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We discuss the coherent scattering of three-level atoms in the field of two standing light waves 
for two values of the spatial shift. In the case of a zero spatial shift and equal frequency 
detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to 
scattering of an effectively two-level atom. For the case of an exact resonance between 
the waves and transitions we give expressions for the population probability of the states of the 
three-level atom obtained in the short-interaction-time approximation. Depending on the 
initial population distribution over the states, different scattering modes are realized. In particular, 
we show that there can be initial conditions for which the three-level system does not 
interact with the field of the standing waves, with the result that there is no coherent scattering 
of atoms. In the case of standing waves shifted by d 2 ,  there are two types of solution, 
depending on the values of the frequency detuning. For instance, when the light waves are detuned 
equally we give the exact solution for arbitrary relationships between the detuning and the 
standing wave intensities valid for any atom-field interaction times. The case of "mirror" 
detunings and shifted standing waves is studied only numerically. O 1996 American 
Institute of Physics. [S 1063-776 1 (96)00706-81 

1. INTRODUCTION 

Coherent scattering of atomic wave packets by a peri- 
odic spatial structure formed by standing light waves has 
always greatly attracted the attention of re~earchers.'-~ Pri- 
marily the interest lies in various coherent effects, such as 
the Kapitza-Dirac optical effect and the optical analog of the 
Stern-Gerlach effect, observable in the scattering process. In 
the first effect the width of the wave packet of an atom ex- 
ceeds the wavelength of the light, while in the second it is 
the wavelength that is greater than the size of the wave 
packet. Recently several papers have appeared in which the 
scattering by standing waves is proposed as a method for 
creating splitters of coherent atomic 

Note that all the researchers use the traditional approach: 
they study the coherent scattering of the wave packet of a 
two-level atom in the field of a single standing light wave. 
However, even this simple case of scattering of a two-level 
atom by a standing wave demonstrates the difficulties in de- 
scribing the scattering processes, difficulties related to the 
need of directly allowing for the microscopic structure of the 
light field. This explains the choice of various scattering 
modes, among which the best-known are the Raman-Nat 
scattering mode and the scattering mode of the Bragg t y p 4  
The main difference between the two modes is that in 
Raman-Nat scattering the solution is sought for interaction 
times much shorter than the reciprocal recoil frequency (see, 
e.g., Ref. 7), while in scattering of the Bragg type the atom- 
field interaction time is much longer than the reciprocal re- 
coil frequency.2 Generally, i.e., allowing for the finiteness of 
the atomic recoil energy and arbitrary times of interaction of 
atoms and the standing-wave field, it is impossible to derive 
an exact analytical solution of the problem not only for ar- 

bitrary values of frequency detuning but also in the case of a 
zero de t~n in~ .~ . '  

There has also been an upsurge of interest in the scatter- 
ing of three-level atoms in the field of traveling  wave^.^-'^ 
For instance, Marte et ~ 1 . ~  and Pfau et al.1° suggested an 
effective beam splitter for three-level atoms, and the possi- 
bility of obtaining effective temperatures of roughly 

K by the velocity selection method applied to a beam 
of three-level atoms in a field of oppositely disected traveling 
waves was discussed in Refs. 1 1  and 12. 

In this paper we present the results of an analytical and 
numerical analysis of the scattering of three-level atoms by 
the field of two standing light waves, El cos (kx) and 
Ez cos(kr+ $), for two different values of the relative spatial 
shift 4. Here the width of the atomic wave packet in the 
direction orthogonal to the that of propagation of the atomic 
beam is assumed to be roughly greater than, or equal to, the 
wavelength. We show that the problem of scattering of three- 
level atoms in the case of equal detuning and zero spatial 
shift between the standing waves is reduced to that of scat- 
tering of an effectively two-level atom, since the Hamil- 
tonian H(t) of a three-level system in a two-photon resonance 
can be expressed in terms of the generators of the subgroups 
SU(2)*U( 1) of the SU(3) group.'3 In other words, for equal 
detuning of the light waves and a zero spatial shift, the three- 
level atom can always be represented as an effectively two- 
level atom interacting with the field and a separate level 
whose temporal evolution can be obtained fairly simply. 

