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1. INTRODUCTION 

An inhomogeneous weakly rarefied gas, which corre- 
sponds to the condition A<L (A is the mean free path of the 
particles, and L is the characteristic length of the problem), is 
an example of a nonequilibrium system for which the well- 
developed methods of solving the Boltzmann equation make 
it possible to establish the limits of applicability of phenom- 
enological nonequilibrium thermodynamics. On the basis of 
the well-known studies of prigogine,lv2 it was assumed for a 
long time that the applicability of nonequilibrium thermody- 
namics is limited in this case to the results corresponding to 
the first approximation of Chapman-Enskog theory? which 
gives rise to linear relationships between the fluxes and gra- 
dients of the fundamental thermodynamic variables (thermo- 
dynamic forces). However, ~ a ~ a n ~  noted that in the general 
case one can include among the independent thermodynamic 
forces quantities having the necessary tensor dimension and 
obtained by differentiating with respect to the coordinates 
the corresponding fluxes. This conclusion followed, in par- 
ticular, from an analysis of the contribution of viscous mo- 
mentum transport to the diffusion of a mixture, which was 
calculated in Ref. 4 using the Grad 13-moment 
approximation.5 The need to take into account the corre- 
sponding terms proportional to the second derivatives of the 
velocity and the temperature in the expressions for the fluxes 
also followed from the results of the second (Bumett) ap- 
proximation in Chapman-Enskog theory.3v6 

The compatibility of the principles of nonequilibrium 
thermodynamics with the higher approximations of the 
Chapman-Enskog method at the level of the linearized Bur- 
nett approximation was proved in Refs. 7-9. At this level, 
the expression for the entropy production on the right-hand 
side of the entropy balance equation acquires additional 
terms containing higher than first-order derivatives of the 
fundamental thermodynamic variables with respect to the 
cordinates. The system of phenomenological equations for 
the fluxes and forces is correspondingly extended. The need 
to take into account new terms in the analysis of flows of 
weakly rarefied gases and in the flow of gas past convex 
bodies was clearly demonstrated in the solution of a large 
number of problems.4~10-17 

No less important effects due to rarefaction of the gas 
occur near an interface (for example, at the boundary of the 
gas and a It is well known that for inhomogeneous 
low-density gases the values of their macroscopic 
parameters-velocity, temperature, composition, etc.- 

directly at the surface of a body around which flow is occur- 
ring differ from the corresponding parameters that character- 
ize the state of the surface. This difference is due to the 
nonzero mean free path of the molecules and can be de- 
scribed by the introduction of some effective boundary con- 
ditions that take the form of various apparent discontinuities 
of the macroscopic parameters at the boundaries of the con- 
densed phase.18 

As was shown by ~ a l d m a n n ? ~  a fairly general approach 
in the formulation of the boundary conditions can be devel- 
oped using the methods of nonequilibrium thermodynamics. 
The approach is based on the notion of boundary entropy 
production, which is defined as the integral over unit section 
of the surface of the difference of the entropy fluxes in the 
gas and in the condensed phase. Unfortunately, the purely 
phenomenological approach to the derivation of the expres- 
sion for the entropy production and also the neglect of the 
thickness of the Knudsen layer at the wall caused Waldmann 
and ~ e s t n e r " ' ~ ~ ' ~ ~  to omit several boundary effects of the 
same order of magnitude as the effects taken into account in 
the method.16717 However, the idea advanced in Ref. 20 is 
very fruitful if instead of the phenomenological expression 
one uses the kinetic expression for the entropy1) and takes 
into account consistently the finite thickness of the Knudsen 

In this paper, we develop a general scheme for applying 
nonequilibrium thermodynamics to the investigation of 
transport processes in an inhomogeneous multicomponent 
gas mixture in the presence of surfaces that confine the gas. 
We consider slow steady flows of weakly rarefied gas mix- 
tures, for which the use of the methods of nonequilibrium 
thermodynamics is the most obvious. Systematic develop- 
ment of the Bumett approximation in the Chapman-Enskog 
method for the linearized kinetic equation and the use of the 
kinetic expression for the entropy in this approximation 
make it possible to write down a system of linear phenom- 
enological equations for the fluxes that contain a dependence 
on not only the first but also the second derivatives of the 
velocity, temperature, and concentrations of the components 
of the mixture. In each subsystem of vector and tensor equa- 
tions, in addition to the ordinary fluxes, "unphysical" fluxes 
arise, which automatically ensure that the Onsager symmetry 
relations hold for the crossed transport coefficients. 

