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A theory is developed that describes the spontaneous decay of a hydrogenlike atom on time 
scales that are small or large compared to the reciprocal photon emission frequency. On short time 
scales the spontaneous decay rate is found to tend in an oscillatory manner to the exponential 
law of spontaneous decay. The Lamb shift of the energy levels also experiences similar 
temporal oscillations at the initial stage. Finally, corrections to the exponential decay at late times 
are shown to depend on the choice of the atom-electromagnetic-field interaction Hamiltonian. 
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1. INTRODUCTION 

Processes of spontaneous decay of time-dependent quan- 
tum systems and the formation of a photon as a wave packet 
are of great interest to quantum optics.'-'3 The latest inves- 
tigations in these fields have produced a deeper understand- 
ing of the main principles of quantum mechanics of open 
systems. Another aspect of these studies has been stimulated 
by the ambiguity in the description of the Lamb 
shift of the energy levels of an atom and other system 
parameters by different atom-electromagnetic-field interac- 
tion ~amiltonians:'~.'~ 

Here e(r,t) and A(r,t) are the strength and vector potential 
of the electromagnetic field, and e, p,r ,  and p are, respec- 
tively, the charge, reduced mass, radius vector, and momen- 
tum of the electron with respect to the center of mass of the 
hydrogenlike atom. 

The first report on nonexponential spontaneous decay of 
quasistationary states can be found in the work of Khalfin,12 
who demonstrated, that the corrections to the exponential 
law of spontaneous decay behave like llt, with t the time, 
basing his reasoning on the fact that the energy distribution 
density is semifinite. Khalfin's papers did not remain unno- 
ticed, and simultaneously with the development of model 
atom-field interaction Hamiltonians more exact expressions 
for the corrections to the exponential spontaneous decay law 
appeared in the literature.435 The papers of Wilkiewicz and 
~ b e r l ~ '  and Atkins and ~ o o l l o ~ ~  should also be mentioned 
in this connection, since the researchers point to the need to 
allow for the time lag within the atom when the corrections 
to the exponential spontaneous decay law are taken into ac- 
count. More rigorous calculations show that in time intervals 
large compared to the reciprocal photon emission frequency - 
o ' the correction to the exponential spontaneous decay law 
behaves like llt and constitutes a small addition to the 
e~ponential.~-* Also of interest is the effect of the antireso- 
nant terms in the interaction Harniltonian on the Lamb shift 

of the energy levels in the process of spontaneous decay. An 
interesting mathematical study of this problem is given in 
Refs. 7 and 8. 

In contrast to the papers mentioned above, in this paper 
great attention is paid to the initial stage in the interaction of 
an excited atom with the vacuum fluctuations of an electro- 
magnetic field and to the transition to the quasiexponential 
decay over times long compared to o-'. Note that during 
the collapse of an excited atom into the ground state the 
vacuum fluctuations of the electromagnetic field are of the 
order of the wavelength of the emitted photon. Naturally, the 
length of the photon's wave packet considerably exceeds the 
quantum size of the atom proper (we are speaking of the 
radius of the first Bohr orbit). Hence because of the finiteness 
of the group velocity the wave packet has not enough time to 
leave the atom instantaneously, and in small time intervals 
there is an exchange of energy between an excited nonsta- 
tionary state of the atom and a state of the electromagnetic 
field. Such an exchange manifests itself over times of order 
o-'. 

A new method is also suggested for allowing for the 
time lag within the atom. The idea is based on integrating the 
right-hand sides of the kinetic equations over the frequencies 
of the electromagnetic field and the coordinates of the atom. 
Allowance for the antiresonance terms in the equation for 
inversion and for the time lag shows that at early times the 
emerging wave packet interacts with the excited and ground 
states [see Eq. (15a)l. For times t of order o-' the probabil- 
ity of stimulated action on the ground and excited states of 
the atom is of the same order of magnitude as the reciprocal 
spontaneous decay time of the atom, and only at late times 
does the probability tend to the small corrections to the ex- 
ponential law of spontaneous decay, which are well-known 
from the literature. 

