
Multiple interaction of solitary waves in ~4~ theory and Arnold diffusion 
T. I .  Belova 

Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia 
(Submitted 22 June 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 109, 1090-1099 (March 1996) 

Resonant structures formed when a kink is scattered by an antikink (KK) in the range of initial 
kink velocities 0.18<V<0.26 were previously detected in the classical scalar field 
theory in 1 + 1 dimensions. In addition, it was shown that KK scattering has a "quasifractal" 
character in the space of initial kink velocities. A bound state for kink-antikink-kink 
(KKK) scattering was also found in a numerical experiment. In the present work the range of 
initial kink velocities 0.005< V<0.9 is investigated numerically for antisymmetric KKK 
systems. It is found that bound states of a KKK system exist for initial kink velocities Vc0.72, 
and resonant structures like those obtained in KK scattering are detected in the 
0.72<V<0.764 range. This points out the possibility of the existence of a special solution in 

theory at the critical point Vc,-0.26 for the scattering of a kink by an antikink or 
at the point Vc,=0.764 for KKK scattering. The emission accompanying the interaction of a 
KKK system is also recorded. Arnold diffusion, which randomizes the process of bound-state 
formation, occurs in the case of asymmetric systems or for four or more colliding kinks (or 
antikinks). Three- and four-soliton interactions are considered within A1q5I4 theory in the 
(1 + 1)-dimensional case, and the existence of a critical velocity and the formation of a 
three-soliton (SSS) bound state is noted. O 1996 American Institute of Physics. [S1063- 
776 1 (96)03 103-XI 

1. INTRODUCTION 

The problem of the interaction of the solitary waves 
(kinks) of the scalar A(4'- 1 )' field theory arose for the 
first time in the cosmological problem of the creation of 
domain walls.' The interaction of domain walls in solid-state 
physics and the interaction of vacancies in trans- 
polyacetylene chains2 can also be cited as additional, physi- 
cally interesting consequences of kink-antikink (KK) inter- 
actions. Some numerical and theoretical results of the 
interaction of a kink with an antikink were considered in 
Refs. 3 and 4 within the classical ( 1 + 1 )-dimensional A qh4 
theory. Consideration of the internal excitation of nonlinear 
solitary waves resulted in a resonance picture of KK 
intera~tion.~,~ 

As further investigations dem~nstrated?.~ whether the 
process ends with the formation of a bound state or the kink 
and antikink fly apart after the interaction depends "quasi- 
fractally" on the initial velocity of the colliding kinks. Fur- 
ther details of the already classic problem of the interaction 
of solitary waves in nonlinear equations which are not inte- 
grable by the inverse scattering problem method can be 
found in Ref. 9. 

There is special interest in the interactions of a large 
number of solitary waves [kinks in the scalar Aqb4 theory, 
solitons in XI 41" theory (n= 4, 6), etc.], since they offer one 
possible way to obtain special solutions, if they exist. 

2. SCALAR A ~ D ~  THEORY 

The present work is a continuation of the systematic in- 

waves (kinks) in the nonintegrable scalar field theory. 
The model considered here is described by a Lagrangian of 
the form 

As we know (see, for example, Ref. 9), among the solu- 
tions +(x,t) of the Euler equation for the Lagrangian (I) 
(A= 11, 

4 -  hx- 4+ d3=0,  (2) 

there are two vacuum solutions cP2 = + 1 and solutions in the 
form of a solitary wave, i.e, a kink (K) or an antikink (K): 

both kinks being topologically stable. The multiple interac- 
tion of kinks (the system must always represent an altemat- 
ing sequence of kinks and antikinks) is prescribed by the 
following initial conditions: 

X 
+(x,O) = tanh[(x - x0)P] - tanh- + tanh[(x+ xo)P], 

&) 

where V is the velocity of the kink at x j w  (in units of the 
velocity of light) and is a parameter in the calculations 
(P=l/./-) for the interaction in a KKK system 
(Fig. la); for a KKKK system we have the initial condition 

vestigations of the multiple resonant interaction of solitary + tanh[(x+xo)So] - tanh[(x+x1)PI] + 1. ( 5 )  
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FIG. 1. Initial conditions for K K K  (a) and 
K K K K  (b) systems. The right-hand part of 
each system is shown. The left-hand pan is 
the antisymmetric (a) or symmetric (b) con- 
tinuation on the x<O semiaxis. Curve 1 in 
panel b corresponds to the initial condition 
(5), and curve 2 corresponds to an initial 
condition in the form of the bound state of 
the K K  system. 

Here P o = l l J m ,  P 1 = l / \ I ~ ,  Vo and V1, 
i.e., the initial velocities, and xo and x , ,  i.e., the initial po- 
sitions of the kinks and antikinks, are parameters in the cal- 
culations (Fig. lb, curve l). 