For the case of short interaction times: zero frequency 
detuning of the standing waves, and normal incidence of the 
atomic beam we obtain an analytical solution for the popu- 
lation probabilities of the states of a three-level atom. We 
study the effectiveness of three-level atom scattering as a 
function of the type of initial conditions and show that under 
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FIG. 1. Atomic level diagram for a three-level A-atom interacting with two 
standing waves: R ,  and R, are the detunings of the light waves with respect 
to the atomic transition frequencies, G I  and G ,  are the Rabi frequencies of 
the light waves, and k l  and k, are the wave vectors. 

certain initial conditions the atomic beam is effectively scat- 
tered while under other conditions there is no scattering. In 
the latter case the dynamics of the three-level system differs 
essentially from the well-studied case of a two-level atom, 
where momentum is always transferred from field to atom 
irrespective of the type of initial conditions. 

We study the coherent scattering of three-level atoms in 
the field of standing light waves with a d 2  relative spatial 
shift. Here we examine the case of equal detunings of the 
light waves (a two-photon resonance) and the case of "mir- 
ror" detuning, where the frequency detunings are equal in 
absolute value but have opposite signs. Note that for the case 
of shifted standing waves and equal frequency detuning we 
give the exact solutions with arbitrary interaction times. 
Here, irrespective of the values of the frequency detuning 
and the times of interaction of the atom and the field of the 
standing waves, the effective scattering is only measured by 
a quantity that is an integral multiple of the recoil momen- 
tum I Ap = 0,hk,2fikl, which sets this type of three-level- 
atom scattering apart from two-level-atom scattering, where 
the momentum acquired by the atom in the scattering process 
is proportional to the time of interaction of the atom and the 
field of the standing wave. At the same time, for the case of 
mirror detunings and a d 2  value of the spatial shift, the 
scattering pattern basically corresponds to that of scattering 
of a two-level atom by a single standing wave. However, the 
scattering process happens to be more effective, which sug- 
gests that such a scheme of interaction of atoms and light 
fields can serve as a splitter of neutral-atom beams.14 

2. SCATTERING OF ATOMS IN THE FIELD OF TWO 
SPATIALLY IN-PHASE STANDING LIGHT WAVES 

Let us take the three-level diagram of atomic levels (Fig. 
1) in the field of standing waves with a zero spatial shift: 

where el and e2 are the unit polarization vectors, E l  and 
E ,  are the field amplitudes, kl and k2 are the wave vectors, 
and wl and w2 are frequencies in resonance with the fre- 

quencies w13 and W23 of the optical transitions in the three- 
level atom. We assume that the atomic beam crosses the z 
axis at right angles. 

Note that from the practical viewpoint the notion of a 
spatial shift between two standing waves is of a local nature. 
For instance, if the wave vectors differ by Ak and both 
standing waves are formed by reflection from a common 
mirror, even at a distance D = wI2A k from the mirror a zero 
spatial shift changes by w12. For instance, for a potassium 
atom excited on the optical transition 3 S 4 3 P  the distance 
D is approximately 5 cm if for the lower states I 1) and 12) of 
the three-level system we take the sublevels of the hyperfine 
structure of the ground state. 

We assume that there can be no spontaneous relaxation 
in the system. From the standpoint of physics this corre- 
sponds to small times of interaction of the atom and the field 
of the standing waves. In other words, for zero frequency 
detunings of the standing waves the time of interaction of the 
atom and the field (1) can be much shorter than the time of 
spontaneous decay of the upper excited level in the three- 
level system (see Fig. 1). But if the detunings are much 
larger than the natural atomic-transition linewidth and the 
light waves have low intensities, coherent scattering can take 
place in interaction times of roughly equal to, or longer than, 
the spontaneous decay time, since in this case we can ignore 
the population of the excited state as in the scattering of a 
three-level atom in the field of two counterpropagating trav- 
eling waves.11912 Restrictions on the interaction time Tin, in 
numerical calculations are imposed only by the existence of 
spontaneous decay in real systems. If we assume that there is 
no relaxation, initially no restrictions on the interaction time 
are introduced. The coherent dynamics of scattering of the 
wave packet of a three-level atom in the field (1) is described 
by a wave function of the type 

where z  is the center-of-mass coordinate of the atom (the 
motion is solely along the z  axis), < ( z , t )  are the time- 
dependent amplitudes describing the translational dynamics 
of the atom, 6 stands for the set of coordinate characterizing 
internal motion, and E~ are the level energies. Note that in 
studying coherent scattering we are interested in the varia- 
tions of the momentum distribution in the atomic beam only 
along the z  axis. Here we also assume that all the atoms, 
irrespective of their transverse momenta, take the same time 
interval Tin, to fly through the interaction region, an interval 
that determines the interaction. The width of the atomic 
wave packet is assumed to be equal to, or greater than, the 
wavelength of the light field. 