The methods of nonequilibrium thermodynamics are fur- 
ther used to analyze the state of a nonequilibrium gas mix- 
ture near an interphase surface. By means of the boundary 
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condition for the distribution function and the kinetic equa- 
tion for the Knudsen correction to it, we establish balance 
equations for the mass, momentum, and energy at the inter- 
face. The missing boundary conditions are found from the 
kinetic expression for the boundary entropy production. This 
last is used to obtain some phenomenological relationships 
between the fluxes and forces on the interface, and these 
make it possible to determine the contribution of the fluxes 
localized in the Knudsen layer to the total mass, momentum, 
and energy transport in the gas mixture. In the conclusions, 
we consider some actual examples of the use of the relations 
obtained here and discuss the possibilities of using them in 
fairly general situations. 

The results of the first approximation (n=l )  of the 
Chapman-Enskog method are well known3r27 and are given 
here making the treatment general and as a necessary stage 
for obtaining the corrections of the next approximation (n 
=2). The transformation of the left-hand side of (3) by 
means of the Euler equations gives 

where 

2. THE BURNETT APPROXIMATION FOR THE LINEARIZED 
KINETIC EQUATION Here p,=m,n, , p=X,+,, denotes the irreducible second- 

rank tensor with components tick- ( I / ~ ) C ~ S ~ ~ ,  and vu cor- 
We consider the steady state of an inhomogeneous gas responds to the tensor 

mixture described by means of the distribution functions 1 au, au 1 
fa(v,, r), where v, is the velocity of the particles of species 8ik'i. (ax,+ 2) - vuSik. 
a, and r is their position vector. In the case of weak devia- 
tion of the gas from equilibrium, we assume that 

The symbol : is used to denote the scalar product of tensors. 
fu=+uO'(l +au), (1) The expression for @(b) has the form 

n - 
where f(,O) is the local Maxwell distribution @b')=@,,(c,~)~n ~+@,,c,c,:~u+c,'C, @ L a s ,  

B 

where a,, @, , and Qd are found by solving the integral 
and @, are small corrections that satisfy the system of lin- 

equations 
earized Boltzmann equations9.15 

Here Lap is the linearized collision operator, c,=v,-u, 
pa= n,kT, PU=m,/2kT, where nu is the number density of nu (auy- F) C u = q  Lu~(c@D.  (8) 

the particles of species a, mu is their mass, T is the tempera- One of the main problems of kinetic theory is to obtain 
ture, u is the mass-average velocity of the mixture, and k is expressions for the nondiagonal part of the stress tensor, the 
Boltzmann's constant. heat flux, and the diffusion velocities, which occur in the 

When the standard Chapman-Ensk0g is used' system of hydrodynamic equations (conservation equations). 
the solution of Eqs. (3) is sought in the form The general expressions for these quantities have the form 

m 

a,= 2 @?'=@bf'+@b2'+..., 
n= 1 $=(, GI@), q= 

where @F) are found by successive approximations from the 
chain of integral equations 

n- 1 

D(~)@(" -~ - ' )=  a - (v,v)@II,-~ + L,B(@(~)). (4) Here and in what follows, (glh) denotes the inner scalar 
k=o B product of the form 

Here the structure of the operator D ( ~ )  is determined by 
transforming the left-hand side of (3) with allowance for the (glh) = I gd&;)dvu. 
level of the approximations that is used in writing down the a 

conservation equations (Euler, Navier-Stokes, etc., equa- 
tions). In the first Chapman-Enskog approximation 

684 JETP 82 (4). April 1996 V. M. Zhdanov and V. I. Roldugin 684 



The solution for @?) can be represented in the form 

where 77, A', D d ,  DTa are, respectively, the coefficients of 
viscosity, thermal conductivity, multicomponent diffusion, 
and therm~diffusion.~~ 

