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We study the magnetic moment and susceptibility of an electron gas in a quantum well formed 
by a parabolic confinement potential. A new method of calculating the magnetic moment 
based on the representation of this moment as a Fourier integral is suggested. The cases of 
degenerate and nondegenerate gases are investigated. We show that for a degenerate gas 
the quantum well contains aperiodic oscillations varying with field B and periodic oscillations 
with a period equal to the magnetic flux quantum. Finally, we demonstrate that at low 
temperatures the quantum well splits into Kondo domains. O 1996 American Institute of Physics. 
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1. INTRODUCTION 

There has been an upsurge of interest in the properties of 
electrons in quasi-zero-dimensional systems (quantum wells 
and quantum dots), especially after it became possible to 
experimentally investigate wells with widths comparable to 
the cyclotron radius in heterostructures (superlattices and 
surface-charge layers). Hybridization of electric, size, and 
magnetic quantization promises discoveries of new effects in 
such systems. 

A convenient way to model well confinement is to em- 
ploy a parabolic potential, since the Hamiltonian of electrons 
with such a potential in a magnetic field is quadratic. With 
such a Hamiltonian the energy spectrum of the system is 
simply the sum of the spectra of two independent harmonic 
oscillators with frequencies that are nonlinear functions of 
the characteristic frequencies of the confinement potential 
and the cyclotron frequency. This makes it possible in such 
systems to use exact analytic functions for the thermody- 
namic characteristics of the electron gas, which depend on 
the Hamiltonian parameters. The parabolic and 
some other have been successfully used for 
studying the thermodynamic characteristics of low- 
dimensional systems. It must be noted, however, that nonpa- 
rabolic models of a well confinement potential536 have been 
unable to produce analytic formulas, and the symmetric para- 
bolic potential was used by Meyr et al.' only to obtain the 
thermodynamic potential in the low-temperature limit 
(T-+0). 

According to Symon's result (see Ref. 7, p. 267, Theo- 
rem 1 1. l ) ,  a good approximation for any confinement poten- 
tial at high energy levels is the parabolic potential. This 
strongly supports the idea of using a parabolic potential to 
approximate a quantum-well potential. 

According to the generalized Kohn the~rem,~  the 
electron-electron interaction in a parabolic lateral confine- 
ment well has no effect on the well's spectrum. In view of 
the fact that the quantum-well characteristics studied below 
depend only on the spectrum, we can ignore the electron- 
electron interaction inside the well. 

General consitlerations based on the behavior of the den- 

sity of states suggest that as the magnetic field B varies the 
thermodynamic potential 0 undergoes oscillations of the de 
Haas-van Alphen type. These oscillations are caused by the 
fact that one level belonging to the system of discrete- 
spectrum levels crosses the chemical potential of the electron 
gas in the quantum well. Moreover, since the x y  plane con- 
tains a dimension characteristic of the confinement potential 
and determined by the effective radius of the well, oscilla- 
tions of the Aharonov-Bohm type with a period equal to the 
flux quantum are also possible. 

In this paper we study the magnetic moment and mag- 
netic susceptibility of an electron gas (degenerate and non- 
degenerate) in a magnetic field that is perpendicular to the 
well's confinement plane. The confinement potential is cho- 
sen in the form U ( x  ,xz) = m *(m;x2+ miy ')/2, where m * 
is the effective electron mass, and wl and m2 are the char- 
acteristic frequencies of the potential. 

The common approach to calculating the thermodynamic 
potential and the magnetic moment is to expand these quan- 
tities in Fourier series?-" This makes it possible to obtain 
approximate expressions for the oscillating and monotonic 
parts of 0 by the methods described in Refs. 9 and 10, which 
yield, as is known, the same result for a gas of 3D-electrons 
in the absence of a lateral confinement potential. The success 
of these methods is guaranteed by the fact that a ( B )  in such 
a system of electrons is a periodic function of 11B. In the 
case considered below, adding potential U disrupts periodic- 
ity. Direct use of the method based on Poisson's summation 
formulag7" and the method of contour integration of the clas- 
sical partition functionlo yield divergent Fourier series in our 
case. The reason for this is the contribution from the poles of 
the classical partition function 