For the Harniltonian of the system under investigation 
we can write 

k= ko+?+ e 2 / 2 ~ ,  (3) 

where H~ corresponds to the internal states of the atom, is 
the operator representing the dipole interaction of the atom 
and the field (I), i 2 / 2 ~  is the operator of the kinetic energy 
of atomic motion along the z  axis, and M is the mass of the 
atom. Substituting (2) into the time-dependent Schrodinger 
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equation with (3) as the Hamiltonian, in the resonance ap- 
proximation we arrive at the following system of equations 
for the time-dependent probability amplitudes ai(z,t) de- 
scribing the translational dynamics of three-level atoms in 
the field (1): 

where Gi and Qi are, respectively, the Rabi frequencies and 
the frequency detunings of the standing waves, and we have 
eliminated the explicit time dependence by introducing 
&= aiexp(iflit). In deriving the system of equations (4) we 
ignored the difference in the wave vectors and assumed that 
k  k2 and I w  - w 2 )  4 w ,  which imposes restrictions on the 
characteristic spatial size of the atomic beam, D,, , since 
only in this case can we speak of a definite relative spatial 
phase of the two standing waves. Here for beams with widths 
D 3  d 2 A k  there can be effects caused by the difference 
Ak in the wave vectors of the excitation waves, which di- 
rectly affects the nature of scattering. 

The natural way to solve equations of the form (4) is to 
go to the momentum representation: 

Introducing new variables r, s, and a by the formulas 
r = a l - a 2 ,  s = a l + a 2 ,  and a=&a3  into (4), we get 

where we have assumed that the detunings of the standing 
waves are (n l=R2=Q,  and that G l=G2=G,  with 
G= GI fi. 

Equations (6) clearly show that the problem of scattering 
of a three-level atom in the field of standing waves in the 
case of equal detunings of these waves can be reduced to the 
scattering of an effectively two-level atom. Indeed, the equa- 
tion for the variable r shows that the given state is not 
coupled to the other levels of the three-level system. Here 
finding the solution of this equation for arbitrary (but equal) 
detunings is easy, and the other two equations in (6) for the 
variables s and a are well known from the theory of scatter- 
ing of two-level  atom^.'-^" 

Note that the possibility of representing a three-level 
atom in the form of an effectively two-level atom interacting 
with the field and a separate level not interacting with the 

field is closely linked to the symmetry properties of the in- 
teraction Hamiltonian and has been studied in detail in Ref. 
13. Here we directly show how the general principle can be 
applied to the problem of scattering of a three-level atom in 
the field of standing waves. 

Now let us study in greater detail the case of a zero 
detuning of the standing waves. The solution of system (6) 
can easily be obtained if we use the results of Cook and 
~ernhardt:' 

where Jn(x) is a Bessel function, the a;(p) are the ampli- 
tudes of the states initially, and we have returned to the old 
notation for the probability amplitudes. 

Note that in deriving (7) we used the 
short-interaction-time approximation determined by the 
conditions 

where R  = h k 2 / 2 ~  is the frequency related to the recoil en- 
ergy, p ,  is the momentum transferred to the atom in the 
process of interaction, and Ti,, is the time the atom and the 
field of the standing waves interact.* Here, however, we did 
not require that there be definite relationships between the 
recoil frequency R  and the Rabi frequencies G of the stand- 
ing waves. Hence the obtained solutions describe, in prin- 
ciple, both the scattering mod? with G 4 R  and the opposite 
scattering mode. 

The solutions (7) immediately suggest that when the ini- 
tial probability amplitudes of the lower levels are 
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FIG. 2. The interaction diagram for a three-level system in terms of the 
variables r, s, and a. The initial conditions correspond to a , ( p ) =  -a2 (p )  
and a3=0.  

with F ( p )  an arbitrary even function, there can be no scat- 
tering of three-level atoms by standing light waves. In other 
words, the initial values of the probability amplitudes are 
preserved in time and an atom does not "feel" the presence 
of resonant optical fields. On the whole such a scattering 
pattern is caused by the presence in the three-level system of 
special states (which above have been written explicitly) in 
which the atom cannot either absorb or emit resonant 
photons.13 The important fact is that the amplitudes in (9) 
have different signs, which corresponds to an atomic beam 
that is in a definite coherent state. 