To find the corrections to the distribution function in the 
Burnett approximation (n =2) ,  we have the equations 

where 

For slow gas flows ( ( u l 6 ( k ~ l m , ) " ~ ) ,  we can ignore the term 
-(U.V)@;),  allowance for which goes beyond the linear 
approximation. Then, bearing in mind that - VVT 
(c.. v ) @ ~ ~ ) = @ , ~ c ~ ,  : -jr+ O p d c a . V )  

VVT - 
+ S,,:VVU+ 2 @;!vdB. ( I S )  

B 

In the second term on the left-hand side of (14), it is conve- 
nient to separate the tensor c'EZc, which corresponds to the 
third-rank irreducible tensor 

1 
cicjck- - c2(aijck+ 6 i k ~ j +  Sjkci). 

5 

Then 

( @pac,cTca+ - - -  
PkT 

c a d 4 )  : v v u =  @pacacaca: v v u  
2mav 1 

As a result, for the total correction to the distribution func- 
tion in the Burnett approximation we have 

VVT - 
+ c a x  @$adp+@ia: - T +a$,: v v u  

B 

where the functions <p,Ta, @ i a ,  @I;,, and are found by 
solving a system of integral equations of the form 

A'T 
@ . s a C a +  [ ( f AC:- 1 )  JY + F D ~ ~ )  

n 
X (c,c,: V U )  + 2 C , C , @ $ ~ V ~ ~ ,  (13) + D T ~ ]  @I= F ~ a ~ ( @ : ) ,  

B 
we find after simple manipulations 

where d2) and S(" are the unit tensors of second and fourth 3. NONEQ"ILIBRIUM THERMODYNAMICS Y THE B U R N E ~  
rank, and APPROXIMATION 

To establish the structure pf the macroscopic fluxes that 
follows from the representation (16), we turn to the basic 
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propositions of nonequilibrium thermodynamics. As is well 
known, this is based on the entropy balance equation, which 
in the steady case can be written as 

V-J,=a, (18) 

where J, is the density of the total entropy flux: 

and a is the entropy production due to particle collisions: 

In what follows, we shall be mainly interested in the 
entropy production a: It is well known that the phenomeno- 
logical expression for a obtained in nonequilibrium thermo- 
dynamics is a bilinear combination of the corresponding 
fluxes and thermodynamic  force^.^ It is easy to shown that if 
the linearized Bwnett approximation is used the bilinear 
structure of the expression for a remains, but with not only 
the first derivatives of u, T, and n, but also the second de- 
rivatives of these quantities playing the role of thermody- 
namic forces; the number of fluxes associated by linear rela- 
tion with thermodynamic forces is increased accordingly. 

The expression (20) for a corresponding to the linear 
approximatior! can be represented in the form 

With allowance for (4), we rewrite (21) as 
m 

a= - k x  ( m ( n ) l  [ =  ~ ( k ) @ ( " - k - l ) +  c 
n= 1  ..)an-I]). 

(22) 

Using the expression for <P:) and the terms in the square 
brackets (22) for n= 1,2 that we obtained above, we can 
write the entropy production in the form 

VVT n 
+jT: - + j " : v v u + ~ v 2 ~  

T 

Here h =q- (512)Zg ,w, is the reduced heat flux in the mix- 
ture, and 

The tensor dimensions for these fluxes are obvious. In writ- 
ing down the first, third, and last term in (23), we have used 
the fact that Zt=ld,=O and that in the stationary case 
v 2 T = 0  and (V.d&=O. 

The system of linear phenomenological equations corre- 
sponding to the entropy production (23) decomposes into 
three subsystems of the form 

n 
In writing down (26), we have ignored the terms -VVp, 
allowance for which goes beyond the linear approximation. 
In the case of a single-component gas (N=l), the system 
(25)-(27) goes over into the results obtained in a somewhat 
different manner in Ref. 9. 

