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1. INTRODUCTION problem. Difficulties arise manily because of the nonmono- 

The present paper is a continuation of Ref. 1 and is 
devoted to the study of supersonic flow of a nondissipative 
weakly dispersive fluid past pointed bodies. If the bodies are 
slender, then the general equations of steady two- 
dimensional dispersive hydrodynamics reduce to the 
Korteweg-de Vries (KdV) equation, in which the role of the 
time is played by the spatial coordinate at right angles to the 
direction of flow. The initial data for the KdV equation are 
determined by an arbitrary function y ( x ) ,  which specifies the 
profile of the body.'92 

The most important feature of supersonic dispersive flow 
past bodies is the formation of a nondissipative shock wave, 
a wedge shaped region of space occupied by small-scale 
nonlinear oscillations described by modulated elliptic func- 
tions. The oscillations have the shape of solitons on the front 
facing the oncoming flow and the shape of harmonic oscil- 
lations of infinitesimally small amplitude on the opposite 
front toward the body. In Ref. 1, the Gurevich-PitaevskiK 
approach3 was used to make an analytic study of the struc- 
ture of the nondissipative shock waves that arise in the case 
of flow past infinite wedge-shaped bodies with yn(x)30. 
Such profiles correspond to monatomic initial data in the 
Gurevich-Pitaevskil problem (the case of a nondissipative 
shock wave with intensity that does not decrease with time). 
However, it is important that by virtue of the supersonic 
nature of the motion the expressions obtained in Ref. 1 have 
finite "domains of influence" and can be used in the de- 
scription of the flow past finite sections of bodies of a more 
complicated shape. 

In this paper, we consider flow past thin pointed bodies 
possessing in profile a section (of finite or infinite extent) 
with yn(x)<O, in particular we consider flow past finite- 
length bodies. Such a change in the geometry of the body, 
which would appear to be a minor one (compared with Ref. 
l), leads to a significant modification in the solution to the 

tonicity of the initial data in the corresponding Gurevich- 
PitaevskiI evolution problem. In addition, it is often the case 
that the typical shapes of the bodies around which the flow 
takes place (see, for example, Fig. lc) correspond to initial 
data that are not at all characteristic of the Gurevich- 
PitaevskiK problem (Fig. Id). Finally, flow past bounded bod- 
ies is accompanied by the formation of two nondissipative 
shock waves that possess different asymptotic properties. At 
the same time, it is clear that precisely these cases are the 
ones of greatest interest from the point of view of applica- 
tions. 

We note also that, since the supersonic nature of the flow 
makes it possible to study the flow in the upper half-plane 
independently, our problem can be interpreted as the prob- 
lem of the flow past a convex (or concave) inhomogeneity on 
the bottom of a flat channel. 

As in Ref. 1, to describe the rapidly oscillating region of 
the nondissipative shock wave we use Whitham's method of 
averaging4 Whitham's system for the KdV equation with the 
Gurevich-PitaevskiK matching conditions is integrated by 
means of a generalized hodograph transformati~n~.~ and the 
"scalar potential" technique?-9 but by virtue of the non- 
monotonicity of the initial data the corresponding transforms 
have a "two-sheeted" nature.''-l2 The relatively simple as- 
ymptotic behavior of the solution for localized initial data 
makes it possible to efficiently solve the problem of recov- 
ering the shape of the body in the flow from data on the wake 
at infinity (recall that we are studying the purely nondissipa- 
tive situation). We show that in the case of flow past a slen- 
der body under conditions for which the KdV approximation 
is valid the nonlinearity and the dispersion do not affect the 
drag and lift, which are the most important macroscopic 
characteristics of the flow (Ref. 13, 3 125). 
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FIG. 1. Typical profiles of bodies (a, c, e, g) and the initial data correspond- 
ing to them (b, d, f, h) in the evolution problem. 