To make the above reasoning more transparent, in Fig. 2 
we depict the three-level interaction diagram of Fig. 1 in 
terms of the variables r, s, and a for the initial amplitudes 
(9). We see that when the system is in the state r, which 
according to (6) is not optically coupled with the field (I), 
there is no excitation of the three-level system. 

Now let us examine the case where the initial amplitudes 
of the lower levels are 

In this case initially the entire population of the system is in 
the state s optically coupled with the upper state of the three- 
level system. The effectively two-level atom with states s 
and a actively interacts with the standing-wave field, while 
the population in the state r is zero. The results of calcula- 
tions for a velocity distribution with initial width 0.25hk are 
depicted in Fig. 3. For instance, Fig. 3a shows the variation 
of the total momentum distribution in the atomic beam for 
different scattering times. We see that even at times of order 
G-' the scattering pattern resembles that of a two-level 
atom.* Figure 3b depicts the velocity distribution for the part 
of the atomic population in the state 13). Clearly, a substan- 
tial population appears on the third level already at times of 
order G-'. 

Note that the scattering pattern in Fig. 3b demonstrates 
the possibility of obtaining atoms, with well-defined mo- 
menta, in the upper state (3) for interaction times of G-' or 
3G-'. Here, generally, the entire population in the system is 
distributed among three levels, but the probability of discov- 
ering an atom on a common level has well-resolved peaks at 
odd values of fik. We also note that for times longer than 
3G- ' the precise one-resonance structure is transformed into 
a multiresonance structure (Fig. 3b), and using this interac- 
tion scheme for such times as a beam splitter is problematic. 
In addition, using the upper state in a beam splitter is highly 
unlikely from the practical viewpoint because of rapid spon- 
taneous decay of the state. Actually, the interaction scheme 
depicted in Fig. 1 can be inverted: we can assume the com- 
mon level 13) to be the ground and long-lived state (the 
V-diagram of levels). Then beam splitting occurs for atoms 
in the ground state 13) for atom-field interaction times Tint 
equal to G- ' or 3G- ', but the main difficulty here lies in 
preparing the excited coherent state (10). 

We turn to the scattering process realized in a system in 
which initially the entire population is in the state 13): 

According to (6), the noninteracting state r is not populated, 

FIG. 3. The scattering pattern for the initial conditions a  , ( p )  = a2(p )  and a , (p )  = 0 and a zero detuning fl. (a) Variation of the velocity distribution of the 
total probability as the interaction time Tint increases. The curves 1. 2, 3, 4, 5, and 6 correspond to GTi,= 1,2,3,4,5,6, where G  is the Rabi frequency: 
G =  G I  = G 2 .  The recoil frequency is R = f i k 2 / 2 ~ = 0 . 0 0 2 ~ ,  which is valid for potassium atoms at G  = 27rX 107s1'. The initial distribution of the total 
probability is assumed normal with a width 0.25fik. (b) The velocity distribution of the atomic population in state 13) with the same parameters as in Fig. 3a. 
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0 4 8 12p,Mr FIG. 5. Variation of the distribution of the total probability for atoms in the 
initial state with a , = F ( p )  and a2=a3=0.  Curves 1 ,2 ,3 ,  and 4 correspond 

FIG. 4. Temporal evolution of the total population of a three-level system to interaction times such that GT,,=2,4,6,8. 
obtained from the initial state a,=F(p)  by the normal distribution of width 
0.25fik in interaction times GT,,= 1,2,3,4,5,6 (curves 1.2.3 ,  4,5 ,  and 6). 
'Ihe other parameters are similar to those chosen in Fig. 3. 

 at=^(^), a:=0, a:=0.  (12) 

and we again arrive at the case of scattering of an effectively 
two-level atom in the field of a standing light wave. Accord- 
ingly, the general scattering pattern differs little from the 
case discussed above. 

Figure 4 depicts the shape of the temporal evolution of 
the total population of the three-level system. We see that 
effective scattering occurs for all atom-field interaction 
times. If we again assume that the common level 13) is the 
ground level (the V-level scheme), beam splitting occurs for 
atoms in the ground state 13) for an atom-field interaction 
time Tht= 2G-', since there are two dominant peaks in the 
scattering cross section corresponding to atoms in the state 
(3) at momentum values equal to 22hk. 

