2 ( ~ 1 )  ' 

Let g  and g  , be the densities of the Fourier spectra of the 
functions u  and w, respectively; then from (5) we obtain 

where B ( k ) =  (k2+k:)3r icy-1k-2  . Th e value of the func- 
tion B ( k )  has a minimum at k=  ko= k l / d  and it is equal to 
.5%c=27,u~/(4a). This means that with increasing value of the 
external control parameter B it is usually the mode with 
wave number along the z  axis equal to ko that loses stability. 
As is shown in Ref. 1 I ,  it corresponds to a pair of vortex 
rings (Bdnard rolls closed into a torus). It is clear that be- 
tween vortex rings rotating toward the conductor axis the 
formation of strata with characteristic diameter 
2nlk0= 2.32ro is possible. This agrees well with the experi- 
mental results on the electrical explosion of conductors (see 
Sec. 2). 

Assuming that the coefficient of supercriticality 
&=(.A?--.&,)/.98, is small, we expand the right-hand side of 
(6 )  near the point k=ko  with respect to ( k 2 - k i ) .  Up to 
terms of third order, we obtain 

where D = (3 k i ) -  ' , and r = 3  kis t  is the dimensionless 
time. In the expansion of B ( k ) ,  we have retained only the 
first term of the series: B(ko) .  This approximation is valid if 
g , = O ( ~ g )  holds and is naturally satisfied in the initial 
stages of the phase transition (see Sec. 3.2). 

Going back from the spectra to the functions u  and q, we 
obtain the equation 

where 

and we have also denoted A=d2/dz2, b = - ~ ( k ~ ) ( 3 k i s ) - ' c .  
We have added the cubic term au3,  since it is due to the 
presence of the nonlinear terms in the original equations (1) 
and (2)  that are invariant with respect to the substitution 
$-+- $, z - +  - z and, therefore, ensure "fork" bifurcation 
type in the problem with unperturbed boundary. Indeed, if 
b=O holds, then (8 )  goes over into the well-known Swift- 
Hohenberg equation for thermal convection in a thin hori- 
zontal layer of liquid,16 and in Ref. 18 it was shown that an 
analogy exists between the initial stages of the larninar- 
turbulent transition in a current-carrying medium and ther- 
mal convection; this analogy is based on the identity of Eqs. 
(1)-(2) and Saltzman's system for the theory of the Bdnard 
effect in a liquid.19 In addition, we shall not dwell in detail 
on the derivation of the cubic term in Eq. (8)  and, in particu- 
lar, on the determination of the value of the coefficient a, 
since we shall show below that its contribution is unimpor- 
tant in the determination of the near-critical behavior of the 
system as compared with the contribution of the term buq(1 
- 3912). 

Thus, the initial stage in the generation of the vortex 
structures in a liquid-metal conductor with current can be 
investigated by means of the Swift-Hohenberg model equa- 
tion with an additional term that takes into account the influ- 
ence of the boundary on the processes in the conductor. 

3.2. We shall now construct a self-consistent model of 
the initial stages of the laminar-turbulent transition in a 
liquid-metal conductor with current with allowance for the 
motion of its surface. For this, we represent the surface per- 
turbation q  of the conductor in the form 

where v, is its velocity, which we shall seek in the form 
v s = r o ~ d u l d z ,  where {<O. This representation reflects the 

that between hydrodynamic vortices rotating toward 
the conductor axis its surface will be drawn in with a veloc- 
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ity that depends on the vortex amplitude; moreover, if o is an 
odd function, then r ,  (and, therefore, q) is an even function. 
Here we omit the nonlinear terms, since allowance for them 
would subsequently lead to negligibly small corrections. 

