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The exponents of the velocity structure function in turbulent flows are found on the basis of a 
semiempirical model. An assumption that these exponents are not self-similar with respect 
to the Reynolds number makes it possible to account for the disparities between the results of 
known experimental studies and to achieve good agreement between a model probability 
distribution of the dissipation breakdown coefficient and experiment. O 1996 American Institute 
of Physics. [S 1063-7761 (96)03003-31 

I. INTRODUCTION 

There is presently no correct mathematical formulation 
of the "problem of turbulence," i.e., the problem of obtain- 
ing a statistical description of developed turbulent flows. The 
need to adopt "closing" hypotheses arose in the theoretical 
study of the problem.' This is because the systems of exact 
(following from the equations of fluid mechanics) equations 
for the statistical characteristics of turbulence always contain 
a number of unknowns exceeding the number of equations. 
Most of the theories in statistical hydrodynamics are, there- 
fore, phenomenological to some extent. Since it is generally 
difficult to directly verify closing hypotheses, the correctness 
of models is evaluated by comparing conclusions derived 
from them with a physical or numerical experiment. 

The ideas of the theory of locally isotropic turbulence 
proposed by Kolmogorov and ~ b u k h o v ~ . ~  in 1941 have 
turned out to be extremely fruitful in the development of 
statistical hydrodynamics. As measurement techniques were 
subsequently perfected, experimental results were obtained 
which could be explained only after refinement of the clas- 
sical theory.233 Such refinements were needed primarily be- 
cause of the extremely intermittent, temporally and spatially 
inhomogeneous structure of the small-scale fields in turbu- 
lent flows.' Small-scale intermitiency can be characterized, 
for example, by the statistical moments of the velocity gra- 
dients. Experiments provide evidence' that such moments 
increase, apparently without bound, as the Reynolds number 
Re of the flow increases. Such a picture is typical of a field in 
which the relative volume of the region in space with a suf- 
ficiently high "intensity" of small scale turbulence tends to 
zero as Re increases. 

Most of the known theories of intermittency, for ex- 
ample, the lognormal the beta model? the random 
beta model? the alpha model: the p model? the log-stable 
model,1° the log-gamma model," and several other models 
refer to the case of asymptotically large Reynolds numbers. 
The characteristics of the intermittency in the inertial range 
of the spectrum, such as the probability distribution of the 
breakdown coefficient of the dissipation field, the intermit- 
tency exponents p, , and the exponents [, of the structure 
function, are assumed to be universal (not dependent on the 
Reynolds number) in the models just enumerated. The ex- 
perimental data of different investigators, which will be ex- 

amined in Sec. 4, give values of [, which differ from one 
another. The question of whether the exponents 5, are uni- 
versal or not is presently unclear. In particular, it was postu- 
lated in Ref. 12 that the nonuniversality of the characteristics 
of small-scale turbulence is caused by the external intermit- 
tent y . 

It may be conjectured that the disparities between the 
experimental results just mentioned are not a consequence of 
measurement errors, but reflect a definite dependence, which 
is not taken into account in the known models of intermit- 
tency. In this paper the characteristics of small-scale turbu- 
lence are considered over a broad range of Re: from a certain 
critical value Re,, to Re-+m. It is shown that rejection of the 
assumption that the intermittency exponents are self-similar 
with respect to the Reynolds number of the flow makes it 
possible to significantly improve the agreement between the 
previously proposed semiempirical model13 and experiment, 
as well as to give a qualitative explanation for the possible 
nonuniversality of the exponents of the velocity structure 
function. 

The relation between the velocity structure function and 
the probability distribution of the energy dissipation rate in 
turbulent flows is determined in Sec. 2. In Sec. 3 the expo- 
nents of the velocity structure function are found on the basis 
of a semiempirical model. A comparison with experiment is 
given in Sec. 4, and Sec. 5 contains the conclusions. 