Problems (2), (4) and (2), (5) conserve the energy inte- 
gral 

which provides a good check of numerical accuracy. 
The preceding research and investigations of the bound 

state in the K K K  system showed4 that such a state exists in 
the range of initial kink velocities V = 0.752 0.03 (in units of 
the velocity of light). In the present work the range of initial 
velocities 0.05<V<0.9 was numerically investigated with a 
spacing AV= for the K K K  system, and it was found 
that a K K K  bound state exists for V<0.72. In the range 

FIG. 2. Ebergy flux through the plane x f =  15 during the time At f=  150 for 
a K K K  system as a function of the initial kink velocity V. Between points 
A and B there is a region of resonant structures. The dashed line is a plot of 
the total energy of the KKK system on the x>O semiaxis calculated froin 
Eq. (6) for r = 0. 

0.72<V<0.764 there are resonant structures like those de- 
tected in the K K  interaction in Refs. 5 and 6. 

Equation (2) was investigated numerically by the 
method of  characteristic^'^ with the initial conditions (4); a 
similar procedure was previously employed in Ref. 11. The 
results obtained for the dependence of the energy flux F on 
the initial velocity V are presented in Fig. 2. The energy flux 
through the plane xf= 15 during the time interval Atf = 150 
was calculated in the following manner: 

The kink rest mass is given by 

It is seen in Fig. 2 that the energy flux during the time 
Atf= 150 is less than the kink rest mass plus the kink kinetic 
energy for initial kink velocities V<0.72 (a kink passing 
through the plane xf at infinity was detected at this initial 
velocity for the first time in our problem). Thus we have a 
bound K K K  state with an easily detectable flux. In the range 
of initial kink velocities 0.72<V<0.764 there is no longer a 
monotonic dependence of the energy flux on V (part of this 
range is shown in Fig. 3). Here we have resonant structures 
like those detected in Ref. 5 and investigated in Ref. 6 (see 

FIG. 3. Energy flux similar 10 that shown in Fig. 2 for the region near the 
critical velocity, which is a limit point for resonances. 
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FIG. 4. Energy flux through the plane x f =  10 plane during the time 
hrf=200 for a K K  system as a function of the initial kink velocity V. The FIG. 6. Energy density of a K ( K + K +  1) system as a function of time for 

- 0.7600. The resonant interaction in such a system is similar to region near the resonance limit point at V,,=0.2598 is shown (since the VK= - V-- 
resonant "windows" are extremely narrow, they have been partially omit- the interaction in the KKK system (see Fig. 5b). 
ted). 

Fig. 4, which presents the region of initial kink velocities in 
the KK interaction near the critical velocity). "Quasifractal" 
structures are also represented in the KKK interaction, as in 
the KK interaction7 (a comparison of Figs. 3 and 4 leads to 
such a conclusion). Moreover, the interaction specified by 
the initial conditions (4) for a KKK system with a distance 
between the kinks and antikinks tending to infinity is similar 
to scattering in the K(K+K-I- 1) system, which is repre- 
sented at V= 0.7600 in Fig. 5 for the former case and in Fig. 
6 for the latter case. This phenomenon can be called "qua- 
sisupersymmetry," if a "fermion charge" equal to 

is ascribed to a kink. Then the KKK interaction will be 
treated as a "three-fermion" interaction, and the 
K(K+K+ 1) interaction will be treated as a "two-fermion" 
interaction in the field of the third kink, but with a distance 
between kinks tending to infinity. The escape of a kink to 
infinity can be determined in Fig. 7a from the nonmonotonic 
behavior of the energy flux in the KKK interaction: if a kink 
escapes, a jump (in the plane x f )  equal to (or greater than) 
the kink rest mass is observed in the energy flux. Here (see 
Figs. 5 and 7) the behavior of a resonant KKK system with a 
number of energy density oscillations at the center n,=7 
and an initial kink velocity V=0.7600 in the case of reso- 
nance (Fig. 5) and V=0.7590 for the formation of a bound 
state (Fig. 7) is presented for comparison; the difference in 
the energy flux through x f =  15 is clearly seen. 

A bound state was previously observed4 at an initial kink 
velocity Vz0.75 +- 0.03. It can be assumed from our calcu- 
lations that one of the long-lived resonant structures, such as, 
for example, the one presented in Fig. 8 for the initial veloc- 
ity V=0.7646, was observed there. It is seen that a highly 
excited kink leaves the interaction region. 

A typical example of a KKKK interaction is presented in 
Fig. 9. A KK bound state (Fig. lb, curve 2) is taken as the 
initial state, which then collides with a similar state. Here the 
initial velocity of the system is V,,=0.9. A bound state is 
not observed in the KKKK system in our numerical calcula- 
tions, since it becomes stochastically unstable due to the ap- 
pearance of an additional degree of freedom not present in a 
KK or KKK system (the same explanation also applies to a 
larger number of interacting kinks and antikinks). 