Note that the paper also studies the dependence of spon- 
taneous decay over times that are small or large 
compared to w-' on the choice of the interaction 
~amiltonian?." Section 2 focuses on studying spontaneous 
decay by employing the common interaction Hamiltonian 
e(A(r,t) - p)Icp. There it is shown that over long times 
2%- o- ' the expressions for the Lamb shift and corrections to 
the exponential spontaneous decay law coincide with the or- 
dinary expressions for these quantities (see Ref. 8). Also the 
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oscillatory nature of the decay of the system in time intervals 
tG o- ' is extensively discussed. 

Section 3 studies the same problem with a new gauge 
imposed on the vector and scalar potentials of the electro- 
magnetic field. There it is shown that the corrections to the 
exponential spontaneous decay law obtained with a multiple 
interaction ~amiltonia.~?" are much smaller than those ob- 
tained by the common interaction Hamiltonian for a time 
interval t> o-'. The oscillatory behavior of the inversion of 
the atom and the rate of spontaneous decay at early times is 
also obtained in that section. 

Finally, Sec. 4 discusses the various assumptions made 
in this paper that lead to discrepancies between the results 
obtained with the two forms of the interaction Hamiltonian. 

2. SPONTANEOUS DECAY WITH ALLOWANCE FOR THE 
INTERACTION HAMlLTONlAN e(A(r,t)p)lcp 

The process of studying the interaction of a hydrogenlike 
atom and a variable electromagnetic field is simplified by 
shifting the origin to the center of mass of the electron and 
nucleus. Ignoring the motion of the nucleus with respect to 
the center of mass, we can describe the motion of the elec- 
tron in the central field of the nucleus and the variable elec- 
tromagnetic field by the Hamiltonian 

Here r and p= ihV are the electron position and momentum 
vectors with respect to the center of mass, and z is the charge 
of the nucleus. The potentials Ag(r,t) and @g(r,t) can be 
transformed into a new pair of potentials by a gauge trans- 
formation (see, e.g., Ref. 7) 

where x(r,t) is a transformation function dependent on the 
coordinate r and time t. If we use (2) to select the function 
x(r,r) is such a way that the scalar potential satisfies 
@(r,t)=O, the Hamiltonian of the system consisting of the 
atom and the radiation field can be written 

Here E and B are the vectors of the electric and magnetic 
components of the transverse electromagnetic field. 

The aim of this section is to allow for the retardation of 
the emitted electromagnetic field in the process of collapse of 
the excited electron to the ground state. Hence in the inter- 
action Hamiltonian (3c) in the nonrelativistic approximation 
we ignore the term proportional to the square of the vector 
potential, which is common practice. If we assume that when 
the interaction between the hydrogenlike atom and the 
electromagnetic-field vacuum is switched on the electron is 

in the quantum state In=2,1= l,m=O) (here n, 1, and m are, 
respectively, the principal, orbital, and magnetic quantum 
numbers), the spontaneous transition between the states 
12,1,0) and ( 1,0,0) can be described by the Hamiltonian 
equation 

+ ( ~ 1 2 ( - k ) a k ) ~ - + ( ( P 2 l ( k ) ~ k +  (PZl(-k)ak+)R+). 

(4) 

Here 

R +  , R - , R 3 ,  a: , and a k  are the operators of the atomic 
subsystem and the electromagnetic field satisfying the com- 
mutation relations 

V is the quantization volume, ex is the photon polarization 
vector ( A  = 1,2), k= (k,A), #loo= exp(-w)/& and 
#210= i o  cos(i3)14fi are the wave functions of the ground 
(I 1s)) and the excited (12p)) states of the hydrogenlike 
atom, p= r la ,  a = filpe2z is the first Bohr radius, and ho ,  
is the energy separation of the ground 11s) and excited 
12p) states. In deriving the Hamiltonian (4) from (3) we 
allowed for the antiresonant terms in the interaction with the 
electromagnetic field. Note that to ensure the convergence of 
integrals when calculating the Lamb shift and the corrections 
to the spontaneous decay we did not employ the common 
dipole approximation cp=ioo(eA d)hlc in (4) and (5) (d is 
the dipole moment of the transition). 