An important difference between the system of Eqs. 
(25)-(27) and the well-known phenomenological equations 
of nonequilibrium thermodynamics is_ that it includes some 

"T " D  "unphysical" fluxes: JV, J , J , and JU. Their appearance in 
subsystems of one and the same tensor dimension is abso- 
lutely necessary to ensure the correct Onsager symmetry re- 
lations, which hold for the crossed coefficients in the sub- 
systems (25) and (26). In particular, from this point of view 
one must regard as inconsistent the earlier attempt in Ref. 28 
to establish symmetry relations between the coefficients oc- 
curring in the equations for fluxes of different tensor dimen- 
sion, in contradiction with the well-known Curie principle 
for isotropic systems.2 

The form of some of the transport coefficients in the 
expressions for the "physical" fluxes w,-wN, h, and ii is 
readily established by comparison with the expressions (10). 
In particular, 

The formal structure of the remaining coefficients corre- 
sponding to the Burnett approximation is readily established 
if one substitutes a, from (16) in the expressions (24) for the 
fluxes. We note that some of the Bumett coefficients, for 
example, L,N+ 1 AN,,+ 1 9  X N , ~  9 and AN,,+, ,  can be deter- 
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mined by using the results of the calculations made in Refs. 
4 and 28. When allowance is made for only the first terms of 
the expansion in Sonine polynomials in the solution of the 
corresponding integral equations, the expressions for these 
coefficients have the form 

where xB= nB/n, and 178 and AS are the partial coefficients of 
viscosity and thermal conductivity calculated in the first 
Chapman-Enskog approximation.394 Note that the coeffi- 
cients AN,,+ and AN,,+ are identical within a factor of 2; 
in Ref. 28, this identity was taken as an Onsager symmetry 
relation. In order to actually show that the symmetry rela- 
tions hold for the coefficients of Eqs. (25), we show as an 
example that Aa,N+ =AN+ I,a. 

We consider the flux JU given in (24). Taking into ac- 
count the orthogonality of maca and the expansions in poly- 
nomials of the correction @ in the Chapman-Enskog 
method, we have 

We separate in the term with dB. Then 

Using the well-known expansions for a, and in series of 
Sonine polynomials27 and restricting ourselves to just the 
first terms of the expansion, we can readily obtain (taking 
into account the condition Zt, lda=O) 

from which the required symmetry relation follows. 
Note that the remaining coefficients that determine the 

Burnett contributions to the "unphysical" fluxes can be cal- 
culated only if we know the Burnett functions a;, (Pi, @fj, 
and determined from the solution of the integral equa- 
tions (17). Such a calculation is of no special interest, since 
these fluxes do not occur in the system of basic hydrody- 
namic equations. However, knowledge of the explicit form 
of the Burnett functions may be necessary when we consider 
the boundary conditions for the hydrodynamic equations. 

4. BALANCE EQUATIONS AT AN INTERPHASE SURFACE 

In the analysis of flows of rarefied gases near interphase 
surfaces, it is necessary to introduce a correction into the 

distribution function that reflects the abrupt change of the gas 
parameters at the boundary within the so-called Knudsen 
layer (at distances of the order of a few mean free paths of 
the molecules). Then the distribution function can be written 
in the form 

where @, is the volume Chapman-Enskog correction [for 
example, a solution in the form (16)], and rp, is the Knudsen 
correction to the local Maxwellian distribution function #:). 
It must be emphasized that fhD) is defined in this case for the 
values of the density, velocity, and temperature that corre- 
spond to the volume solution valid outside the Knudsen layer 
(we call these the hydrodynamic parameters). It is readily 
noted that when these parameters are extrapolated to the sur- 
face over which the flow takes place, their values need not be 
the true values or the values of the parameters in equilibrium 
with the wall, and this leads to the natural picture of jumps of 
the density, velocity, and temperature at the boundary.18 

The correction cp, obviously satisfies the system of ho- 
mogeneous equations that follow from (3), 

and boundary conditions that in the absence of chemical re- 
actions on the surface can be written in the form18729 

Here R,(vh-tv,) is the operator for scattering of gas par- 
ticles by the interface, n is the inner normal, and xo is the 
coordinate of a point on the surface that belongs to the ele- 
ment of surface SS. 