2. STRUCTURE FUNCTIONS OF THE VELOCITY FIELD 

One possible approach to the description of small-scale 
turbulence is to study structure functions of the velocity field 
of different orders. A structure function of order n refers to 
the quantity ( ( 6 u ( x , r ) ) * ) ,  where the angle brackets denote 
statistical averaging, Su(x ,r )  is the difference between the 
values of the flow velocity at points with the coordinates 
x + r  and x: 

The range of scales r  which are such that v < r < L ,  
where v= v3I4(&)- 'I4 and L = k3I2/(&), i.e., the internal 
(Kolmogorov) and external (energy) scales of turbulence, re- 
spectively, has been termed the inertial range. In this range 
of scales the molecular viscosity has no appreciable influ- 
ence on the dynamics of flow, and the motion of the fluid is 
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determined mainly by the force of inertia. According to the 
picture of the cascade breakdown of eddies proposed by 
~ichardson, '~ the characteristics of turbulence in the inertial 
range must "forget" the details of the initial and boundary 
conditions of a specific flow. On the basis of the qualitative 
conceptions in Ref. 14, it was theorized in Refs. 2 and 3 that 
the value of the structure function of the velocity field in the 
inertial range of the spectrum is determined only by the 
mean energy flux from larger to smaller scales along with the 
values of n and r = 1 rl. In the case of equilibrium in the 
spectrum, the energy flux coincides with the dissipation rate 
of energy in the form of heat under the action of the molecu- 
lar viscosity. Then, from dimensionality arguments for the 
structure function in the inertial range it follows 

If 4'" denotes the scaling exponent of a structure function 
of order n in the inertial range, i.e., if 

(( ~~(x9r ) ) " )mrCn*  (2) 

ln= n/3 in the theory in Refs. 2 and 3. 
The experimental data contradict the linearity of 5, as a 

function of n (Ref. 1; see also the comparison with experi- 
ment in Sec. 4 herein). The theory in Refs. 2 and 3 does not 
take into account the random, intermittent character of the 
energy dissipation rate field. To take into account the correc- 
tions caused by intermittency, a refinement of the theory of 
locally isotropic turbulence was proposed in Refs. 4 and 5. If 
the scale r falls in the inertial range, the probability distribu- 
tion for Su(x,r) is determined by the values of r and E, . 
Here E, denotes the turbulent energy dissipation rate E aver- 
aged over a region with a characteristic linear dimension r. 
From dimensionality arguments 

In the scale-similarity range (see Sec. 3.1 below) 

the relation (3) gives an expression which relates the expo- 
nents of the velocity structure function to the statistical dis- 
sipation moments in the scale-similarity range: 

3. SEMIEMPIRICAL MODEL OF THE TURBULENT 
DISSIPATION PROBABILITY DISTRIBUTION 

A phenomenological model of the evolution equation for 
the distribution density of the energy dissipation rate in tur- 
bulent flows of an incompressible liquid was proposed in 
Ref. 13. The model is based on the ideas of the improved 
theory of locally isotropic turbulence475 and generalizes the 
familiar semiempirical k-E model. In this model the param- 
eters determining the dissipation probability density are the 
mean turbulent energy k,  the mean dissipation rate ( E )  , and 
the molecular viscosity v. It is assumed that the energy dis- 
sipation probability distribution is a universal function of 
k, (E) ,  and v, i.e., a function which does not depend on the 
special features of the flow. The model in Ref. 13 gives the 
following equation for the function @(q,x) describing the 

FIG. 1 .  Schematic dependence of the partially averaged dissipation moment 
on the scale. 

statistical moments of the turbulent energy dissipation rate in 
developed equilibrium turbulent flows of an incompressible 
liquid: 

@"+2(X,+X2,)@'+X3,(q- 1)@=0, (6) 

where @(q,x) = ( E ~ ) / ( E ) ~ ,  the prime denotes differentiation 
with respect to x, and x = ln[k2/((~)v)]. 

