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It is shown on the basis of an analysis of the nonlinear wave equation that the filamentation and 
modulation instability of a plane wave must be considered together. The general instability 
growth rates g(k, ,kll) of a relativistically intense plane wave in matter are calculated. It is shown 
that the instability region in the k plane is bounded. The energies of the individual peaks 
into which the original wave breaks up have a lower bound. O 1996 American Institute of 
Physics. [S1063-7761(96)02903-41 

1. INTRODUCTION 

An intense electromagnetic wave experiences filamenta- 
tion and modulation instability in matter.' Filamentation in- 
stability is manifested by collapse of the radiation into one or 
more filaments. As a result of modulation instability, a laser 
pulse propagating along an individual filament is trans- 
formed into a sequence of peaks. This instability is some- 
times called the longitudinal-transverse or general instability 
of a plane wave. The transverse and longitudinal instabilities 
are not separable in the general case and must be considered 
together, although this circumstance is usually ignored in 
model descriptions of nonlinear wave propagation. 

The filamentation instability of a plane wave in a Kerr 
medium was considered by Bespalov and ~alanov? who em- 
ployed the linear theory of the stability of small perturbations 
superposed on a plane wave and described the propagation of 
the latter using the nonlinear Schrodinger (NLS) equation. At 
high laser output powers the leading edge of a pulse ionizes 
atoms of the medium, and the bulk of the pulse propagates in 
a plasma consisting of multiply-charged ions and free elec- 
trons. The plasma exhibits significant relativistic- 
ponderomotive nonlinearity due to the increase in the mass 
of the free electrons, which oscillate with velocities close to 
that of light in the intense field, and to the ejection of elec- 
trons from the region of the intense field by ponderomotive 
forces. The filamentation instability of a plane wave in a 
medium with relativistic and relativistic-ponderomotive 
electron nonlinearity was studied by analyzing solutions of 
the corresponding NLS equation in Ref. 3. 

Under fairly general assumptions the propagation of a 
short laser pulse in matter can be described by a non- 
linear wave equation with relativistic-ponderomotive 
n~nl inear i t~ .~  The NLS equation model is a special case of 
the nonlinear wave equation model, and is obtained by ne- 
glecting several second derivatives in the diffraction operator 
of the nonlinear wave equation in comoving variables, which 
corresponds to an incomplete description of the wave prop- 
erties of the radiation along the propagation coordinate. As a 
consequence, the NLS equation correctly describes the wave 
properties of radiation in the transverse direction and incor- 

rectly describes these properties in the longitudinal direction. 
Therefore, the NLS equation can be used to analyze filamen- 
tation instability, but this model is ill-suited to the analysis of 
modulation instability. Thus, the use of the NLS equation to 
describe the general instability of a plane wave is question- 
able. 

In the present work we analyze the general instability of 
an intense electromagnetic plane wave in matter. Linear in- 
stability theory is employed to investigate solutions of the 
nonlinear wave equation with relativistic-ponderomotive 
electron nonlinearity. The growth rates of general instability 
are determined numerically. The analysis of general instabil- 
ity makes it possible to understand the essential features of 
the filamentation process alone and the temporal modulation 
of ultrashort laser pulses in matter. 

2. BASIC EQUATION 

The nonlinear wave equation describing the propagation 
of ultrashort intense laser pulses in a medium with 
relativistic-ponderomotive electron nonlinearity was consid- 
ered in Refs. 4 and 5 and has the following form: 

i 
(vgld,+d,)a+-[0+ki(1- y- ' (1+k,2~y))]a=0.  

2k 
(1) 

Here a( t , r )  is the complex amplitude of the electromagnetic 
vector potential, k2= k:- k:, ko= WO/C is the wave number 
of laser output at frequency wo , kp= w /C  is the reciprocal 
length of the skin layer, and 4- is the 
plasma frequency in the unperturbed plasma. As was shown 
in Ref. 4, the expressions for the relativistic y factor of cir- 
cularly and linearly polarized waves differ, but are close to 
the model expression ?= 1 + JaI2. We shall use the model 
expression for the y factor below. In Eq. (1) the 
d' Alembertian operator describes diffraction, and the follow- 
ing term describes refraction with consideration of the rela- 
tivistic and ponderomotive effects. 