2. BASIC EQUATIONS. FORMULATION OF THE PROBLEM 

For convenience, we give some results of Ref. 1 needed 
for the subsequent exposition. 

The problem of supersonic two-dimensional (x, y ) flow 
past a slender pointed body with nonzero angle of attack by 
a nondissipative weakly dispersive fluid that has velocity 
Me, (M>1) at infinity reduces to the following initial-value 
problem for the KdV equation with small dispersion 
parameter: 

ro(X)=Ff(-X) for XSO, 

for X>O. 

Here the function 

determines the shape of the section of the body (an infinite 
"sharp" cylinder with generators parallel to the z axis) in 
the upper half-plane (by virtue of the supersonic nature of the 
flow, the motions in the upper and lower half-planes are 
independent), b and 1 are the effective thickness and length 
of the profile, respectively, S=bll91 is a small nonlinearity 
parameter, and E is the effective dissipation parameter. In 
addition, in the derivation of the KdV equation the flow near 
the surface of the body is assumed to be smooth (absence of 
boundary-layer effects). For example, in a two-temperature 
plasma1 this condition is ensured by the absence of free 
charges on the surface of the (nonconducting) body. The 
relationships between the quantities that occur in the KdV 
equation and the original flow parameters are given by 

Here y is the adiabatic exponent of the corresponding ideal 
hydrodynamics, P=D/19 1 (more precisely, S24@<S), 
where D is the characteristic dispersion scale of the medium 
(for example, the Debye radius in a two-temperature 
plasma1), and u ,  is the first correction to the horizontal com- 
ponent of the flow velocity (for more details, see Ref. I): 

Note that S has the order of the maximum of the gener- 
ating function that specifies the profile of the body in the 
flow. 

The evolution described by (1)-(2) leads to the forma- 
tion of a nondissipative shock wave described by a quasi- 
steady modulated solution of the KdV equation.'3396 This so- 
lution is characterized by three parameters ri(X,T): 
r3 2 r 2 2  r , . The finding of the modulation parameters 
ri(X,T) that ensure continuous matching of the exterior 
smooth flow described by the Hopf equation (the nondissi- 
pative limit of the KdV equation) to the average flow in the 
oscillating region of the nondissipative shock wave for dif- 
ferent profiles (3) is the main task in the theory of supersonic 
flow past slender bodies in dispersive hydrodynamics. 

The functions ri(X,T) are Riemann invariants of the 
Whitham modulation system493*6 
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Here U is the phase velocity, &EL is the wavelength, K(m) 
is the complete elliptic integral of the first kind,14 and 
m = (r2- rl)l(r3 - r l )  is the parameter of the elliptic func- 
tion: m =O on the trailing (linear) edge of the nondissipative 
shock wave X-(T) and m = 1 on the leading (soliton) edge 
x+(T). 

In this paper, we shall consider only quasisimple nondis- 
sipative shock  wave^'^-'^ with rl=O (or with r3=O). The 
conditions for the formation of such waves in the problem of 
flow past bodies are considered in detail in Ref. 1 and consist 
essentially of the absence of points on the profile of the body 
of points with vanishing third derivative. The required modu- 
lation r in the quasisimple nondissipative shock wave must 
satisfy the Gurevich-PitaevskiK matching conditions on the 
boundaries x'(T): 

where r(X,T) is the solution of the Hopf equation with ini- 
tial data (2) given by the implicit formula 

where the function W(r) is the inverse of ro(X). 
The general solution of the system (6)-(7) is given by 

the hodograph transformation in generalized 

where the scalar potential f satisfies the Euler-Poisson equa- 
tion 

Then the nonlinear Gurevich-PitaevskiK conditions (8) 
on the unknown boundaries go over into a very simple linear 
condition on the coordinate axis r2=0 (in the hodograph 
plane):7 

together with a certain condition whose form depends on the 
monotonicity properties of the initial data ro(X) (and, ac- 
cordingly, on the behavior of the second derivative of the 
function that specifies the profile of the body). In the case of 
monotonic initial data (absence of points of inflection on the 
profile of the body), this condition reduces to the require- 
ment that the solution be bounded on the diagonal r2= r3. 