Thus, we consider the closed system of equations 

rlq rlu z=5z. 
We now construct from (10) and (I I) a few-mode model, 

using only modes that are multiples of the fundamental ko. 
To do this, we represent the perturbations u and q in the 
form 

.a 

u = X(r)sin(koz) + 2 X,,(r)sin(nkoz), 
11=2 

Noting that & 6 D ( n 2 -  for n > l  and that therefore 
the mode with k =  k, is the leading mode, we obtain in the 
neighborhood of the point X = Y = X I = Y I =  ...= 0 up to 
terms of third order. 

b 5  b 5  x --XY, Y,=- y2 etc, 
' - 9k i  18ki 

where a I = 3 a / 4  and b,=3b12k:/8. 
It can be seen that the term in (12) corresponding to g l  

in Eq. (6) for the spectrum is cubic and that the correspond- 
ing g is linear; therefore, provided X is small the condition 
g ,  = O ( E ~ )  used in the derivation (7) is valid. 

Eliminating the time r from (12), we obtain the Riccati 
equation for the phase trajectory: 

We expand X in powers of Y: X= C L  ,ciyi .  By substi- 
tution in (14), we obtain for the first three coefficients the 
values e l = & ,  c2=0, and c3= - (b  , + a , ~ ~ ) / 3 .  This means 
that to within terms of higher order the dynamics of the 
amplitude Y will be determined by the differential equation 

The stationary solution of (15), Y=O, is stable for E<O and 
unstable for E>O. It can be seen from this equation that at 
small E the type of bifurcation is entirely determined by the 
sign of the coefficient b , .  Indeed, for bl>O we have an 
ordinary supercritical bifurcation of the "fork" type. If b , <0  
holds, then in the neighborhood of the point e=O, Y = 0  for 
positive E there are no stationary solutions except for the 
unstable trivial solution (subcritical bifurcation), as a conse- 
quence of which the trajectory of the system leaves its neigh- 
borhood in a finite time. It should also be noted that if 

b + a  s2<0  holds (or for sn~all  c: simply b , <0) then all the 
coefficients ci in the expansion of X in powers of Y are equal 
to zero for even i and are negative for odd i>3. This enables 
us to speak of finiteness of the trajectory of the system (12) if 
the higher powers of the amplitude Y were taken into ac- 
count in it. 

Thus, we have shown that the type bifurcation and also 
the nature of the critical behavior of the original system 
(10)-(11) are entirely determined by the nonlinear term 
buq(  l - 3q/2), i.e., by the state of the surface of the con- 
ductor. At the same time, the sign of the coefficient b deter- 
mines the nature of the loss of stability (hard or soft excita- 
tion of the instability) of the boundary of the conductor. To 
establish which mechanism of stability loss actually occurs, 
and thus identify the sign of b of the model, we consider a 
simplified model of the growth of a channel. Note that if in 
(10) and (I 1) we make the substitution q-+ - q and z-, - z, 
then the resulting system of equations is equivalent to the 
original one except for the one term buq.  This means that it 
is precisely this term that breaks the invariance of the system 
(10)-(11) with respect to such a substitution and thus deter- 
mines a difference between the directions "away from the 
axis" and "toward the axis" in the cylindrical geometry. 

We consider the truncated system 

obtained by ignoring in Eq. (10) the terms invariant with 
respect to the substitution q-+ - q  and 2 4 - 2 ,  so that it 
explicitly expresses the dependence of the nature of the 
growth of a channel on its direction. Comparing what is 
given by the system (16)-(17) with the experimental results 
of Sec. 2 (it can be seen from them that the surface of the 
conductor is drawn in the direction of its axis, forming nar- 
row channels localized in space), we can determine the sign 
of b. 