Finally, we believe that the most interesting case is that 
in which initially the entire population is in one of the lower 
states of the three-level system, say in state I I ) :  

Here, according to (6), half of the population is in the unper- 
turbed state r, while the other half is in the state s, which 
effectively interacts with the field of the standing waves. 
Consequently, the fraction of atoms in the state r is not ex- 
cited by the field, and half of the atoms do not participate in 
the scattering process, so to speak. On the other hand, the 
fraction of atoms in the state s actively participates in the 
scattering process. Figure 5 depicts the distribution of the 
total probability for this case, with the initial distribution 
assumed normal with a width 0.25hk. We see that with the 
passage of time only a fraction of the population participates 
in the scattering process, while roughly half the population 
remains unperturbed. 

Above we studied the scattering of a three-level atom in 
the field of standing waves by employing the solution (7) 
obtained in an approximation that ignores Doppler frequency 

FIG. 6. The result of interaction of a 
three-level atom with an optical field 
when the recoil frequency R coincides 
with the Rabi frequency G. The interac- 
tion time is fixed at T,,= 6G-', the ini- 
tial distribution has a width fck, and the 
atom is in the state with a, = F ( p )  and 
a2= a3=0:  (a) the distribution of the to- 
tal probability; and (b), (c), and (d) are 
the velocity distributions of the probabil- 
ity of discovering the atom in state I I) ,  
12), and 13). respectively. 
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shifts as a result of absorption or emission of a single photon 
and is valid for small interaction times (8) (see Ref. 8). Lift- 
ing the restrictions of this approximation proves especially 
interesting in the case of low Rabi frequencies (or high recoil 
frequencies), where the parameter RIG is not small and the 
interaction time Ti,, is longer than G-'. Here, not having an 
analytical solution, we integrated the system (6) numerically, 
for the conditions (pi < 6 6  k and ThtG< 12 at R = G. Figure 
6a depicts the momentum representation of a beam of atoms 
when the time Tht of the interaction with the field of the 
standing waves is equal to 6 ~ - '  for the initial state (12). 
Here the characteristic time it takes the velocity distribution 
to change is of order G-'. Note that the dependence on p of 
the total probability density W (Fig. 6a) is smoother than that 
of ( a l  l 2  (Fig. 6b), la212 (Fig. 6c), or la3I2 (Fig. 6d), where a 
rapidly oscillating structure on the hk scale is quite evident. 
We also observed an increase in the degree of dissection of 
the velocity distribution with the interaction time T h,. 

The reason for this is the increasing role that p 2 / 2 ~  
plays in the Hamiltonian related to the absorption by atoms 
of the photon momentum as the interaction time grows. The 
given term plays the principal role, causing rapid oscillations 
of the amplitudes, whose frequency depends on the momen- 
tum p. This behavior of the atomic system makes it possible 
to form at the point where the beam exits from the interac- 
tion region a "rake" of the probability density with peak 
widths smaller than hk for the atoms in the given state. Con- 
cluding this section, we note once more that such a scattering 
pattern can be observed only at low light intensities G-R 
(or high recoil frequencies) for interaction times longer than 
T ~ R - ' .  

3. SCATTERING OF ATOMS IN THE FIELD OF STANDING 
WAVES WITH A RELATIVE SPATIAL SHIFT 

Now let us discuss the coherent dynamics of a three- 
level atom (Fig. 1) placed in the field of standing waves 
characterized by a relative spatial shift of d 2 :  

We still assume that the wave with the frequency w ,  inter- 
acts with the 1 1 ++ 13) transition in the three-level atom, and 
that with the frequency w2 interacts with the (2- 13) transi- 
tion. After substituting (13) into the time-dependent Schro- 
dinger equation with the Hamiltonian (3) for the case of a 
two-photon resonance (equal detuning frequencies and Rabi 
frequencies G) we introduce the new variables 

and transform the amplitudes B+ and B- into the momen- 
tum representation (5). The result is a system of equations 
for the time-dependent probability amplitudes for the states 
of the three-level atom: 

We see that the given system has an exact analytical solution 
for arbitrary interaction times of the atom and the field (13) 
of the standing waves: 

where the i X ,  are the roots of the characteristic equation for 
(15): 

where 

with R f =  1/2Mh, and the constants ~ : ( p )  can be deter- 
mined from the initial distribution of the amplitudes 
B+(p), B-(p), and a3(p) of the three-level system. 