The geometrical boundaries of the nondissipative shock 
wave are the common caustics of the two families of char- 
acteristics for m =O and m = 1 on the family of solutions of 
(lo), namely 

where r i  are the values of the invariant r3 on the fronts that 
parametrize the equations of the boundaries. The functions 
~'(7') are transformed to the physical variables x and y by 
means of the linear transformations (43). 

3. FLOW PAST THE LEADING EDGE OF A THIN INFINITE 
WING 

In our previous study of Ref. 1, we constructed solutions 
of the modulation equations corresponding to profiles of 
bodies (3) that become thicker monotonically, with 
y"(x) >O, corresponding to monotonically decreasing initial 
data in the Gurevich-PitaevskiK evolution problem. As we 
noted in the previous section, the required potential f ,  be- 
sides satisfying the condition (12), must be bounded on the 
leading edge r2 = r3 of the wave, ensuring that the matching 
(8) can occur at finite times. These two requirements distin- 
guish a unique solution of the Euler-Poisson equation (1 1): 

Here, the index I denotes the solution corresponding to a 
monotonically decreasing section of the initial data ro(x) (2) 
[since this problem is hyperbolic, finite sections of the profile 
of the body have finite (for T-1) domains of influence, 
which are bounded by the characteristics that emanate from 
the corresponding points of the x axis, onto which the profile 
of the body is "carried"']. 

We now consider flow past the sharp leading edge of an 
infinite thin wing whose profile is given by a function y (x) 
having a point of inflection at some point (xf ,yf) (Fig. la); 
more precisely, 

-+m as x+o, 

2 0  for 0<xSxf,  

< O  for x>xP 

y (x)+ const as X--t w . (16) 

The condition for the applicability of the KdV approxi- 
mation has the form 

and as characteristic length it is natural to choose l=xf. 
Such a contour corresponds to a localized initial profile 

r,(X) (Fig. lb), where ro,,=h + [for the above choice of 1 
and 8, romax=ro(- 1), h+= 11. The fact that the second de- 
rivative of the contour function becomes infinite at the point 
of sharpening [y (x)axq, 1 <q<2 as x--101 ensures the con- 
dition for formation of a quasisimple nondissipative shock 
wavel.~o.l~ (breaking in the corresponding Gurevich- 

PitaevskiK problem occurs on the boundary with the homo- 
geneous flow), and the point of formation of the nondissipa- 
tive shock wave coincides with the origin. For q=2, 
breaking occurs at a certain time T>O, indicating separation 
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of the nondissipative shock wave from the edge of the body.' 
Nevertheless, all the expressions that are obtained remain 
valid apart from a shift with respect to T. The case q>2 is 
more complicated, but the structure of the solution is not 
changed.' 

Since the function W(r) that is the inverse of ro(X) is 
two-valued, it is necessary to introduce a so-called two- 
sheeted hodograph transformation ( r , ,r2) -+ (X, T) (Refs. 10 
and 11). This transformation is possible because Eqs. (6) 
remains hyperbolic when the independent variables are re- 
placed by the dependent variables [we note that in the result- 
ing Euler-Poisson equation (1 1) the characteristics are lines 
parallel to the coordinate axes r2 ,r3]. This makes it possible 
to distinguish on the hodograph plane the domains of influ- 
ence of the monotonic sections of the initial data-the 
"sheetsm-and then match the corresponding solutions 
along the characteristic r3  = h + . As a result, the solution (10) 
of the Gurevich-Pitaevskil problem on different sheets of 
the hodograph plane is determined by two different functions 
f,,,, which satisfy the Euler-Poisson equation and the 
boundary conditions 

f i(r3 ,r3) is bounded, 

Here W1,,(r) are monotonic branches of the inverse function 
W(r). The function f1(r2,r3) is given by the expressions 
(14) and (15). The solution f,(r2,r3) has the form1' 

where 

(19) 