The Heisenberg equation for the population difference 
assumes the form 

The solution of the Heisenberg equation for the 
electromagnetic-field operators a:(t) and ak(t) is 

ak(t)=[a:(t)l+- 
(7) 

After substituting (7) into (6) and averaging over the initial 
state #(t = 0)  = 1f)IA) of the system (here If) and (A)  are the 
states of the electromagnetic-field vacuum and the atom at 
t=O) we exclude the free solution of Eq. (7), ak(0)l f)=O 
and (f 1 a: (0) = 0. Thus, Eq. (6) assumes the form 
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An equation for(~+(t) l  can be obtained in the same way: 

- T)R3(t))exp(i@t~)1-(~12(k)5012(-k) 

x[exp(iokT)(R-(t- T)R3(t)) 

- exp(-iokT)(R3(t)~-(t- T))]). (8b) 

The right-hand sides of Eqs. (8a) and (8b) contain expres- 
sions of the form 

which are integrated over neither the spatial variables of the 
atom nor k. Since the emerging wave packet has the size of 
approximately the radiation wavelength and is larger than the 
first Bohr orbits by a factor of several thousands, exact inte- 
gration of Eq. (9) would make it possible to study the behav- 
ior of the spontaneous decay rate in the initial stage of de- 
velopment, when, due to its finite size, the photon cannot 
leave, the atom immediately because of the finiteness of the 
group velocity. The sum over the polarizations X and the 
integral over all the directions of k can easily be calculated if 
in the integration over the angles we direct the polar axis 
along the retardation vector rl - r2 in (9): 

2 ,. 

where 

(here V i =  gad),). Thus, the integral with respect to the ab- 
solute value of the wave vector k and the electron coordinate 
assumes the form 

l d l d  
~(1-x2)-- - -  u au u au 

2 where u = p; + p2 - 2xPIP2. 
Simultaneous integration over the frequencies o and the 

electron coordinate in (1 1) is reduced to the following de- 
pendence on the time lag 7: 

2 2 e 2 f i [ d  3 d 2  3 d ) {  
J ( T ) = ~  --- 

3 a p  ab ~ z + z %  ia 

Here Ei(x) is the exponential integral. Simple transforma- 
tions show that 

is reduced to the integral (12): K(T) = - J(7). 
For exact integration over the time lag T we must know 

the time-dependence of the correlators (f(t- T) f(t)), where 
f(t) =Rf (t), R-(t), or R3 on the right-hand sides of Eqs. 
(8a) and (8b). Since J(T), K(T), and similar Hermitian con- 
jugate functions rapidly decrease as functions of 7 in time 
intervals that are large compared to alc, it is convenient to 
separate the rapidly oscillating part (with respect to T) in the 
operators R'(t - 7): 

Here the functions K2(t - T) are assumed to vary smoothly 
compared to expCi%(t-T)] in the sense that 
IdFrt:(t- ~ ) l d ( t -  ~)191E'(t- 7)) oO. This can easily be 
verified by observing that the main contribution to the inte- 
grals with respect to T on the right-hand sides of Eqs. (8a) 
and (8b) is provided only by the power expansion of 
p(r- T) in 7. As Eq. (12) implies, T is of order alc, 
i.e., the expansion corresponds to the series expansion in the 
small parameter woa/c. In the above approximation the cor- 
relators on the right-hand sides of Eqs. (8a) and (8b) can be 
approximated by the following expressions both for early 
and late times (compared to oi I): 

The other correlators in (8a) and (8b) are the Hennitian con- 
jugates of (14). Thus, with allowance for the correlators 
(12)-(14) Eqs. (8a) and (8b) assume the form 
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-(R3(t))I9 (15a) Equation (15a) implies that the emerging wave packet 

d(R+O)) 
(photon) in the time interval t- l/oo has a strong effect not 

= i ( w o + A o + i ~ , ) ( ~ + ( t ) ) + ( A o - i ~ , )  only on the excited state of the atom, (R3(t)) +0.5, but also 
dt on the ground state -(R3(t))+0.5. It can easily be shown 