It was shown in Ref. 15 that Eq. (6) can be obtained by 
separating the "fast" and "slow" variables in the kinetic 
equation for the distribution density of E in the more general 
case of nonequilibrium turbulence. In that case x is the loga- 
rithm of some effective Reynolds number Re. The shortcom- 
ings of the special scheme for closing the evolution equation 
for the dissipation distribution density previously proposed 
in Ref. 13 were also analyzed in Ref. 15. 

3.1. Scale similarity of the breakdown coefficient of the 
dissipation field 

In Ref. 16 Novikov considered the breakdown coeffi- 
cient qrYl of the turbulent energy dissipation rate field: 

If in the inertial range (when .I;l-%r<mClGL), the 
scale-similarity conditions hold, i.e., 1) if the probability dis- 
tribution of q,,, depends only on the ratio r l l  and 2) if q,,, 
and q,,, are statistically independent, then16 

where the exponent pq does not depend on the scales r and 
1. 

Let us consider the dependence of the normalized mo- 
ment of order q of the turbulent energy dissipation rate 
E,(q) = (E:)I(E)~ on the scale r.  Clearly, 

E,(q)--t@(q,x) for r+O, 

Er(q)+l for r+m, 
E,(q) = ~ r - ~ q  for ?,&r-%L. 

Figure 1 presents a schematic plot of the dependence of 
the logarithm of E,(q) on the logarithm of r. The scales 
L, and vq can be determined for a fixed value of q ,  so that 
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The definitions of L, and v,, which are assigned by the 
points of intersection of the continuation of the linear (scal- 
ing) segment with the straight lines InE,(q)=O and 
In E,(q)=ln @(q,x), respectively (see Fig. I), and Eq. (8) 
give 

The size of the smallest eddies in a turbulent flow coin- 
cides in order of magnitude with Kolmogorov's scale q, and 
the average of the energy scale L over the order scale can be 
assumed to coincide with the grand mean. Therefore, we 
assume that L,=a(q)L and v,=b(q) q, where a(q) and 
b(q) are universal functions of q. Then 

3.2. Universal probability distribution of the breakdown 
coefficient 

The solution of Eq. (6) was considered in Ref. 17 under 
the assumption that the exponents p, are universal with re- 
spect to the Reynolds number. The ratio of the external scale 
to the internal scale coincides with hence 
Ll q= exp(3x14). Plugging (10) into Eq. (6) gives 

where C(q) = [a(q)lb(q)lfiq, and the exponents p, are de- 
termined by one of the solutions 

provided the coefficients A , A 2 ,  and A 3  in Eq. (6) are con- 
stants. 

According to the data from the experimental work in 
Refs. 18-20, the probability distribution densities of the 
breakdown coefficient are continuous and unimodal. It was 
shown in Ref. 17 that the model probability distribution den- 
sities of the breakdown coefficient obtained from Eq. (12) 
contain no singular components only if the coefficients A 2  
and A 3  in Eq. (12) are related by the expression 

The experimental indicate that the distribution 
of q,,, does not vanish for O<qr,l<llr. Hence it follows17 
that 

,u,=q+o(q) for q t m .  (14) 

Then from Eqs. (12)-(14) we obtain 

Let us show that the infinite divisibility2' of the distribu- 
tion density of the logarithm of the dissipation breakdown 
coefficient follows from the scale-similarity condition.16 

From the nonnegative value of the dissipation field it 
follows thatI6 

We introduce the notation M(b) for the normalized break- 
down coefficient from the inertial range: M(b) = q,,, lb ,  
where b=l l r .  From the inequality (16) we obtain 0 
S M(b) < 1, whence follows the nonnegative value of 
Y(b) = -In M(b). We use cp(q,b) to denote the Laplace 
transform of the probability distribution density P(Y ,b) in 
the variable Y: 

From Eq. (8) we obtain 

cp(q,b) = bfiq-q, 

whence it follows directly that for any n = 1,2, . . . 
cpl/"(q,b)= cp(q,bl/"). (19) 