Changing the order of integration in (14) and (18) gives 
a convenient representation in the form of simple integrals: 

- K(:) d x ,  (204 

where 

We now find the boundaries of the nondissipative shock 
wave, which are determined by Eqs. (13), in the family of 
solutions (lo), (20). On sheet I, we have for the trailing edge 
the parametric formulas' 

For the leading edge, 

The subsequent behavior of the trailing edge (sheet II) is 
described by the expressions 

Ti(r)=TF(r)-  - d x .  

The leading edge of the nondissipative shock wave on 
the second sheet goes over asymptotically to the straight line 

2 +  xi=, h + T n ,  (24) 

which corresponds to the motion of a bow soliton (with fixed 
amplitude 2hJ. We recall that all the obtained expressions 
are converted to the physical variables x and y by means of 
the linear transformations (4a). 

The geometrical boundaries of the nondissipative shock 
wave in the xy plane are shown qualitatively in Fig. 2(a). 
The characteristic r3= h+  emanating from the point of in- 
flection separates the regions corresponding to the first and 
second sheets of the hodograph plane. 

The intensity of the nondissipative shock wave (under- 
stood as the jump of the hydrodynamic variables across the 
wave) increases monotonically in the region of sheet I up to 
the section y = y *, where it takes its maximum value. With 
further motion along the y axis, the intensity decreases, tend- 
ing to zero at infinity. Nevertheless, the integrated energy of 
the oscillations in each section y =const remains finite. 

At large distances from the body, the nondissipative 
shock wave is transformed into a soliton wave-a train of a 
large number of noninteracting solitons whose amplitudes 
vary regularly .lo." The distance between the individual soli- 
tons increases with distance from the body. The soliton train 
can be described by two functions, which are conveniently 
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SW FIG. 2. a) Flow past the leading edge of the 
M - wing; b) flow past the trailing edge (NDSW 

M denotes the nondissipative shock wave). - 

taken to be the distributions of the amplitude a = 2 r 2  (see 
[I]) and the wave number k= 2vlL [see (7)]. The solutions 
(lo), (20) give in the limit T+m the following asymptotic 
expressions: ' 

The expressions (25) establish a unique relationship be- 
tween the parameters of the soliton train and the initial data 
ro(X) in the Gurevich-Pitaevskil problem. The problem of 
recovering the shape of the body in the flow from data on the 
wake at infinity will be considered in Sec. 6. 

The general expressions (18)-(25) simplify considerably 
if the body is not infinitely sharp but begins with a certain 
small angle S [cf. (16)l: 

y(O)=O, yl(0)=S,  yN(0)<O for x 3 0 ,  

To this profile (Fig. lc) correspond Gurevich-PitaevskiK 
initial data in the form of a sawtooth pulse (Fig. Id). For the 
solution on the first sheet, this case is degenerate (since 
W,=O, W,,=W), and therefore the hodograph transformation 
(10) is essentially single sheeted, and the solution is com- 
pletely determined by its values on the second sheet and has 
the form 

The solution (27) is not bounded as r2+ r3  (m+ 1). This 
means that the solitons in such a nondissipative shock wave 
are realized only asymptotically as T+w (i.e., at infinite dis- 
tance from the body). The boundaries of the nondissipative 
shock wave are now given by 

4. FLOW PAST THE TRAILING EDGE O f  A THIN INFINITE 
WING 

We now consider the geometrically opposite situation- 
the flow past the trailing edge of the wing (Fig. le). The flow 
behind the wing is unperturbed. At the same time, in the case 
of flow past a decreasing section of the profile, as in ordinary 
hydrodynamics, a rarefaction wave is formed, leading to the 
collision of flows of different densities in the region behind 
the wing. Thus, here too a shock wave arises, and in disper- 
sive hydrodynamics it is a nondissipative shock wave, i.e., it 
has an oscillating structure and expands with increasing dis- 
tance from the body. 