X(R'-(t)). (15b) that the coefficient of the stimulating action of the emerging 
photon field, B(t), is of the same order of magnitude as the 

Here spontaneous transition coefficient All(t) only for 

27z2a3 A 

ale-tSlloo.  Since the atom is several thousand times 
All(')' - x E ( u ) L ( u . t )  . smaller than the radiation wavelength, a 4 ho = 2 ncl oo , the I u = ,  expressions for All(t), B(t), A. and A, in (16) and (17) 

simplify considerably when t*alc. Indeed, expanding the 
2 6 ~ 2 a 3 ~  

~ ( t ) =  - (16) function 1/(u2+ 8) in a power series in the small parameter 
3 'a 8, 

and allowing for the asymptotic behavior of the exponential 
(17) integral at large values of the argument (tS2a13c; see Refs. 

14 and 15), 
1 

L(t,u)= ={S- exp(- vut)[u sin(oot) exp( vut) 1 2! 
u + S  Ei( vut) = 

vut 
+ 8 cos(oot)l}, (lW we arrive at the following expressions for the above param- 

eters to lowest order in the smallness parameter ( vut) -I: 

1 
X Ei(vut) - exp( vut)Ei( - vut)] + S All=-, B(t)= 

70 

X exp( - vut) cos(oot) I 

1 2 + exd vut)Ei( - vut)] sin(oot) + S; TO= 311v21 i~ /218e2~~.  

Here we used only the first term in each expansion (18) and 

(16b) (19). 
In the asymptotic limit in expressions (16) and (20) the 

1 
coefficients A, &d B(t) in the time interval a l e 4  t- oo ac- 

,y(u,t) = ={S cos(oot)[exp(- vut)Ei( vut) quire a simpler form. Note that at late times t> wg the 
u +S coefficient of the stimulating action of the emitted field on 

+ exp( vu t)Ei( - vut)] + u sin(oot) the ground and excited states of the atom, B(t), decays in an 
oscillatory manner. In this situation we can use the asymp- 

x [exp( - vut)Ei(vut) - exp(vut)Ei( - vut)] totic expansion of the sine integral Si(wot) (see Ref. 14): 

v =  3c/2a, S= 3 woa/2c, Si(x) and Ci(x) are the sine and If we allow for the expansion (22), we arrive at the following 
cosine integrals,14 and expression for the coefficient B(t): 
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1 sin(oot) 
B(t)- - - for mot+ 1, 

TTo 

which coincides with the correction to the exponential spon- 
taneous decay law calculated in Refs. 4-8. However, the 
equations and expressions obtained in this section for the 
spontaneous decay rate allow for the corrections to the ex- 
ponential spontaneous decay law not only in late times 
( t S  w:) but also at early and intermediate times ( t s  oi '; 
see Eqs. (16)-(20)). 

The parameters A. and A,(t) in Eq. (15b) take into 
account the correction to the oscillation frequency of the 
quantum dipole (i.e., the Lamb shift of the energy levels) and 
the damping of the transverse polarization of this dipole at a 
given time t in the evolution of the system. As Eq. (21) 
implies, the expression for these parameters simplifies con- 
siderably for tSa/c.  From Eqs. (17) and (21) it also follows 
that for t - o i l  the quantities A. and A,(?) grow in an 
oscillatory manner, reaching a certain limit when t S  o; ' . If 
we employ the asymptotic expansion of the cosine integral 
for large values of the argument, 

(the functions f(oot) and g(oot) are defined in (22a)), in the 
lowest order of the power expansion in the smallness param- 
eter lloot we arrive at the following expressions for Ao(t) 
and A,(t): 