Z =  - ' [ sinh ( - ) ~ i ~ h  (%)I - 
4 

at points 2mil?i01 or 27rmilfif12, where al and O 2  are 
the hybrid frequencies of the oscillators. These poles produce 
the factors [sin (mz0,10,)]-' or [sin (71mfl,/Q~)]-~ in the 
oscillating part of 0 ,  due to which the Fourier series in m 
and n always contain high-order terms with extremely small 
denominators for irrational frequency relationships. We sug- 
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FIG. 1 .  Dependence of the dispersion laws 
on cyclotron frequency at w ,  = 2  and 
w,= 5 (arbitrary units). 

gest another method for calculating the thermodynamic char- 
acteristics of quasi-zero-dimensional systems based on the 
Fourier transformation. As shown below, this method makes 
it possible to obtain exact analytic expressions for the calcu- 
lated values in the parabolic model of a quantum-well con- 
finement potential. 

2. SPECTRUM OF A PARABOLIC WELL IN A 
PERPENDICULAR FIELD B 

The spinless one-particle Hamiltonian of a 2D-electron 
in a quantum well has the form 

where the vector potential of the field B is A= 
(-By,Bx,O). Thus H(p,q), with q=(x,y),  is specified by a 
quadratic form of the phase coordinates p and q; clearly, the 
matrix M of this form is 

By a canonical transformation of the phase space (see 
Ref. 12, Chap. V, p. 143) the Hamiltonian H(p,q) can be 
reduced to new phase coordinates P and Q in terms of which 
H has the canonical form 

M =  

H(P,Q)= P ~ + P ~ + ~ ~ Q : + ~ ~ ~ Q ; .  (3) 

As is known (see Ref. 13, $17, p. 240), to find the hybrid 
oscillation frequencies R, and ln2, we must take the imagi- 
nary parts of the eigenvalues X i  of the matrix I M ,  where I  is 
the symplectic unity: 

Ilm 0 0 - @,I2 

0 llm wc/2 0 

0 0 wc/2 m(w:+w:4) 

-w,/2 0 0 in(@;+ w:4) 

For I M  we find 

(2) 

0 -w,/2 -m(w:+w:/4) 0 

@,I2 0 0 -rn(w;+w;/4) 

llm 0 0 - wc/2 

0 llm wc/2 0 
(5) 

This yields the following equation for the eigenvalues of 
the matrix I M :  

h 4 + ( ~ ; +  w;+ w ; ) A ~ +  w:w;=o. (6) 

Solving (6) and separating the imaginary parts, we obtain 
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In accordance with (7) and (3), the spectrum of the quantum 
well described by the Hamiltonian (1) has the form 

~ ~ ~ = f i R ~ ( m + l / 2 ) + f i R ~ ( n + l / 2 ) ,  m,n=O,l, . . . .  
(8) 

The .smn vs B dependence is depicted in Fig. 1. Clearly, 
there is strong level crossing in the region o c c w l  , 0 2 ,  
while in the field range where oc901 , 0 2  (strong magnetic 
quantization or a wide well) there is no level crossing. En- 
ergy segments containing the same number of levels become 
narrower as B grows and are separated by energy segments 
that contain no levels E, ,  and broaden as B grows. Asymp- 
totically these levels tend to the Landau levels 
e n  = fio,(n + 112) as B grows. 

3.MAGNETIC MOMENT OF A DEGENERATE ELECTRON 
GAS 

The magnetic moment M of a quantum well can be 
found by the formula M = - (dRldB),,, , where the thermo- 
dynamic potential R has the form 

Using (9) we get 

with fig the Bohr magneton. 
Then 

where 

We use the reduced frequencies a= ho , lT  and 
Pi=fiRilT, i =  1,2, the parameters ai=exp (-Pi/2) and 
yi= 2 arnopi lm * (& - &), and the reduced chemical po- 
tential p = ( 2 p  - fiQ l - fiR2)/2T. Then (7) assumes the 
form 

where 

We write the new quantities f12 and f21 as 

[ ( P l n + $ m - ~ ) ] - l  
X cosh 

[ ("n+;m-"]-' 
X cosh 

We sum the two series in (13) via the following formula:14 
m 

C 
rk {COS (a t )  - rcos [(a-x)t]}dt 

r=o cosh (kx+a) = lo ( I  -2rcos xt+ r2)cosh (at12) ' 
(14) 