Like the one considered in the previous section, this non- 
dissipative shock wave is in the general case "two-sheeted": 
Its intensity first increases up to a certain section that corre- 
sponds to the characteristic which arrives from the point of 
inflection, and it then decreases, tending to zero at infinity. 
However, the asymptotic form of this nondissipative shock 
wave is completely different: It is a "solitonless" wave and 
at large distances from the body degenerates into a linear 
modulated wave of vanishingly small amplitude. At the same 
time, like the one considered earlier, this "solitonless" non- 
dissipative shock wave carries away a finite energy (more 
precisely, an energy of order 4, and its asymptotic modula- 
tion also carries complete information about the profile 
(which is now a decreasing one). 

It should also be noted that despite the "solitonless" 
nature of the wave nonlinear oscillations are realized at its 
leading edge as an intermediate asymptotic behavior, and 
these oscillations have a profile close to solitons whose am- 
plitude decreases gradually with increasing distance from the 
wing. 

For convenience in what follows in the analytic descrip- 
tion of the flow past the trailing edge, we place the point of 
inflection at the origin (xf=O) and take the coordinate of the 
end of the profile of the wing at 1 (Fig. le). The correspond- 
ing initial data of the Gurevich-Pitaevski problem are 
given in Fig. If [if we take S= - y '(xf), then h-  = 11. The 
evolution of a localized solitonless perturbation of this kind 
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was investigated in Ref. 12 (the corresponding results for 
rapidly decreasing potentials can be found in Refs. 15 and 
16, and the generalization of the Lax-Levermore theoryI7 to 
the case of a nonvanishing reflection coefficient is given in 
Ref. 18). 

In the present case, breaking at the point (- 1; 0) leads to 
the formation of a quasisimple nondissipative shock wave 
with r3=0 and varying r l  ,r2<0. The required modulation is 
also given by a two-sheeted hodograph transformation [cf. 
(lo)]: 

where the scalar potential f is defined on the sheets 111 and 
IV (we retain the notation of the sheets I and I1 to describe 
the qualitatively different nondissipative shock wave consid- 
ered in the previous section) corresponding to the monotonic 
slopes of the "well" (see Fig. If): 

Here 

where WnI, WIv are the functions that are the inverses of the 
monotonic branches of the initial perturbation (Fig. If). 

The solution (29)-(30) ensures the matching [cf. (8)] 

In this case too, the boundaries of the nondissipative 
shock wave are found as the common caustics of the two 
families of characteristics [cf. (13)] 

on the family of solutions (29), (30). Here rf are the values 
of the invariant r ,  on the fronts that parametrize the equa- 
tions of the boundaries. As a result, for the leading edge on 
sheet IV we obtain 

For the trailing edge, we have 

0 W&(x) + 2r  w ~ ( x )  
T&(r) = - dx. (34) 

4( - r )  

The further behavior of the leading edge (sheet 111) is 
described by the expressions 

The trailing edge goes over asymptotically to the straight 
line 

As we have already noted, in the case at hand the non- 
dissipative shock wave at large distances from the wing is 
converted into a linear wave packet. The corresponding as- 
ymptotic behavior of the solution (29), (30) as T-+m has the 
formi2 

where 

Y D-(r) 
dr .  

For the amplitude and wave number we have the asymp- 
totic behavior 

X 
,-= - - 

2T'  

The nature of the decrease of the amplitude in (38) re- 
flects the law of conservation of the energy in the linear 
medium. The first term in the expansion (38b) corresponds to 
the motion of a linear wave packet with group velocity 
wl(k)= 3e2k2. 
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Like the asymptotic expressions (25), the expressions 
(38) establish a connection between the asymptotic modula- 
tion of the nondissipative shock wave and the profile of the 
body in the flow. However, it should be noted that this con- 
nection is single valued only for a wing having a trailing 
edge with small (but finite) edge angle [see (26)l. At the 
same time, WIV= - 1, D - = - 1 - Wm . The general expres- 
sions that make it possible to determine both branches of the 
inverse function W are rather lengthy, and we shall not give 
them here. 