The expression (25a) for Ao(t) makes it possible to 
compare the suggested method of studying spontaneous de- 
cay with the results obtained via the Laplace transformation 
m e t h ~ d . ~ - ~  Allowing for the accuracy of the calculations of 
the Lamb shift of energy levels done by Seke and ~ e r f o r t ~  by 
the Laplace transformation method, we can compare the 
above expression for A. with their results. This is a mean- 
ingful approach if only because Seke and ~ e r f o r t ~  demon- 
strated the need to allow for antiresonant terms in calculating 
the Lamb shift of energy levels. In our notation the expres- 
sion for A. given in Ref. 8 is 

As Eqs. (25a) and (26) imply, the constant part of the ex- 
pression for A. is contained in (26). In other words, our 
expression for the energy-level shift tends to the one ob- 
tained earlier for this parameter A:" in the limit oat% 1. 
Note that the energy-level shift (21) is a function of the spon- 
taneous decay process, which means it is impossible to in- 
d u c e  an average value for the shift that would encompass 
both short and long times compared to oi  ' . 

To conclude this section, here is the solution of Eq. (15a) 
with the initial data (R3(0))=0.5: 

(27) 

For the time interval a l c 4  r0 the solution (27) can be written 
as 

where 

Equation (27a) implies that the rate of variation of the popu- 
lation difference between the atomic levels tends in an oscil- 
latory manner to the exponential spontaneous decay law as 
oo t increases. 

3. SPONTANEOUS DECAY WITH A MULTIPOLE 
HAMILTONIAN 

If we use the operator 

then, according to the unitary transformation procedure sug- 
gested in Refs. 9 and 10, g= AHA-', and we can obtain a 
new form [compared to (3)] of the atom-electromagnetic- 
field interaction Harniltonian: 

H=iTo+&, 
where 

Here, following Ref. 10, we have employed the following 
notation: P(rl) = P, (.rl) + PlI(r1) is the atomic polarization, 

P, (r') and Pll(rl) are the transverse and longitudinal atomic 
polarizations, 
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5 is a small parameter, the distance to the point occupied by 
the electron when the interaction with the electromagnetic 
field is switched on, and c = l l r .  After substituting the ex- 
pressions for the polarization and M(r) into (29c) we arrive 
at the following expression for the first term in that formula: 

(294 

In classical terms Eq. (29d) describes the energy needed for 
moving an electron from the initial point 5 to a point at a 
distance r  from the nucleus in an external electromagnetic 
field. 

Since an unperturbed atom is assumed to be in the 1s) 
state, it convenient to let the parameter 5 go to zero. This, 
however, will be done only after integrating over the 
electromagnetic-field frequencies. The form of the suggested 
Hamiltonian is convenient because the interaction with the 
electromagnetic field can be interpreted as the interaction of 
the field and electric and magnetic m~ltipoles?.'~ In the in- 
teraction Hamiltonian (29b) the term 2 J d v ' e ( r 1 )  acts only 
on the electron states of the atom and renormalizes these 
states thanks to the presence of an electromagnetic field. 
Hence this term in the Hamiltonian (29a) can be ignored 
since it contributes very little to the energy states of the 
atoms in comparison to go. The term which is nonlinear in 
the electromagnetic-field operators, Q ~ / ~ , L L ,  can also be 
dropped from (29c) because in the nonrelativistic approxima- 
tion ( v l c 9  1) its contribution is small compared to the linear 
term. 

Bearing all this in mind, we consider the spontaneous 
decay as occurring only between the 12p) and 11s) states of 
the hydrogenlike atom. Then, as in Sec. 2, we arrive at the 
following Hamiltonian in the second-quantization represen- 
tation: 

-bk[ (@12(-k)+~12( -k) )~++(@2l(k)  

- P2l(k))R--l}, 

where 

The remaining notation is similar to that used in Sec. 2: 
b; , b k ,  R+,  R-, and R3 are the operators of the electro- 
magnetic field and the atom; they satisfy the same commu- 
tation relations (5a). 