Note that in the case of a two-photon resonance and 
standing waves shifted in relation to each other by 7r/2 the 
problem of scattering of a three-level atom allows a simple 
analytical solution without additional restrictions imposed on 
the times of interaction of the atom and the field of the stand- 
ing waves and on the value of the Doppler frequency ~ h i f t . ~ , ~  
More than that, such a solution can be obtained for arbitrary 
(but equal) detunings and for arbitrary relationships between 
the frequency detuning and the Rabi frequency of the exci- 
tation wave. Here an analysis of Eqs. (15) shows that, irre- 
spective of the width of the initial velocity distribution, scat- 
tering occurs only if the atomic momentum changes by 
( A p [  = 0,hk92hk. In other words, if initially the atom has a 
distribution function with a width 6p < fik, after the interac- 
tion (under two-photon resonance conditions) with the field 
of the two standing waves shifted relative to one other by 
7r/2 there occurs a momentum splitting in the wave packet 
of the atom, but only up to momentum values I p l  equal to 
2hk, while the values of the atomic momentum higher than 
2hk do not appear in the scattering processes for any inter- 
action time of the atoms and the field of the standing waves. 
This sets the current case apart from the scattering of a two- 
level atom as well as from the scattering of a three-level 
atom in the field of spatially in-phase waves (Sec. 2), where 
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FIG. 7. m e  velocity distribution of  the total 
probability for the interaction of a three- 
level atom with the field of two standing 
waves spatially shified by ?r/2 in relation to 
each other at zero detunings 0, =a,= 0 
and a recoil frequency R = 0.002G. (a) Ini- 
tially the atom was in the state 1 1 )  with a 
distribution of width 0.25fik. Curves 1.2.3,  
and 4 were built for an interaction time such 
that GT,,= ?r/4, d 2 ,  3 ~ / 4 ,  and ?r. (b) Ini- 
tially the atom was in the state 13) with a 
distribution of width 0.25fik. Curves 1,2 ,3 ,  
4,  5, and 6 were derived for an interaction 
time such that GTh,= ~ 1 6 ,  ~ 1 3 ,  d 2 ,  

-2 0 2 4 p, hk 2 4 3 ,  5 ~ 1 6 ,  and ?r. 

the momentum acquired by the atom in the scattering process 
is directly determined by the time that the atom spends in the 
light field. This fact can be given a simple and intuitive ex- 
planation if we note that introducing the substitutions (14) is 
equivalent to reducing the three-level system interacting with 
the field of the standing waves to a three-level system inter- 
acting with the field of two oppositely propagative waves 
(15). Such a system was considered by Cohen-Tannoudji 
et al." who showed that the time it takes the population to 
be completely transferred from one lower level of the 
A-system to the other is determined by the Rabi frequency. 
In the process the atomic momenta change by at most 
2hk. The probability amplitudes of these two systems are 
related through the linear transformation (14) and are shifted 
in the momentum space by + fik, so that it is understandable 
why the increment of the atomic momentum changes by por- 
tions that are integral multiples of the recoil momentum. 

Now let us study the solution of the system of equations 
(15) for various types of initial conditions, as we did in the 
case of in-phase waves. Here we do not solve the character- 
istic equation for the system (15); rather, we use a code for 
numerical calculation for interaction times Tint up to 
1 2 ~ - ' .  

For the initial conditions (9), (lo), and (12) the results of 
scattering are practically the same. For instance, there is no 
scattering with changes in the atomic momentum larger than 
p = 2hk, and the amplitude of the diffraction peaks oscillates 
for allowed scattering momenta between zero and unity (Fig. 
7a). The most interesting thing here is the result of scattering 
for a time Tht of the interaction of the atom and the field of 
shifted standing waves equal to 3 G- '. We see that the result 
of scattering is the splitting in the initial momentum distri- 
bution of the atomic beam into two coherent beams centered 
at momentum values p = 2Ak. In other words, we have an 
ideal beam splitter for three-level atoms scattered in the field 
of two spatially shifted standing waves. 