Note that for slow flows and with allowance for the 
small magnitude of the density and temperature jumps on the 
boundary 

where f,"; is the absolute Maxwellian distribution in equilib- 
rium with the wall, and Spa(0) and ST(0) are the jumps of 
the hydrodynamic parameters on the boundary relative to the 
values p, and To in equilibrium with the wall. 

We consider the problem of the exterior flow of a gas 
mixture over a weakly curved surface and introduce an or- 
thogonal system of coordinates at the point xo with x axis 
directed along the inner normal and y and z axes directed 
along the surface. The element of length in such a system is 
given by 

d12=dx2+ h;dy2+ h:dz2, 

where h, and h, are metric coefficients. 
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Writing the left-hand side of Eq. (31) in these coordi- 
nates, multiplying both sides of (31) by hyhz , and integrating 
over x from 0 to w, we find 

where we use the definition 

of the two-dimensional divergence of the flux, and we intro- 
duce the two-dimensional flux 

We use the relations (32)-(34) to obtain balance equa- 
tions for the mass, momentum, and energy on the interphase 
surface. To this end, we integrate (32) over the velocity half- 
space v,>O. Using (33) and the property 

of the scattering operator, we readily obtain 

where the integration is over the complete velocity space. 
Bearing in mind that @,(O) does not contribute to the mass- 
average velocity of the gas, we obtain after summation of 
(35) over cu with weight m, 

Using the well-known property (lIL(p))=O of the collision 
integral, we find by means of (34) 

* 

pux(0) = - div, jy , (37) 

where 

Here jm is the density of the mass flux localized in the 
Knudsen layer. Formally, Eq. (37) means that the normal 
component ux(0) of the hydrodynamic velocity on the inter- 
face does not vanish. This also follows directly from the 

relation (36), which corresponds to vanishing of the gas ve- 
locity determined on the total distribution function (impen- 
etrability of the surface). 

Repeating the above procedure but without summation 
over a, we can also readily obtain relations for the diffusion 
velocities w,=u,-u on the phase boundary: 

The momentum and energy balance equations on the inter- 
face are obtained by multiplying (32) from the left and from 
the right by m,v, and and integrating over the ve- 
locity half-space. The following operations are then similar 
to those used above. As a result, we obtain 

P x j ( 0 )  - p i j =  - div, &$), 

Q x ( 0 )  - &= - div, j?). (40) 

At the same time, Px4=p sxj+ n;i and Q x =  qx+  P.rjuj 
are the hydrodynamic densities of the momentum and energy 
fluxes, and p i j  and Q{ are the same quantities determined on 
the total distribution function. The vectors j$') and j$q) are 
the densities of the momentum and energy fluxes localized in 
the Knudsen layer. They are defined by analogy with (38) 
substituting for 

in this expression the quantities 

and 

It follows from the relations (40) that the normal com- 
ponents of the momentum and energy fluxes have disconti- 
nuities on the wall. A purely phenomenological version of 
such a discontinuity for a simple gas was first introduced by 
waldmann." 

5. NONEQUlLlBRlUM THERMODYNAMICS OF BOUNDARY 
CONDITIONS 

To obtain an additional group of boundary conditions, 
including conditions for the fluxes tangential to the wall, we 
again use the methods of nonequilibrium thermodynamics. 
As in Refs. 20 and 21, we shall here proceed from the en- 
tropy balance equation on the interface but use a more com- 
plete representation of the distribution function that makes it 
possible to take into account its variation over the thickness 
of the Knudsen layer. 
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Integrating the entropy balance equation (18) directly on 
the interface and using Gauss's theorem, we readily find that 
the entropy production density on an infinitesimal surface 
element is equal to the difference between the entropy fluxes 
in the gas and in the condensed phase (for simplicity, we 
shall suppose that the latter is a rigid wall). For the local 
entropy production (per unit surface of the wall), we have 

where Js=Js.n, where n is the outer normal to the surface. 
For the entropy flux density on the boundary directed 

from the rigid body, we have 

where Ji is the heat flux density, and To is the wall tempera- 
ture. At the same time, J;=@. Substituting in the expression 
(19) for Js the total distribution function 
f =f(,o)(l +@,+cpn) and taking into account the form (2) of 
jf), we readily obtain 

We recall that @ and Pfk are defined on the total distribution 
function including the Knudsen correction, and p(0)  
=n(O)kT(O); n(O), u(O), and T(0) are the extrapolated val- 
ues of the hydrodynamic parameters on the wall. 