The geometrical boundaries of the nondissipative shock 
wave in the xy plane are shown in Fig. 2b. The characteristic 
r, = h emanating from the point of inflection separates the 
regions corresponding to sheets I11 and IV of the hodograph 
plane. 

5. FLOW PAST A FINITE BODY (WING WITH POINTED 
EDGES) 

We now turn to a more realistic exarnple-two- 
dimensional flow past finite bodies. We consider a fairly 
general case in which the finite profile has one point of in- 
flection on each side of the maximum and vanishing deriva- 
tives at the ends (Fig. lg). 

The analytic description of the flow past such a wing 
reduces to the solution of the Gurevich-Pitaevskfi problem 
with initial perturbation of nonconstant sign (Fig. lh). As 
effective length 1, it is convenient to choose the width of the 
wing, and as the effective thickness b its maximum thickness 
y (xo). Then the thin-wing approximation S=bll% 1 will be 
valid everywhere if 

y l ( x ) S S  for O<x<l. 

In the chosen normalization, the initial data (2), (3) for 
the KdV equation have the form (Fig. lh) 

for X<- 1, 

for - 1 SXSO, (3ga) 
for X>O 

and 

F(0) = F(-  1) = 0 (zero angle of attack), 

where % and a, are the small angles of inclination of the 
profile of the body at the points of inflection (Fig. 3a). 

For convenience, we also assume that r h + - m ,  
r i (  - 1 )-+ - m ,  this ensuring that the nondissipative shock 
wave does not separate from the edge of the body. An obvi- 
ous property of the function (39a) is the vanishing of the 
integral 

which imposes an important restriction on the possible form 
of the Cauchy data in problems involving flow past finite 
bodies [we note that the expression (40) is valid only in the 
case of vanishing angle of attack]. 

FIG. 3. Flow past a body of finite size: a) qualitative picture of the flow; b) 
behavior of the Riemann invariants. The right-hand part of the figure shows 
the bow nondissipative shock wave; the trailing wave is shown in the left; c) 
spatial evolution of the perturbation of the density n , .  

The evolution of the initial perturbation (39a) of noncon- 
stant sign in the KdV hydrodynamics leads to the formation 
of two nondissipative shock waves at the points X=O (bow 
wave) and X = - 1 (trailing wave). 

It is important that these waves not intersect anywhere, 
since the domains of influence of the sections of the body 
before and after the maximum are separated by the Mach line 
x = xo + J M ~  (x= - xo/l in terms of the evolution 
problem), which is now the asymptote of the trailing edge of 
the bow nondissipative shock wave (Fig. 3). 

Thus, the analytic description of the bow nondissipative 
shock wave has been given in Sec. 3 and that of the trailing 
wave in Sec. 4, and the under consideration general case is 
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simply a formal combination of the two previous ones. The 
complete solution is now defined on all four sheets [Fig. lh, 
the expressions (lo), (20) and (29), (30)]. The behavior of 
the Riemann invariants in the case of flow past a finite body 
is shown in Fig. 3b. 

The qualitative picture of the distribution of the oscilla- 
tions in the case of flow past a wing with pointed edges is 
shown in Fig. 3c. It is remarkable that, in contrast to the 
linearized theory (Ref. 13 ,s  125), in accordance with which 
the perturbation introduced by the body into the flow is con- 
centrated in the region bounded by the Mach lines that ema- 
nate from the ends of the body, in dispersive hydrodynamics 
the entire perturbation is asymptotically outside this region, 
and the flow within it is homogeneous. The physical reason 
for this is the dispersive spreading of the perturbation at 
large distances from the body, so that the energy density of 
the oscillations tends to zero at infinity. At the same time, the 
interior region bounded by the Mach lines remains finite, and 
the total energy of the oscillations within this region also 
vanishes. 