Equation (1) is usually considered in the conloving vari- 
ables 
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It then takes the following form: 

We introduced the parameters 

and the dimensionless constants 

In the dimensionless variables (we shall use the previous 
notations T ,  r, and 4 )  the starting nonlinear wave equation 
for subsequent analysis takes the following form: 

Equation (6) has a plane wave solution: 

a = aoei(oo~+h,') ,r=(r, .5), (7) 

where w0 and k,, satisfy the dispersion relation 

oo+ ( -  ktr, - ak&+ /3koll+ 6w;+ (1 - y ~ ' ) )  =0. ( 8 )  

3. EQUATION FOR SMALL PERTURBATIONS 

Let us consider the evolution of small perturbations su- 
perposed on the plane wave described by (7) and (8):  

a = aoe ' (o~~+h, r )  + 50( 5-d. ( 9 )  

The substitution of (9 )  into (6 ) ,  keeping only terms linear in 
c p ,  leads to the following linear equation, which describes the 
evolution of small perturbations superposed on the plane 
wave: 

In deriving (10) we used the expansion 

r - l ( ~ + ~ r ) =  y ; l + ~ ~ ( c p * + c p ) - v ( p * + r p )  ( 1 1 )  

and introduced the following notation: 

Note that the parameters /? and 6 in (1) can be expressed in 
terms of cr via (4); therefore, Eq. (10) contains only two 
external parameters: a, which is a characteristic of the me- 
dium, and a ; ,  which is the intensity of the external field. 

The linear differential equation (10) can be solved by the 
Fourier-Laplace method. After application of the inverse 
Laplace transformation, the asymptotic solution for t -+m 

takes the following form: 

FIG. 1. Instability region of the NLS equation in the (k,,kll) plane and 
maximum growth rate curve (dashed line) for kll=const. The variables k are 
plotted in units of 2(v l (  1 - 2p) )  I". 

where the R j  are the residues at the poles and the w, are the 
roots of the dispersion equation 

Thus, according to (13), the growth rate of small perturba- 
tions superposed on the plane wave at a given point 
( k ,  ,kl l)  can be naturally understood to be equal to the maxi- 
mum positive value of the imaginary part of the root of the 
dispersion equation (14).  

4. CALCULATION OF THE GROWTH RATE OF GENERAL 
INSTABILITY 

Modifications of the NLS equation, i.e., approximations 
of the nonlinear wave equation, have sometimes been con- 
sidered in the literature. The choice of a particular approxi- 
mation can be made by formally setting one or more of the 
constants a,  p, and 6 to zero. 

4.1. NLS equation approximation with a=B= S=O 

The dispersion equation for the NLS equation takes the 
form3 

w2=k;(k:  -2(,uk2+ v ) ) ,  (15) 

and its solution is 

o l , 2 = f - k , ~ k ~ ( l - 2 p ) - 2 ( , u k i + v ) .  (16) 

The instability region can be determined by requiring that the 
expression under the radical be negative: 

Since I - 2,u = ( 1 +a : )  - ' > 0 ,  the characteristic region of in- 
stability for the NLS equation is open to w and is located 
between two curves in the ( k ,  ,kl l)  plane (see Fig. I) .  

When kll = const, the maximum growth rate is attained 
when 
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FIG. 2. Growth rate of the modified NLS equation ( a  f 0, P= S=O) as a 
function of the two variables k ,  and kll at a large intensity value ao= 1.0. 

When k, = const, the growth rate increases without bound as 
lklll increases. The curves corresponding to the condition 
(18) are shown in Fig. 1 in the form of dashed lines. Fila- 
mentation instability appears when kI1 = 0. It corresponds to 
the maximum value of the growth rate, which is achieved 
when 

The corresponding values of the growth rate and the thresh- 
old filamentation power were calculated in Ref. 3. 

FIG. 3. Growth rate of the nonlinear wave equation ( a  # 0, f l  # 0 , 6  # 0 )  as 
a function of the two variables k, and kll at a low intensity value ao=O.l. 

4.2. Modified NLS equation with a f 0  and P= S=O 

In this case the instability region is described by the 
following inequality: 

At small intensities, at which 2 p  - a<O, the boundary of the 
instability region is an ellipse extended along the kll axis. At 
an intensity value which satisfies the condition 2 p -  a = 0 ,  
the instability region transforms into a band parallel to the 
kll axis. At high intensities (2p-  a>O) the instability region 
is close to that found in the preceding section for the NLS 
equation. We note again that the unbounded increase in the 
growth rate for ( k l l l - + w  (see Fig. 2) is a consequence of the 
inadequacy of the NLS equation model for describing modu- 
lation instability. 

4.3. Modified NLS equation with a # 0 ,8=0 ,  and S # 0  

In this case the dispersion equation takes the form of a 
biquadratic equation with a positive coefficient of w4. In this 
case a sufficient condition for being in the instability region 
is a negative value for the free term in the biquadratic equa- 
tion. This condition is equivalent to the condition (20) or 
(17) when a = O .  Thus, the instability region is no narrower 
than the instability region of the preceding two sections. 

4.4. Modified NLS equation with a= S=O and P f 0  

In this case the condition for being in the instability re- 
gion is a negative value for the discriminant of the quadratic 
dispersion equation, which is equivalent to the condition 

It follows from the condition (21) that the instability region 
is bounded. 