It is convenient to decompose the second term in (42) 
into parts corresponding to the components of u and P { ~  
normal and tangential to the surface. In this case, it takes the 
form 

where u,(O) is the tangential component of the hydrodynamic 
velocity of the gas, which actually corresponds to the slip 
velocity at the wall, and 4, is the nondiagonal part of the 
tensor P { ~ .  

To transform the final term on the right-hand side of 
(42), it is necessary to substitute the known solution for the 
volume distribution function @, [for example, the expression 
(16)l. Note that the structure of the Knudsen function cp,(O) 
can be established in each specific case from its relation to 
@,(O) through the boundary condition (32) with allowance 
for the representation (33). Analysis shows (see, for ex- 
ample, Ref. 14) that allowance for the terms -d in the 
expression (42) leads merely to a renormalization of the 
transport coefficients in the corresponding phenomenological 
transport relations without loss of the symmetry properties 
for the crossed coefficients. For this reason, the terms --I& in 
(42) can be omitted, and the final expression for AS, can be 
represented in the form 

We now show how we can use (43) to obtain some phe- 
nomenological relations between the fluxes and forces on the 
interphase boundary that serve, as it were, as a system of 
boundary conditions for the hydrodynamic equations and 
give the corresponding contribution to the total transport of 
mass, momentum, and energy that results from the fluxes 
localized in the Knudsen layer. To this end, it is helpful to 
analyze some characteristic special cases. 

6. FLOWS TANGENTIAL TO THE SURFACE OF A FLAT 
BOUNDARY 

We consider the flow of a gas mixture along a flat sur- 
face in the presence of tangential (directed along the z axis) 
temperature and concentration gradients and nonvanishing 
first and second derivatives ui = du, ldx and u: = d2uzldx2 
of the velocity with respect to the transverse coordinate x. In 
this case, the volume correction @, (16) has the form 

[For slow flows, when not only the gradients of the macro- 
scopic variables but also the velocities u are assumed to be 
small, it is possible to replace c,=v,-u in (16) by v,.] 

The absence of flows normal to the surface, in conjunc- 
tion with the conditions ux(0)=O and d, = ~r,, = - qu: , 
which follow from the constancy of the Knudsen flows along 
the surface, enable us to represent the entropy production on 
the surface in the form 

It is well known27 that a,, , @,, , and @fa are even func- 
tions of the velocity v,, while are even functions with 
respect to v, and u, (Refs. 10 and 12), and therefore the 
term in (45) with @:(o) contains only a combination of the 
form 

aBVz In T+Z b,dYz+cBu: , 
Y I 

where 

We now determine the structure of the terms that contain 
cp,(O). We consider the term with a,, in (44). Substituting it 
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in (45) and remembering that vaxq,(0) can be replaced by 
means of (34) by -GL, (q)dx ,  where Lff=ZBLffB(q) ,  we la= (owdxI vaq$:)dva. 
find 

Finally, for the contribution to (45) from the last term in 
(44, we have 

(I 

We use the symmetry property ( ( @ I L ( ~ ) ) = ( ~ L ( @ ) ) )  of the = ku:/~(rplL(u,@:+ @gxXz))dx. 
linearized collision operator and the first relation of (8). As a 
result, we obtain 

In accordance with the relations (17) for @: and @f; 
rw rw 

where 3,h is the density of the reduced heat flux localized in 
It is easy to show that 

the Knudsen layer. The upshot is that the corresponding term 
in the entropy production (45) takes the form ( ~ ( V , V : @ ~ I ~ ) ~ X = O .  