Indeed, it is easy to show that both boundaries of the 
trailing nondissipative shock wave lie to the right of the 
"Mach" region. With regard to the right-hand boundary of 
the bow nondissipative shock wave, we find that although as 
calculated from the solution of Whitham's equations it lies to 

the form of solitons, while in the trailing wave they have 
sinusoidal form. We note first of all that by virtue of the 
rectilinearity of the (centered) characteristics of the noninter- 
acting solitons in the soliton train the origin can be defined as 
the point of intersection of the lines of equal amplitude in the 
bow nondissipative shock wave. 

The problem consists of determining the function y(x) 
[or F(x), see (2)] that defines the profile of the body from 
known asymptotic wave parameters (for example, the distri- 
butions of the wave number and amplitude) far from the 
body around which the flow occurs. We also assume that we 
know the asymptotic position of the outer fronts of the non- 
dissipative shock wave, i.e., the angles /lo and PI of inclina- 
tion of the boundaries to the direction of the flow past the 
body with velocity M (see Fig. 3a). By means of (24), (36), 
and (4a), we find the small angles a. and a1 to which the 
leading edges of the wing are pointed (in the general case, 
these are the angles of inclination of the lines of the profile at 
the points of inflection): 

3(M2- 1) 

~ ~ ( y +  1) (Po- f f ~ ) ,  

the right of the Mach line emanating from the leading edge 
(see Figs. 3a and 3c) asymptotically the main perturbation is 

where cu, is the Mach angle, and tan a,,, = ll(M2-1 
The independence of the flows in the regions separated 

concentrated to the left of this line and consists of solitons of 
by the Mach line that emanates from the point xo, at which 

increasing amplitude, a soliton of infinitesimally small am- 
the wing profile function takes its maximum value, implies 

plitude lying directly on the Mach line. In contrast, the os- 
that the contours yo(x) and yl(x) of the bow and trailing 

cillations to the right of this line represent a continuous spec- 
parts of the profile can be determined independently. 

trum whose energy contribution for the original potential in 
We take the nonlinearity parameter Sin the bow nondis- 

the semiclassical approximation is exponentially at 
large (-I/&) distances from the body. sipative shock wave equal to a. [see (39b)l. Then the length 

of the bow part of the body can be found in order of magni- 

6. RECOVERY OF THE PROFILE FROM THE ASYMPTOTIC 
MODULATION OF THE NONDlSSlPATlVE SHOCK 
WAVE 

From the analytic point of view, the problem of deter- 
mining the shape of a body from data on the wake at infinity 
reduces to inversion of the asymptotic expressions (25) and 
(38). However, in order to use them directly, we must have 
data on the dimensions 1 and S of the body, but these are not 
known in advance and occur in the transformation 
(X,T)++(x,y) (44. 

For simplicity, in this section we ignore the effects as- 
sociated with the infinite sharpness of the edges of the wing 
(separation of the wave from the edge of the body, two- 
sheeted structure of the solution), which significantly com- 
plicate the asymptotic expressions but essentially do not in- 
troduce fundamental corrections to the determination of the 
body shape. The reason for this is that the domains of influ- 
ence of the infinitely sharp edges of the body (sheets I and IV 
in the xy plane, see Fig. 2) are finite, whereas the domains of 
influence of the section of the profile between the points of 
inflection (sheets I1 and 111) expand and reach to infinity. 