In this case the lifetime of a bound state with a large 
number of degrees of freedom can be determined by utilizing 
the Arnold diffusion f ~ r m u l a ' ~  

Here a is a function of the number of degrees of freedom 
N (a=2/(125+3N+ 14), where 5 2 N(N- 1)/2), oo is the 
unperturbed oscillation frequency (here it is assumed that it 
is equal to the oscillation frequency in the bound KK, 
KKK, or, if they exist, multi-KK systems), and E is a pa- 
rameter which appears in the Hamiltonian when there is a 
perturbation (the ratio of the intemal perturbation of the kink 
to the total energy of the interacting kinks can be used here). 
The bound state is stochastically stable, if the number of 
degrees of freedom is at most two and the resonances do not 
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FIG. 7. a) Energy flux as a function of 
time for a KKK system when 
V=0.7590. The bound KKK state 
formed after the first collision is shown. 
b) Energy density of a KKK system as a 
function of time for V =  0.7590 at x = 0 
(the center of mass of the system). The 
high peaks correspond to collisions of 
kinks with an antikink. 

t 

overlap.'2 This condition holds for a K K  system (with ne- 
glect of the internal perturbations) far from the critical ve- 
locity V,,-0.259 (see Fig. 4) and for an antisymmetric 
K K K  system far from V,,-0.764 (see Fig. 3). However, if a 
K K K K  system is considered, there are always at least three 
degrees of freedom; therefore, even having "frozen" the in- 
ternal oscillations of the kinks, we obtain stochastic instabil- 
ity for the system. (It should be noted here that, for example, 
crystal-like structures will be stochastically stable, since they 
can be described by a dynamical system with a small number 
of parameters, which can be the lattice constants of the crys- 
tal in certain cases.) 

3. COMPLEX A+' THEORY 

Solitary waves in scalar charge fields have been dis- 
cussed repeatedly in the literature. For example, in Ref. 13 
they were called Q balls, in Ref. 14 they were called solitons, 
in Ref. 15 they were called Q lumps, and in Ref. 16 they 
were called nontopological solitons. Since charge is con- 
served in such theories, the existence of stable solitons can 
be expected in both 3 + 1 (Ref. 17) and 1 + 1 dimensions 
(Ref. 18). The interaction of solitons of the Q ball type with 
the formation of a bound state was considered in Ref. 19. 

Here we consider the nonlinear equations for AI+In  
theory (n=4, 6), for which a stochastically stable bound 
state can be obtained, if the Arnold diffusion is taken into 

FIG. 8. Energy flux through the plane x,= 15 plane as a hnction of time for 
a long-lived resonant structure. The field of the escaping kink is strongly 
perturbed, as is seen from the flux oscillations. l%e initial kink velocity was 
V=0.7646, 

account. Let us consider the nonlinear Klein-Gordon equa- 
tion for A 141 theory in Ref. 13 (here x = ,u2) in 1 + l di- 
mensions: 

The soliton solution of this equation is well known:13 

where o is the frequency of the complex field, m and ,u are 
parameters of the problem, and the stable solutions are con- 
fined to the range ml 4 < o < m (Refs. 17 and 18). The soli- 
ton charge for the solution (1 1) equals 

FIG. 9. Temporal evolution of a KKKK system. Two bound KK states were 
selected as the initial conditions. The initial velocity of the KK system was 
equal to 0.9. The small oscillations of the field near the vacuum (+= 1) are 
a result of the emission accompanying the collision of KK systems. The 
figure is symmetric about x=O. 
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FIG. 10. a) Formation of a three-soliton bound state for an initial soliton 
velocity Vs,=0.70 and o,= w2=w,=0.972; b) absence of a bound SSS 
state for Vsl = 0.78. The solitons leave the interaction region (calculations 
for A14I4 theory; here 1, m= 1, xoI= -xo3= 18 is the initial posi- 
tion of a soliton). The arrow shows the beginning of secondary collapse (a) 
or escape of a soliton (b). The figures are symmetric about x=O. 

If we change the sign of the frequency ( o j  - w),  the sign 
of the soliton charge is reversed, i.e., we have an antisoliton 
with charge 

QA = - Qs . 
Thus, both multisoliton interactions and soliton-antisoliton 
interactions can be considered. As was shown in Ref. 19, the 
bound state of two solitons (SS) in A1 + I 4  theory exists in a 

symmetric system with w ,  = w2= 0.95 when the initial ve- 
locities are V I  = - V2=0.25. In the present work we show 
that a bound state (or, more likely, a resonant structure) ex- 
ists in a system of three solitons (SSS)  when 
w,=w2=w3=O.972,  Vsl=-VS3=0.70, VSZ=O, and 
m = p = 1 (see Fig. 10a). For comparison, Fig. l o b  shows the 
temporal evolution of a similar system with initial velocities 
Vsl = - VS3 = 0.78 and Vsz=O, and it is seen that the soli- 
tons leave the interaction region after the first collision. All 
the solitons were chosen from the stability region.'* We have 
as yet detected no four-soliton bound systems, even for sym- 
metric systems up to V=0.9, where V is the velocity of the 
KK system at t =  o (ca~culations with large values of v re- 
quire a great deal of computer time). However, it stands to 
reason that in this case, too, the addition of an extra degree of 
freedom would render the system stochastically unstable. 
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