1 - j:vZ In T.  
To 

(48) Indeed, it follows from the momentum conservation law that 
(mvxvzl q )  =O. From the second equation in (8) and the sym- 

The contribution of the term with @,, to (45) vanishes, metry of the collision Operator, we can write 
since 

(mvxvzlcp)=(L(vxvz@p)lcp) =(vxuz@pIL(cp)) 
,- 

. , 
00 

- ~ o m ( V x ~ z @ p ~ ~ (  cp))dx= - ( ( ~ I L ( v , v ~ @ ~ ) ) d x  After integration over x and allowance for the condition o 
q(w)=O, we obtain the required relation. As a result, the 

1 corresponding contribution to AS, takes the form 
=--  

k T 

= 0.  ku:/om(r~~(~z@:+@ixxz))dx 

Manipulations with allowance for the third term in (44) give 17 - -L u:Iow(qlmvz)dx= - jyu:,  
PTO pro 

where J ? ~ = J ~ ( q l m v , ) d x  is the mass-average flow of the 
mixture localized in the Knudsen layer. 

Collecting the terms obtained above, we arrive at the 
following final expression for the entropy production: 

P 
(49) 

uZ(O)+aBVz in T +  Z b+i,+cBu: 
kTo Y 

Using the last relation in (8) and the condition z:= ,dBZ=O, 
1 N-l we can readily obtain instead of (49) the expression 

1 A hv 1, T+ - 2 1:- 9 
I 

+ % j z  z To P = I  P O ~ S Z  
n "N 

-- - P ~ B Z  9 '7 - + - jyu:. ,. ,. PTO 
(50) 

where j;=j,-(ndp)? is the diffusion flux of the particles 
of spe-cies a lyalized in the Knudsen layer. At the same The system of phenomenological equations corresponding to 
time, j m = X p d a  and the entropy production (50) can be written in the form 
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3~ , N - I  

In Ref. 5 we used a different method to obtain an analo- 
gous system of equations for the special case of the flow of a 
gas mixture in a circular cylindrical capillary. For Poiseuille 
flows in a channel, qu: = Vg. For the comparison with Ref. 
15, it must also be borne in mind that there the flows are 
determined by averaging over the channel section, as a result 
of which a factor 2/R appears, where R is the capillary 
radius.2) 

7. FLOWS NORMAL TO A SURFACE 

The expression (43) for the entropy production also 
makes it possible to obtain a set of phenomenological 
equations-the boundary conditions for normal flows. If for 
the moment we drop the final term in (43), which is indi- 
rectly related to the structure of O,, then the expression (43) 
takes the form 

where u,(O) is the projection of the gas velocity onto the 
outer normal. 

This representation corresponds to a pair of phenomeno- 
logical equations for the jumps of the temperature and nor- 
mal components of the stress tensor at the boundary. They 
have the form 

In contrast to the well-known results of Refs. 16, 17, and 
19-25, it follows from (53) that the temperature jump is 
determined not only by the heat flux through the surface but 
also by the value of the new thermodynamic force un(0), 
which, as was shown above, is also nonvanishing for imper- 
meable surfaces. Hitherto, such relations have been obtained 
only when phase transitions occur at the surface(for example, 
for the case of evaporation and condensation3'). The second 
equation of (53) describes the effect of the difference of the 
pressure in the gas and of the normal stresses acting on the 
surface. In the case of an evaporating surface, an analog is 
the jump of the vapor pressure. This effect can be interpreted 
as a certain excess surface tension in a nonequilibrium gas. 
In the case of a temperature gradient normal to the surface, it 
results from the temperature profile in the Knudsen layer. 

Taking into consideration the terms obtained by decom- 
posing the structure of the final term in the entropy produc- 
tion (43) leads to a significant extension of the system of 
phenomenological equations, since we obtain new thermody- 
namic forces of the form duxldx,dg ,dpldx,d2u,l 
dx2 ,d2~ldx2,  etc. Unfortunately, in the general case the 
thermodynamic fluxes conjugate to these forces cannot be 
given a transparent physical meaning, and therefore we con- 
sider only the fairly simple situation in which the volume 
distribution function can be represented in the form 

[in the phenomenological approach, the same system of phe- 
nomenological equations (53) corresponds to this approxi- 
mation]. 