Note that Ref. 14 has a misprint: the denominator in (14) 
contains b instead of x. We introduce the following notation: 

q i = ( I  - 2 a i  cos p i t+a?) - I ,  i= 1,2. (15) 

Then, using (14), we can easily arrive at the following: 

X 
cos [ ( P - P I ~ ) ~ I - ~ ~ ~ C O S  [ (p-P~n+Pz) t ]  

cosh ( ~ t )  

P - P2m (16) 

X 
cos [(p-P2m)tI- f f 1 ~ 0 ~  [(p-P2m  PI)^] 

cosh (mt) 

Substituting (16) into the expressions for F 12 and F2, , inter- 
changing the order of summation and integration (which is 
possible because of uniform convergence of the series), us- 
ing a formula that follows from Ref. 14, 
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1 (1 -a2)cos 6-acos (x- S)+a2cos (2x+ 6)+a3cos (x+ 6) 
( k +  ;jakcos ( k x - 6 ) =  - 2 (1 -2acos x+a2)2 , 

k= 1 
(17) 

and carrying out lengthy but otherwise simple transforma- 
tions, we obtain 

{[( 1 - 2ff3cos pt-  ff1COS 

The expression for F21 can be obtained from F12 by 
interchanging the subscripts: 1 632 Substituting (18) into 
(12), we arrive at the Fourier transform of the magnetic mo- 
ment. The expression for the magnetic moment found in this 
manner is an exact analytic formula for the M vs B depen- 
dence and is convenient for studying particular cases. 

4.MAGNETIC MOMENT OF A WIDE QUANTUM WELL 

Let us examine another important case: a wide quantum 
well ( w e S o l  ,02). Below we show that when we are deal- 
ing with a wide well, we can go from the exact formula with 
the Fourier integral to the ordinary approximation in which 
the magnetic series is expressed by a Fourier series. This is 
possible, obviously, because the levels E,,(B) do not cross 
in the region where oc%=ol , 0 2  (see Fig. 1). The following 
approximate formulas can be derived from (7) in this case: 

Hence aI=O, a2=1,  y2 G yl ,  F21=~(F12) ,  q l = l ,  and 
yl =m0 lm*. Then Eq. (18) leads to the following estimate: 

dt  cos (pt) - a2cos [(p - P2) t] 
F12= Texp 

cosh ( r t )  1 - 2a2cos (P2t) + L Y ~  ' 

(20) 

Combining (14) and (20) we get 

1 
m 

F - [ l  +exp (/32n-p)]-1. 
2 n=o  

(21) 

The series in (21) can be transformed into the Fourier series 
if Poisson's formula F(x) = [ 1 + exp (x-p)]-' in employed. 
After performing elementary transformation we obtain 

m 
?rT sin [m(2p-hh.nI  - hfZ2)lhi12] +-' h a 2  , ,= I  sinh(2n'n~lfih.n~) 

where Po is the Fermi integral, 

From (22) and (12) it follows that 

m 
sin [ r n ( 2 p -  fin1 - hC12)lfifi2] ' sinh ( 2 r 2 n ~ l h f i 2 )  x n= 1 

The first two terms in the braces describe the monotonic part 
of the magnetic moment, and the last term describes the os- 
cillating part. Note that the series in (23) diverges as T j O .  
This situation is similar to the behavior of M as T j O  in 
~ D - S ~  

5. MAGNETIC MOMENT OF A NONDEGENERATE 
ELECTRON GAS AND A DEGENERATE GAS IN THE T =O 
LIMIT 

The free energy F of a nondegenerate electron gas is 
given by the expression 

where N is the number of particles in the well. Summing the 
series in (24) we get 

Let us calculate the magnetic moment of the quantum 
well, M = - (dFldB),: 

- M mo o c  - fin 1 
[fllc0th - Q2coth (26) 

2T 
' 

Using (26), we can find the susceptibility per electron: 

The paramagnetic susceptibility per electron can be calcu- 
lated in the standard way: 

x P m =  p i t  T . (28) 

Now let us take a degenerate gas at T=O. Note that for 
values of B at which there is no level crossing, the number of 
electrons in the well is equal to the number of levels E,,, 
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below the Fermi level, since the levels in this case are not 
degenerate. This sets the case of a quantum well apart from 
the 3 ~ - c a s e ~ , ' ~  and from the quasi-two-dimensional case,4 
where the density of states on the levels is high (B 1) and, 
consequently, the number of filled levels is low. In our case, 
with the number of electrons N in the well being roughly 
1000, the number of filled levels is of the same order of 
magnitude, so that the ratios p /h f l ,  and pIhf12 are also 
equal to N in order of magnitude. 