In accordance with Eq. (19) the positive root of arbitrary 
order of the transform cp(q,b) is the Laplace transform of a 
certain probability distribution, proving (see Sec. 7 in Chap. 
13 of Feller's book2') the infinite divisibility of the distribu- 
tion density P(Y,b). The logarithmic infinite divisibility of 
the dissipation breakdown coefficient was utilized in Refs. 
11, 17, and 22. It follows from the properties of infinitely 
divisible  distribution^'^ that the "slower" of the two solu- 
tions (12), i.e., the solution with a minus sign in front of the 
radical, must be chosen. The other solution, which was con- 
sidered in Ref. 13, does not ensure a negative value for the 
distribution density and should be discarded. Then, using 
(13) and (15), for the intermittency exponents we obtain 

Here and in the following the notation A is used instead of 
A . From the normalization condition po= 0 (Ref. 16) we 
obtain A G O .  

An explicit expression for the probability distribution 
density P(M,b) of the breakdown coefficient M(b) can be 
obtained17 from Eq. (20): 

where 

It was assumed in Ref. 11 that the logarithm of the 
breakdown coefficient of the dissipation field has a gamma 
distribution. The distribution density of M(b) in the log- 
gamma model has the form 

where r denotes the gamma function and 

In b 
O= In[P/(P+ I)]  ' 

For comparison, Fig. 2 presents the experimental distri- 
bution densities of M(b) for b =  2,3,  and 5 determined from 
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the data in Ref. 20 and model densities obtained from Eq. 
(21) for A = - 4 and from (22) for P= 4. It is seen from Fig. 
2 that the logarithmic gamma distribution makes it possible 
to achieve good agreement with experiment. The model con- 
sidered in the present work under the assumption that the 
exponents p, are universal can be reconciled with experi- 
ment only qualitatively: the model density (21), unlike the 
models in Refs. 6-9, does not contain atoms (singularities) 
and, unlike the models in Refs. 4, 5, and 10, has a restricted 
range of definition. 

3.3. Nonuniversal probability distribution of the dissipation 
breakdown coefficient 

It is not difficult to show that the main conclusions re- 
garding the scaling dependence of the partially averaged dis- 
sipation moments also hold after some modification of the 
scale-similarity conditions.16 It can be assumed that the dis- 
tribution of the breakdown coefficient q,,, depends not only 
on the ratio rll ,  but also on some other flow characteristics 
not associated with the scales r and 1,  for example, the ratio 
LIT. Under such an assumption the scaling dependence (8) 
remains valid, but the intermittency exponents p, are no 
longer universal functions of q. The proposed generalization 
of the scale-similarity condition admits a dependence of p, 
on the ratio between the scales 7 and L, i.e., on the Reynolds 
number. 

It can be shown on the basis of infinitely divisible 
distributions2' that even if the exponents p, are nonuniver- 
sal, only one of the two fundamental solutions of Eq. (6), 
viz., the solution which corresponds to the minus sign in Eq. 
(12), is of physical interest. The "distribution density" of 
the breakdown coefficient for the other fundamental solution 
is sign-alternating; therefore, this solution should be ruled 
out. The conditions (15) must hold for the limiting distribu- 
tion density of the breakdown coefficient M ( b )  not to con- 
tain singularities as x-+w and not to vanish in the interval 
(0,l). The coefficient A can be a function of the Reynolds 
number in the general case. Under the very simple assump- 
tion that X is constant, we can obtain the following expres- 
sion for the exponent p, of the dissipation moments:23 

 here C(q )=@(q ,x~) ,  g(q) = a(q)lb(q), and xo is some 
origin. 

The relations (1)-(5), like the concept of an "inertial 
range," are applicable from a rigorous standpoint only in the 
limit Re-+w. This is due to the fact that local isotropy and 
small-scale turbulence with statistical universality cannot oc- 
cur at finite values of Re. If the Reynolds number is too low, 
there is no visible scaling range in the turbulence spectrum. 
Moreover, it was found in the experiments in Refs. 24 and 25 
that the relations (1)-(5) can also be used at moderate values 
of the Reynolds number, provided Re is greater than a cer- 
tain critical value Re,,. In this case the turbulence in the 
inertial range is two-dimensional for Re = Re,, and nearly 
three-dimensional (in agreement with the unimproved theory 
in Refs. 2 and 3) for Re-+w. In Ref. 23 the dependence of 
the fractal dimension of the turbulence on the Reynolds num- 
ber was studied on the basis of the model in Refs. 13 and 15. 
The generalized dimension D, can be expressed in terms of 
the exponents ,uq (Ref. 26): 

where D is the dimension of the space, and D = 3 in the case 
under consideration. 