4.5. Variant of the nonlinear wave equation with a f 0, P f 0, 
and6f 0  

Analysis of the complete problem is of the greatest in- 
terest. The growth rate can be determined numerically. The 
most common case for the roots of the dispersion equation 
(14) in the instability region is the situation with two real 
roots and two complex-conjugate roots, although a variant 
with two pairs of complex-conjugate roots is considered in 
the algorithm. Denoting the real roots by w,  and o2 and the 
imaginary roots by o3 -+ ig, we have, according to Vieta's 
theorem (comparison of the coefficients of o3 and the free 
term): 

At low intensities the real roots equal w ~ , ~ =  'C to high 
accuracy, and therefore the values of the real part w3 of the 
complex-conjugate roots and the growth rate g can be ob- 
tained analytically from (22) and (23). At low intensities the 
expressions (22) and (23) (for example, when P=O) pass 
continuously into variant 4.2 with the instability region (20). 
The relations (22) and (23) can also be used at high intensi- 
ties, but the values of ol,, are determined numerically. The 
results of the calculations of the growth rate for low and high 
intensity values are presented in Figs. 3 and 4. 

At low intensities the maximum of the growth rate as a 
function of k, and kll is achieved on a curve having the form 
of an ellipse. The ellipse extends along the kll axis, and the 
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FIG. 4. Growth rate of  the nonlinear wave equation (a # 0, # 0.8 # 0 )  as 
a function of the two variables k, and kll at a high intensity value 
a,= 1.0. 

situation for the general case is very similar to variant 4.2. 
This agreement reflects the similarity between the properties 
of the solutions of the NLS equation and the nonlinear wave 
equation in the initial time segment. As the intensity in- 
creases, gaps appear along the k ,  axis, which separate the 
closed curve of the maximum growth rate values into two 
parts: upper and lower half-planes. The asymmetry intro- 
duced by the term with the coefficient P is scarcely notice- 
able. 

One interesting feature of the solution obtained is the 
appearance of lacunae, which can be observed in Fig. 4. 
These lacunae are located on the kll axis, i.e., at k ,  = 0. The 
lacunae appear over a finite range of radiation intensities. 
Their presence signifies the possible physical existence of a 
longitudinally modulated plane wave propagating without 
damping and amplification in a nonlinear medium. This 
wave, incidentally, must be unstable against small perturba- 
tions. 

One significant feature is the finiteness of the instability 
region of the nonlinear wave equation, which means that 
both longitudinal and transverse short-wavelength perturba- 
tions of a plane wave are stable. The type of growth rate 
obtained makes it possible to establish several special fea- 
tures of the general instability of a plane wave in matter. 
Instabilities with k, and kll corresponding to the maximum 
growth rate values appear under the conditions of a real ex- 
periment. For example, if filamentation with a characteristic 
length of the transverse inhomogeneity X I  = 2 .rrk, ' appears, 
the laser pulse propagating along the filament breaks up into 
longitudinal peaks with a length A11=2mkr1 , where kll cor- 
responds to the value of the maximum growth rate along the 
k,  =const line. Thus, the number of peaks into which the 

pulse breaks up is related to the size of the transverse inho- 
mogeneity and to the radiation intensity. 

The quasiperiodic evolution of the solution of the non- 
linear wave equation5,6 can be explained on the basis of the 
results obtained. Upon the appearance of the first focus, the 
radiation intensity reaches values at which modulation insta- 
bility begins to develop, the focus breaks up into several 
peaks of lower intensity, and the focusing mechanism of the 
ordinary nonlinear wave equation model begins to operate 
again. Thus, the fundamental difference between the nonlin- 
ear wave equation and the NLS equation is the modulation, 
rather than the relativistic-refraction, mechanism for 
breakup of a focus. 

One consequence of the fact that the maximum growth 
rate curve in the k ,  ,kll plane does not pass through the origin 
is the lower bound imposed on the energy concentrated in a 
single peak. In fact, a qualitative analysis shows that the 
energy of the electromagnetic field concentrated in a paral- 
lelepiped with lateral edges A, and All reaches a minimum at 
certain values A:'" and xV. Therefore, the energy concen- 
trated in a single peak cannot be arbitrarily low when general 
instability of a plane wave of prescribed intensity appears. 

The growth rates g ( k , )  and g(kl l )  of the general insta- 
bility of a plane wave in a medium with a relativistic- 
ponderomotive nonlinearity have been investigated in this 
paper. It has been shown that the instability region is 
bounded at any intensity of the original wave. The distribu- 
tions of the growth rate are different at low and high inten- 
sities. Filamentation and modulation instabilities are related, 
and they must be considered in concert. The general insta- 
bility can be described in the nonlinear wave equation model 
and cannot be described in approximations of the NLS equa- 
tion which do not take into account the temporal dispersion. 
A modulation mechanism for breaking up a focus into a 
finite number of peaks has been described for the self- 
channeling of a laser pulse in matter. 
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