Let us calculate Klo=fl(T=O) by the formula 

Nn 

where M = [ ( E ,  - hi l l (n  +I,) - h'n212)hf12], andNo 
= [ ( E ,  - h a 1  - hfi2/2)hi21] (here EF is theFermienergy, 
and the square brackets stands for the integral part of a num- 
ber). From (29) we obtain 

FIG. 2. Oscillations of magnetic susceptibil- 
ity with variations of the cyclotron fre- 
quency; f i o , lT=50 ,  f io, lT=40, and 
PIT= 1000. 

oscillations have a finite height and width, and their peaks 
shift. In estimating the monotonic part of no we can ignore 
the fractional part of the sums in (30). Then, to within terms 
- ( h a l  we have 

Allowing for the fact that w1 w2= 01f12,  from (32) we ob- 
tain the following estimates: 

The paramagnetic susceptibility is calculated in the stan- 
dard rnanr~er:~ 

We see that for field strengths B satisfying the equalities 

~ ~ = h f i ~ ( n +  l / 2 ) + h a 2 / 2 ,  

&F'hfi2(n+ 1 / 2 ) + h ~ l / 2 .  (3 0 
the quantity (30) has discontinuities in its integral part, 
which means that the derivative dQoldB at the points speci- 
fied by (31) has delta-like peaks. Of course, when T # 0 these 

In both (33) and (34) the susceptibility is per electron. 

6. OSCILLATIONS OF THE MAGNETIC MOMENT FOR T # 0 

In this section we discuss the oscillations of the suscep- 
tibility and of the magnetic moment for a wide quantum 
well. From (23) it follows that in the low-temperature limit, 
where 

the maximum of the oscillating part is 
( -  MlpB)osc-molm*, and from (33) it follows that 
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To find the susceptibility per electron, we differentiate 
with respect to B in (23) only the rapidly oscillating factors 
in the series. Then 

A!mcz- (2rrpB -2 m0)2E  Nnw, 

Estimating in (35) the oscillation amplitude in the low- 
temperature limit, we obtain 

From (33) and (36) it follows that ~ " ~ ~ / , y ~ = 6 .  
Thus, the oscillating part of the magnetic moment is 

small compared to the monotonic part, while for the suscep- 
tibility the opposite is true. A diagrams built from Eq. (35) is 
depicted in Fig. 2. 

The above formulas describe the oscillations of M(B) 
and x(B) as functions of the field strength B. Oscillations of 
an entirely different type are also possible. We introduce the 
effective radius of a quantum well by the formula 

nn, f in2  m * o l w 2 ~ 2  
- 

p - 2 - - -  2 2 .  

The magnetic flux through a circle with such a radius is 
@= T B R ~ .  The argument of the sine in (23) and the cosine 
in (35) can then be transformed into 

2p-t i f11-~lR2 m*w1w2@ 
rrn - - 

fin2 fLBf12 
n. (38) 

Substituting f12= w1w2 lo ,  , we get 

2 p -  fin,- h a 2  @ 
rrn = 2 m - ,  

h a 2  Q 0 
(39) 

where Go = 2 rrh.cle0 is the magnetic flux quantum. Combin- 
ing (23) and (39,  we obtain 

OSC ~ i n ( 2 m @ / @ ~ )  

.= 1 sinh (2rr2nTlhR2) ' 

m 
cos ( 2 7 ~ n @ l @ ~ )  

xosc- C . .= 1 sinh (27r2nTlfif12) ' 

Thus, the magnetic moment and the susceptibility oscil- 
late with a period equal to Qo. The amplitude of these peri- 
odic oscillations, estimated against the monotonic quantity 
M or X, is the same as of the quantities considered above. 