If the turbulence in the scale-similarity range is two- 
dimensional, i.e., if D,= 2 for q 2 0, then p,= q - 1. Setting 
xo= ln Re,,, we obtain the relationship between C(q) and 
g(q) from Eq. (23): 

Substituting the expression (25) into Eq. (23), we obtain 

From Eq. (5) we find the expression for the exponents l, : 

3.4. "Tails" of the dissipation probability distribution 

The dissipation moment function @(q,x) corresponding 
to the intermittency exponents assigned by Eq. (23) has the 
form 
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The expression (28) shows27 that the distribution density 
P(5,x) for the normalized dissipation ~ = E / ( E )  can be rep- 
resented as a "convolution" of two functions: 

Here F (5) is defined by the equation 

and F2(5) has the form 

where 

The function F2(5) is defined over a restricted region: it 
vanishes when J>exp[3(x-xo)14]. Therefore, it is clear that 
the tails of the dissipation distribution are determined by 
F,(5), which is related to C(q) by Eq. (30) and does not 
depend on the Reynolds number. 

It was found in Ref. 28 that P(5) rn exp(-tc), where 
s= 112, for 5 9  1. Therefore, we assume that when 
Re = Re,,, the dissipation distribution density can be repre- 
sented in the form 

From the normalization conditions for P([,xo) we can ob- 
tain 

Then C(q) has the form 

FIG. 3. Probability distribution densities of 
the breakdown coefficient M ( b )  of the dis- 
sipation field for b = 2, 3, and 5 (a, b, and c, 
respectively). The experimental results are 
based on data from Ref. 20, and the solid 
and dashed curve were obtained as a result 
of the reversion of Eq. (26) for values of 
x - x o  equal to 2 and 3, X = - 4 ,  and 
a=20.  The dot-dashed curve is the limiting 
distribution (21) for x-xo= m. 

whereupon for In g(q) we obtain 

It was noted in Ref. 17 that the model probability distribution 
density (21) of the breakdown coefficient of the turbulent 
energy dissipation field, which was found under the assump- 
tion that the exponents p, are universal (not dependent on 
the Reynolds number) leads to results differing from experi- 
ment. The theoretical density tends to zero as M - t  1 more 
rapidly than does the experimental density (see Fig. 2); 
therefore, the values of the exponents of the velocity struc- 
ture function of higher orders are overestimated. It is readily 
seen that better agreement with experiment can be attained 
by assuming that pq is not universal. When qP 1, the func- 
tion In C(q) has an asymptote:29 In C(q) rn q In q[l +o(l)]. 
From Eq. (25) we find that In g(q) rn In q[l +o(l)] at large 
q. Then the main term in the asymptote (for n+w) of the 
exponents 5, which depend on the Reynolds number will be 
proportional to &/ln n, unlike the asymptote rn & for a dis- 
tribution which is self-similar with respect to Re. 

4. COMPARISON WITH EXPERIMENT 

From an analysis of the results in Refs. 24 and 25 it can 
be postulated that the ratio ReIRe,, varies in the range from 
5-15 in the published experiments. Then the value of 
x - xo varies over the range from 1.6-2.7. Figure 3 presents 
probability distribution densities of the breakdown coeffi- 
cient of the energy dissipation rate field obtained as a result 
of the numerical reversion of Eq. (26) for various values of 
x-xo. The function g(q) was given by Eq. (36), and the 
value a = 2 0  was chosen for a. It is seen from Fig. 3 that 
good agreement between these distributions and experiment 
can be attained under the assumption that the breakdown 
coefficient is not universal. Experimental plots of the expo- 
nents of the structure function versus the order based on the 
data in Refs. 30-36 are presented in Fig. 4. Despite the mea- 
surement errors, which are especially high in the determina- 
tion of the moments of higher order, the disparity between 
the experimental results seems significant. Figure 5 presents 
theoretical plots of 5, calculated from Eq. (27) for several 
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FIG. 4. Experimental plots of the exponent 5, of the structure function 
versus the order n. The circles, boxes, crosses, triangles, diamonds, filled 
triangles, and plus signs label data from Refs. 30-36, respectively. 