We shall be interested in solutions of (16) and (17) that 
ensure localization of the perturbation of the conductor sur- 
face in the neighborhood of a certain point z = zo and satisfy 
the property 

L J + m  qdz = 0, 
d t  -m 

which corresponds to the continuity equation written in inte- 
gral form, assuming that the medium is incompressible. 
These conditions are satisfied by the functions q and u writ- 
ten in the form 

(P( 5) u =  - (P( 5) 5 q =  -5  - 
2-20 z-zo 

where cp is some function of the self-similar variable 
e=(r-?)l(z - z o )  The meaning of ? will be indicated be- 
low. By substituting in (16) and (17), we obtain 
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Solving this equation, we obtain 

where c is a parameter that characterizes the channel geom- 
etry (indeed, the channel volume is proportional to 

q d z = 2 ~ l b c ) .  
The expressions (18) and (19) for u and q describe the 

time evolution of the surface of the conductor between two 
vortices: After a finite time, a small perturbation of the sur- 
face is transformed into a narrow Sfunction channel, and at 
the same time the vortices are drawn toward each other. In- 
deed, as 7+f  we have 

It can be seen that the growth of the channel described 
by our simplified model (16)-(17) with b<O is qualitatively 
the same as is observed in the experiment: After a finite time, 
a narrow channel moving toward the conductor axis is 
formed. At 7 = f ,  the conductor is broken up into particles 
with a diameter on the order of the diameter on the conductor 
(see Sec. 2). 

It follows from the fact that b<O that bl<O. Then Eq. 
(15) describes supercritical bifurcation and, therefore, the 
loss of stability of the conductor boundary is hard. This is a 
natural result, since such bifurcation leads to an irreversible 
(and therefore inexplicable in terms of supercritical bifurca- 
tion) change in the state of the conductor. 

An additional argument in support of what we have said 
is provided by the results of Refs. 14 and 15, in which a 
three-mode model of the stratification of a conductor with 
subcritical bifurcation is constructed for a special form of the 
unperturbed magnetic field H ,  . 

Thus, we have analyzed the results of experiments on the 
stratification of a liquid-metal conductor with current in the 
case of an electric explosion, and we have proposed a model 
of this process. In our model, the large-scale vortex struc- 
tures that lead to stratification and, therefore, the transverse 
strata are periodic with respect to the length of the conductor 
with wavelength Xo=2.32ro. As is shown by the analysis 
made in Sec. 2 of the sequence of x-ray photographs of the 
exploding conductor in the stage of rapid interruption of the 
electric current, the observed stratification process is more 
complicated than the model process. Namely, in the experi- 
ment we observe strata of scale X,, as well as Xd2. On the 
one hand, this confirms the assumption that a liquid-metal 
"particle" of scale Xo consists of a pair of vortices; on the 
other hand, this fine structure apparently arises because of 
the pressure from the hot regions formed near the conductor 
axis which we have ignored. In Refs. 1 I and 12 it was shown 
that these hot regions (so-called hot spots4) are localized be- 
tween two vortex rings in which the particles of the liquid 

near the concluctor axis move in opposite directions. These 
hot regions are sources of high-velocity plasma jets, which 
can lead first to the additional formation of channels from 
within the conductor and, second, to a slowing down or com- 
plete stopping of the growth of a channel from the conductor 
surface as a consequence of "squeezing" by the pressure of 
the channel growing from the surface within the conductor. 

Nevertheless, the model that we have proposed of the 
stratification of a conductor correctly reflects the main quali- 
tative features of the process. Moreover, since in our model 
the stratification of the conductor is determined by purely 
hydrodynamic processes, it can be concluded that a current- 
carrying conductor can also break up into transverse strata in 
the case of constant transport coefficients (in our opinion, the 
thermal instability noted in Refs. 7-9 can accelerate the pro- 
cess of stratification of the conductor at the end of the pro- 
cess [as r,vjO]). The proposed dynamical approach to mod- 
eling the stratification is also supported by the experimental 
fact that the scenario of the development of the instability is 
the same for metals with different thermophysical properties. 
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for this paper. We also thank the Russian Fund for Funda- 
mental Research for supporting this work (Project No. 94- 
02-06654-a). 

"ln practice, both mechanisms are probably present; moreover, the first of 
them-"intemption" without destroying the integrity of the 
conductor-is realized in liquid-metal current breakers in regimes in which 
it is possible to obtain multiple interruption and restoration of the current 
with equal characteristic times (V. T. Shkatov, private communication). 
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