Eliminating the electromagnetic-field boson operators 
from the Heisenberg equations for R3(t) and R+W as we 
did in Sec. 2, we arrive at the following equations for the 
averages of these operators: 

Let us now study the sum over k in expressions like 

Here the integral over the solid angle and the sum over pho- 
ton polarizations in the transition from summation with re- 
spect to k to integration can be reduced to an expression of 
type (10) if we assume that the electron moves from point 
5 to point r along the straight line connecting these points: 

where n12=(rl -r2)/ri2, rl2= Ir; -r;l, and ni=r,!lr!, with 
i = l ,  2. 

Substitution of (34) into (33) yields the following ex- 
pression for I(T): 
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Since exact integration of the right-hand side of (35) is 
impossible, we give only the expression for I(T) integrated 
over the variables of the atomic subsystem: 

In deriving Eqs. (35) we ignored h os212,u: in comparison to 
unity. To express the integral in Eq. (35a) in terms of ma- 
lytic functions we must write arctanz in the form of a 
series: 14915 

After substituting (36) into (35a) and letting the parameter 
p go to infinity we arrive at the following expression for 
I(7): 

where 

Using the same approximations (14) in Eqs. (32), we obtain 
an analytical equation for the population difference of the 
atomic levels: 

d R 3 t  = - ( ( t )  + t ) N 2 ( t )  + t N 1 ( t ,  (39) 
d t  

where N2(t) = (R3(t)) +0.5 is the population of the upper 
level, Nl(t)=0.5- (R3(t)) is the population of the ground 
state, and 

with L(u,t) and M(u,t) defined, respectively, in (16a) and 
(16b). 

Note that although the expressions for .All(t) and .%' are 
identical in form with Eqs. (16), the fact that the operator 
b (u )  acts on M(u,t) and L(u,t) drastically alters the depen- 
dence. This becomes especially evident in studying the decay 
of the atom in the time interval a l c4 t<oo lc .  In this case 
we can use the expansions (18) and (19) in the right-hand 
sides of Eqs. (16a) and (16b). Here the result of the action of 
6 ( u )  on the right-hand sides of M(u,t) and L(u ,t) simpli- 
fies considerably if one recalls that 

(&$)nu2m=~ for n>m. 

Now one can easily show that the result of the action of 
6 ( u )  on the first term in the expansion (18) is zero and that 
only the second term in (18) provides a finite contribution: 

Note that in Sec. 2 we left only the first term in the expan- 
sion (18), since k(u)(l/u2) # 0. Thus, allowing for the vari- 
ous terms proportional to llu4, we arrive at the following 
expressions for .All and 3 ( t )  when tSalc:  

Equations (41) and (23) show that B( t )  and B(t) depend 
differently on time. Figure 1 clearly illustrates the difference. 
Although these functions have different values at each mo- 
ment of time t, their common feature is that they oscillate 
with periods of order w,'. Such behavior of B( t )  and 
B(t) is apparently due to the complex nature of the creation 
of a wave packet (photon), whose spatial size is several thou- 
sand times greater than the quantum size of the atom. Over 
time t S  I/wo both m t )  and B(t) become much smaller than 
- 

TO l .  However, the functions B(t) and B( t )  differ for such 
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FIG. 1 .  The time dependence of the stimu- 
lated transition coefficients B(r) (the solid 
curve) and q r )  (the dot-dash curve) at the 

r) initial stage in spontaneous decay. 
O 

times. Indeed, if we use the asymptotic expansion of the sine then let the parameter 5 go to zero: 
integral Si(wot) [Eq. (22)], we arrive at the following ex- 
pression for 9 ( t ) :  

This is the correction to the exponential decay law for an 
atom with t 9  w,' obtained via the multipole Hamiltonian 
(30). Clearly, the correction behaves like l l ( ~ ~ t ) ~  and, natu- 
rally, is much smaller than the correction obtained via the 
common interaction Hamiltonian e(p.A(r,t))lc,u [Refs. 
4-8; see also Eq. (23)l. 