7. DISCUSSION 

Studies of the magnetic properties of an electron gas in a 
quantum well for the case of a degenerate gas show that the 
susceptibility and magnetic moment are oscillating functions 
of the magnetic field strength B. Two types of oscillations 

can occur. First, oscillations of the de Haas-van Alphen 
type, which are not periodic in 1/B (in contrast to Landau's 
diamagnetism) because of the nonlinear B -dependence of the 
hybrid frequencies fl and a,. In addition, as analysis of the 
oscillations for the case of a wide quantum well has shown 
(Sec. 6), there can also be oscillations of the Aharonov- 
Bohm type with a period equal to the magnetic flux quantum. 
Estimates of the amplitude of susceptibility oscillations show 
that for both types ,yOSCI~m+ 1. 

For both a nondegenerate gas (Eqs. (27) and (28)) and a 
degenerate gas in the low-temperature limit (Eqs. (33) and 
(34)) the ratio of the diamagnetic part of the susceptibility to 
the paramagnetic part has the form 

Thus, for a quasi-zero-dimensional system the value of this 
ratio is the same as for the 3D case (Landau's diamagne- 
tism). Note that the expressions (27) and (28) for the suscep- 
tibility of a nondegenerate gas in a well are the same as in 
the 3D case.9 But in the low-temperature limit, Eqs. (33) and 
(34) imply that the diamagnetic and paramagnetic suscepti- 
bilities strongly depend on the characteristic frequencies w, 
and w2 of the lateral confinement potential of the well. We 
also note that here the well susceptibility per electron, x", is 
high compared to Landau's diamagnetism xL: 

Note that except for some values of B at which the hy- 
brid quantization levels cross (Fig. I ) ,  the levels E,, are 
nondegenerate. This sets a quantum well apart from Land- 
au's diamagnetism and from the case of a quasi-two- 
dimensional layer in a magnetic field? where each level in 
the spectrum carries many states because of their strong de- 
generacy. 

Two important conclusions follow. First, the chemical 
potential lies high on the energy axis, since the number of 
occupied levels E,, below it is, to order of magnitude, equal 
to the number of particles in the system, and at 
o,- 02- o, it can be higher than these characteristic fre- 
quencies by a factor of several hundred. Second, under per- 
turbations (say, an impurity potential) the nondegenerate hy- 
brid levels can only shift along the energy axis, but no states 
whose energies lie between the hybrid quantization levels 
can split away from these levels. Hence the density of states 
between the levels E,, is zero. Finally, the last statement 
indicates that at T=O the Fermi level E F  coincides with one 
of the hybrid levels. Then, except for a small number of 
points of degeneracy of the spectrum mentioned earlier, the 
Fermi level experiences discontinuities A E ~ =  h a 2  when B 
varies, since f12 is always lower than 0 , .  

As is known,'' a wide quantum well is stable when 
dH/dB>O. If this inequality is violated, the system splits 
into Kondo domains. Hence the condition of thernlodynamic 
instability for the amplitude of the specific husceptibility xo 
of such a well assumes the form 
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with Vef f  the effective volume of the well. The effective 
volume of the well can be estimated at 47rRil3, where the 
radius Ro is defined by a formula for the number of electrons 
N derived from Chaplik's expression17 in the Thomas-Fermi 
approximation: 

with a *  the effective Bohr radius, and A, the zeros of the 
Bessel function Jo. For typical values of the parameters 
(m*=O.lmo, wl-w2- 1012 S-I, p -500h0~ ,  and 
V e f f -  10- l5 ~ m - ~ ) ,  the previous formula implies that 
,yS 1 1 4 ~ .  If we assume, as usual,18 that the range of mag- 
netic fields B in which the domains can exist is specified by 
the inequalities B , < Ho< B2,  where Ho = B on the flat outer 
boundary of the well (perpendicular to the field) and the size 
of the region AB=B2- B ,  is, to order of magnitude, the 
distance between the peak values of the susceptibility 
x(B), then an estimate of the size can be made. The distance 
between the peaks on the ,y vs B curve is 

m*c hwlw2 
AB- - - 

eo (u-fiwc 

For a well with the above parameters, AB - 10 G. From the 
formula for AB it follows that AB is a slowly varying func- 
tion of B. 
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