Thus, we shall assume that we know the asymptotic dis- 
tribution of the oscillations at large distance from the body; 
in the bow nondissipative shock wave the oscillations have 

tude from the following considerations. The well- 
developed nonlinear oscillating structure in the nondissipa- 
tive shock wave is formed at distances y-ynonlin-US. The 
soliton train is formed in the region y -ysol-1/& (see Fig. 
3c). We recall that the effective dispersion parameter is 
E=(D/~)/&, where D ,  the dimensional dispersion scale of 
the medium, is the characteristic dimension of a soliton in 
the soliton train. Then by means of (4b) we find the (effec- 
tive) length of the bow part of the contour: 

where XO'Y soiy nonlii 
We can similarly determine the length of the trailing part 

of the contour (with allowance for S= al , xl= y linly 
where ylin is the characteristic distance over which the sinu- 
soidal shape of the wave is established). 

Now, knowing the geometrical data of the body, we can 
use (4a) to go over from the known (measured) asymptotic 
wave parameters a(x, y), k(x,y) to the functions a(X,T) and 
k(X,T) that occur in the expressions (25) and (38). 

It can be seen from the asymptotic expressions (25) that 
the function kT at large T depends only on the similarity 
variable a=3X/2T. Introducing the new function 
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~ p k ( x , T ) T ,  we find from the (Abel) equation (25a) for the 
function that determines the bow part of the body profile 

where 

Similarly, for the function that determines the trailing 
part of the body profile, we obtain from (39a) [introducing 
K~(T)  =u'(x,T)T, T = -X/2T] 

where 

7. DRAG AND LIFT OF SLENDER BODIES IN DISPERSIVE 
HYDRODYNAMICS 

The drag resulting from gas in steady supersonic flow 
over a pointed body in dispersive hydrodynamics is due to 
conversion of part of the kinetic energy of the body in the 
frame of reference moving with the oncoming flow into en- 
ergy of waves emitted by the body. 

In ideal hydrodynamics, these are nondispersive sound 
waves, and the drag can be calculated for any shape of the 
body section (Ref. 13, $5 123, 125). In the present case of 
two-dimensional weakly nonlinear dispersive flow, the drag 
on the body is the x component of the momentum that is 
carried away by the nondissipative shock wave in unit time 
(as was shown in Sec. 5, at very large distances from the 
body, the entire perturbation is concentrated in the regions of 
the nondissipative shock wave, and there are no sound waves 
in the intermediate interval). As control surface, we choose a 
horizontal plane y =const at a certain distance from the wing. 
The flux density of the x component of the momentum 
through this surface is 

where n is the gas density, and c, is the speed of sound. 
Taking into account the expansion (5), we rewrite the 

expression (45) in the form 

where no and Vo are the density and velocity of the homo- 
geneous flow at infinity. 

The drag on the body per unit length in the direction 
perpendicular to the flow past the body is 

When integrated, the first term in the expansion (46) 
gives the total flux of mass through the control surface, 
which is equal to zero. Then with allowance for (5) and (4), 
we have 

Since 4 is a conserved quantity in the KdV approxima- 
tion, there is no need to calculate the integral (48) in the 
asymptotic regions, as is done in Ref. 13 (5  123). Using the 
initial data (39) and their relationship to the wing profile 
y (x), we have 

The drag coefficient is 

The expression (50) is identical to the one obtained in 
Ref. 13 ($ 125) in the approximation of linearized nondis- 
persive hydrodynamics. A similar result holds for the lift, 
which is equal to the difference of the pressure forces acting 
on the lower and upper surfaces of the wing. Projecting the 
pressure forces onto the vertical axis and integrating along 
the surface of the body [near which the flow can be described 
by the equations of ideal hydrodynamics (see Ref. I)], we 
find, as in Ref. 13 (3 125) that the lift coefficient is given by 

where a 5 6 is the angle of attack. 
Thus, despite the fundamental differences between the 

flow structure at large distances from the body the nonlinear- 
ity and dispersion have no effect on the macroscopic flow 
characteristics-the drag and lift. Of course, this is true only 
insofar as the KdV approximation holds. 
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