If we use the approximation suggested for deriving Eq. 
(39), we get the same equation for ( ~ ' ( t ) )  as in Sec. 2 [see 
Eq. (15b)l. But in the given situation the expressions for 
A,(?), .Al , and All differ from (16) and (17). Note that if 
the parameter 5 goes to zero and then Ao(t) is integrated 
over the frequencies w, as done in (37), we get a divergent 
expression for the energy-level shift KO. For this reason, 
integrating the expression for KO over the time lag r and 
allowing for Eq. (35a), we get 

2 cos[( 6+ z) vt] r- 0 - 2 ~ 3 8 d i a  29e2 im 0 ~d~(-$--~- 6+ z 

As (44) implies, lim lim # lim lim. Hence intrcducing the 
6-0 c-0 c+o 6-0 

variable u = 5z and integrating (44) by parts, we get 

Clearly, the first term in (45) is equal to zero at the upper and 
lower limits of integration. The second term is finite for any 
value of the parameter 5 and is equal to 

325 - 2 
- 2z5 1-3arctan(5z)] . (43) 

(&I2+ 1 [(5zI2+ 11 
7 

If we let the parameter 5 go to zero and then integrate (43) J=46IOm In u[:- arctan u -=--64(3), 

with respect to z, we see that 
]":I 2 

(454 

where C(3) = 1.20206 is the Riemann zeta function. 
i.e., the integral is divergent. We can make the Lamb shift TGS, if the expressions (35a) and (45a) are taken into 
converge if we first integrate (43) with respect to z and only account, for r ( t )  and A,(?) we have 
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The expression (46) for the Lamb shift derived with the 
Hamiltonian (29) is much larger than that obtained in Sec. 2 
[see Eq. (21)l. Note that for long times the temporal correc- 
tions to l/rO in (47) are smaller than the respective comec- 
tions (20). 

4. CONCLUSION 

The above results suggest that the inverse effect of the 
radiation field on the spontaneous decay rate is important in 
small time intervals t-mi1. Both approaches remove the 
divergences in the Lamb shift of the energy levels. From 
Eqs. (20) and (41) it follows that with the passage of time 
(i.e., wet+ 1) the corrections to the exponential spontaneous 
decay law tend to zero in an oscillatory manner. 

Notwithstanding the general characteristics of restora- 
tion of the exponential spontaneous decay law, the expres- 
sions for the obse~ables, which allow for the multipole in- 
teraction Hamiltonian and the Hamiltonian e(A(r,t) p) lcp,  
still diverge. The following pattern can be observed. As we 
go over to the new form of the interaction Hamiltonian (29b) 
the increase in the Lamb shift of the energy levels [see Eq. 
(46)] is accompanied by a decrease in the corrections to the 
exponential spontaneous decay law (42) in comparison to the 
similar correction (23). 

The study has shown that the evolution of the spontane- 
ous decay process depends not only on the choice of the 
initial conditions imposed on the atom and field but also on 
the boundary conditions at the moment of switch-on of the 

atom-electromagnetic-field interaction. This last factor is 
known to affect not only the shape of the atom-field inter- 
action Hamiltonian but also the phase of the system wave 
function. In selecting the state of the system in Sec. 3 we 
assumed that the electron and the nucleus were separated by 
a distance 6 when the interaction with the electromagnetic 
field was switched on. In this paper the parameter 6 was set 
equal to zero ( 5 4 0 )  with allowance for the fact that in the 
dipole approximation the system Hamiltonian acquires the 
well-known form (d.E(r,t)), where d=er. For instance, 
~ande1st .m'~ selected 5 equal to infinity, which corresponds 
to moving the electron from infinity to a distance r from the 
nucleus. This would imply that Eqs. (35a) and (43) should be 
integrated under the assumption that the parameter 6 tends to 
infinity. Clearly, both .%'(t) and &t) acquire new values in 
the process. Without going into the details of such calcula- 
tions, we note that apparently an optimal choice of this pa- 
rameter and the initial conditions of the state of the electro- 
magnetic field and the atom can remove the discrepancies 
between the above forms of the interaction Hamiltonian. 
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