Substituting (54) in the final term of (43), we can readily 
show that among the volume terms in the integral there re- 
mains only the combination 

where 

We write the terms associated with the product of the vol- 
ume and Knudsen distribution functions in the form 

where 
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The resulting entropy production is equal to the sum of the 
expressions (52), (55), and (57). The corresponding system 
of phenomenological equations has the form 

It can be seen from (59) that in this case the system of 
phenomenological equations contains not only the obvious 
physical fluxes but also three new "unphysical" fluxes: At, 
A", and A;. We have already encountered an analogous situ- 
ation in the consideration of the Bumett fluxes. The same 
thing would have to occur for tangential (shear) flows too if 
we were to take into account a larger number of terms in the 
expansion of the volume function @. Note that in the expres- 
sions for the jumps of the temperature and of the normal 
stresses we obtain, in addition to the forces Q; and u,(O) 
previously taken into account, a spectrum of new forces as- 
sociated with the presence of gradients of the velocity, tem- 
perature, and concentration normal to the surface. 

The appearance of new thermodynamic forces and the 
inclusion in the system of phenomenological equations of 
unphysical fluxes arises from the use of kinetic theory as the 
foundation for constructing phenomenological equations of 
nonequilibrium thermodynamics. It is clear that in a purely 
phenomenological approach it is not possible to justify the 
introduction of unphysical fluxes, although the inclusion of 
additional thermodynamic forces can be formally justified; at 
the same time, however, there arises a problem with estab- 
lishing the Onsager symmetry. In contrast, when the kinetic 
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and phenomenological theories are combined these problems 
are resolved automatically. Simultaneously, one can estab- 
lish the physical basis for the appearance of the new thermo- 
dynamic forces in the system of phenomenological equa- 
tions, as follows. When the distribution function is expanded 
in a series in gradients, each thermodynamic force is multi- 
plied by an associated polynomial in the velocity, and there- 
fore a quantity, say the temperature jump, associated with 
some thermodynamic force, will be determined by its own 
corresponding transport coefficient (it depends on the form 
of the polynomial in the velocity). However, in the phenom- 
enological approach there appears only the one coefficient 
Sw, and a dependence of the temperature jump on the vari- 
ous derivatives of the gas parameters enters indirectly 
through the dependence of the heat flux Q; on these param- 
eters. 

Thus, the transport coefficients Sop %oh'+1, and 
''correct,'' as it were, the dependence of the tern- 

perature jump on the derivatives of the macroscopic vari- 
ables of the gas relative to the dependence determined in the 
framework of the phenomenological approach. It is evident 
that it is the correcting nature of these coefficients that is 
responsible for the unphysical nature of the conjugate ther- 
modynamics fluxes. 

8. CONCLUSIONS 

The above description of nonequilibrium processes in 
the volume of a gas mixture and at an interphase surface has 
a rather general nature. The resulting phenomenological 
equations were actually determined by the form of the given 
distribution function, and the actual nature of the flow of the 
gas mixture did not appear in them. It is clear that in specific 
problems certain of the thermodynamic forces, between 
which a variety of relationships is possible, may be absent, 
and this must be reflected in the form, for example, of the 
boundary conditions. The order of magnitude of the various 
thermodynamic forces must also depend strongly on the na- 
ture of the gas flow, and therefore it cannot be determined in 
advance. The change in the orders of the contributions from 
different effects on the transition from one problem to an- 
other was demonstrated for some specific examples in Refs. 
16, 17, and 31. Therefore, we have not compared here the 
contributions from the different effects but have restricted 
ourselves to a general description of the present approach. In 
our view, it is not difficult to use the approach when consid- 
ering specific problems associated with different flows of 
weakly rarefied gases. 
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Russian Fund for Fundamental Research for financial sup- 
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')The attempts to implement this approach made in the subsequent studies of 
~ a l d m a n n ~ ~ " ~  did not lead to significant success, since they still did not 
take into account the change of the distribution function in the Knudsen 
layer. 

')1n Ref. 15, there are some misprints: The coefficients a,, c~ , and b, in 
(72) and (74) should have + and not - signs, and the coefficient n was 
omitted in the combination Z,nb,d,, . 
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