values of x - xo . The agreement between the experimental 
data (Fig. 4) and the model (Fig. 5) can be considered fully 
satisfactory. Nevertheless, it should be stressed that the re- 
sults of the comparison of the experimental and model values 
of the exponents 5,  should be regarded as only qualitative. 
This is due to the fact that a quantitative comparison of 
theory and experiment requires knowledge of the value of 
ReIRe,,. As the experiments in Refs. 24 and 25 show, the 
values of the critical Reynolds number Re,, for different 
flows are different: in a pipe Re,,= 2 160, downstream from a 
grid Rec,=263, and in the wake created by a cylinder 
Re,,- 165. Therefore, a comparison of different experiments 
requires some caution: even if the Reynolds numbers in dif- 
ferent flows coincide, the values of ReIRe,, can be different. 
When experimental data and the model are compared quan- 
titatively, the possible dependence of X on the Reynolds 
number must also be taken into account. A lack of experi- 
mental data precludes definite conclusions regarding 

FIG. 5. Theoretical plots of the exponent 6, of the structure function versus 
the order n .  Solid curves-calculation from Eq. (27) for h = - 4, ry= 20, and 
In( Re/Re,,)=O, 0.25, 0.5, 1, 2, 3. Dashed curve-limiting dependence for 
Re=m. 

X(Re); therefore, a more complete analysis of the proposed 
model remains a matter for the future. The parameter A 
(which may be a function of Re) is undefined in the proposed 
model, while the functions C(q) and g(q),  as well as their 
interrelationship (25), are subject, at least in principle, to 
experimental verification. We note that the choice of the pair 
of values of A and a considered in this work ( -  4 and 20, 
respectively) should not be considered definitive. It is not 
difficult to show that results at a similar level of agreement 
with experiment can be obtained for other combinations of 
these parameters. Here it is important to stress the fundamen- 
tal possibility of better agreement with experiment for a 
model with intermittency exponents which depend on Re due 
to the different asymptote for the exponents of the velocity 
structure function. 

5. CONCLUSIONS 

The exponents of the velocity structure function in tur- 
bulent flows have been considered within a semiempirical 
model for the probability distribution density of the energy 
dissipation rate. The assumption that these exponents are not 
self-similar with respect to the Reynolds number in the scale- 
similarity range makes it possible to account for the disparity 
between the results of several experimental studies and to 
achieve good agreement between the theoretical probability 
distribution densities of the dissipation breakdown coeffi- 
cient and experiment. Special attention has been focused in 
this work on the "tails" of the probability distribution of the 
turbulent energy dissipation and on the analysis of the de- 
pendence of the dimensionality of the turbulence on the Rey- 
nolds number. 

We note that the results of the present work attest to the 
fact that modern experimental investigations of the intermit- 
tency of small-scale turbulence deal with the case of moder- 
ate values of Re, rather than an asymptotic regime of devel- 
oped turbulence with Re-+m: the value of the decisive 
parameter In(Re/Re,,), which appears in Eqs. (26) and (27), 
probably does not exceed 3. 

The conclusions of this work should be regarded as pre- 
liminary, and further development of the proposed semi- 
empirical model should be based on systematic experimen- 
tation. In particular, experimental determination of the 
distribution of the dissipation breakdown coefficient over a 
broad range of values of the Reynolds number of the flow 
would be of great interest. 

We thank E. A. Novikov for his interest in this work and 
for useful comments. 
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