As is k n ~ w n ? ~ . ' ~  the effectiveness of such a device is 
determined by two factors: the size splitting on the momen- 
tum scale, and the number of atoms in the scattered beams. 
In the present case the splitting amounts to 4hk, which cor- 
responds to beam splitting on the basis of coherent transfer 
of populations in a three-level system? But there is an im- 
portant advantage here: no atomic intensity losses in the co- 
herent beams, since the entire population in the system is 

distributed only between two diffraction peaks (Fig. 7a). 
Note that the internal state of the atom at each peak is a 
superposition. For instance, an atom in one of the diffraction 
peaks can be in the states 11) and 12) with equal probability 
(and the state 13) is unpopulated). Thus, the difference in the 
atomic momenta in the superposition (1 1) + 12)) doubles the 
path of the atom in the field (13) (see Refs. 1 and 2). No less 
interesting is the fact that for an interaction time 
Tint=6G-' the momentum distribution function is restored, 
which can be explained by the periodicity of the general 
solution of Eq. (17). 

For initial conditions of the form (1 1) the scattering pat- 
tern is depicted in Fig. 7b. Clearly, momentum variation 
does not exceed hk, with the system again periodically re- 
turning to the initial conditions ( l l ) ,  when the entire popu- 
lation is on the level 13). 

Finally, let us examine the case that guarantees the most 
effective scattering of three-level atoms. We assume that the 
spatial shift between the standing waves is still equal to 
1 ~ / 2  and that the detunings are equal in absolute value but 
are opposite in sign: Q = - R2 (what has become known as 
mirror detuning). Then the equations for the variables B- 
and B + assume the form 

where B+ and B -  have been defined in (14). 
We see that these equations, in contrast to (15), comprise 

a system of equations coupled through different values of the 
atomic momentum. In analyzing the system we did not em- 
ploy the short-interaction-time approximationg (as we did in 
Sec. 1); instead we solved system (18) numerically. 

The result of the calculations is depicted in Fig. 8. For 
instance, Fig. 8(b) shows the scattering of the wave packet of 
a three-level atom under the initial conditions (9), while 
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Fig. 8c shows the scattering under the initial conditions (10). 
Clearly, the scattering pattern strongly depends on the sign 
of the initial amplitudes of the states of the lower levels, 
being essentially asymmetric for both initial conditions, 
which leads to a deviation of the atomic beam as a whole in 
the interaction with the field of the shifted standing waves. 

On the other hand, for the initial conditions (1 1) and (12) 
we still have a symmetric scattering pattern (Figs. 8d and a). 
Here, in the case of (12), after interacting with the field of the 
standing waves over a time Ti,,= 6G - ' , the atom finds itself 
on practically the same level on which the process started, 
i.e., in state (1). In Fig. 8a the peaks in the velocity distri- 
bution at odd values of fik corresponds to atoms in the upper 
state 13), and those at even values of fik correspond to atoms 
in a lower state, I 1) or 12). An atom participates in the 
scattering processes by starting from the upper level (Fig. 
8d), with the result that for such an atom the situation is 
reversed: odd peaks correspond to the population of state 
I 1) or )2), while even peaks correspond to the population of 
13). This scheme guarantees that the scattering is the most 
effective, but as the interaction time Tint increases with the 
acquired momentum, the relative fraction of atoms at each 
atomic-density peak decreases, while at small interaction 
times Tint<6G- ' the fraction remains fairly large, which 
makes it possible to use the scheme in building a splitter for 
a beam of three-level atoms.14 Finally, we note that an ana- 
lytical treatment of the case of an arbitrary phase shift (the 
field of two standing waves of the form 
E= e l E  cos(kz)exp(iwlt)+ezE cos(kz+ &exp(i%t)) has 
shown that the substitutions r =  a I  +a2  and s = a l  -a2 re- 
duce this case to the problem of scattering in the field (13) 
but with Rabi frequencies that are generally different: 
GI  = c cos(&2) and Gz = - 5 sin(@2). The equivalent 
three-level system resembles a system subjected to two op- 
positely directed traveling waves with equal Rabi frequen- 
cies and an additional standing wave with, generally, a dif- 

FIG. 8. The velocity distribution of the total 
probability for the interaction of a three- 
level atom with the field of two standing 
waves spatially shifted by 7r12 in relation to 
each other in the case of mirror detuning 
0 ,  = - 0 , = n  and a recoil frequency 
R = 0.002G. Curves I ,  2,3 ,  and 4 are calcu- 
lated for interaction times T,,= 2G-  I ,  

4G-I ,  6 C 1 ,  and 8G-I .  The initial states 
were considered normal in the total prob- 
ability with a width 0.25fik. (a) The initial 
state is fixed at a  = F(p)  and a2= a,= 0.  
(b) The initial state is fixed at 
a l ( p )  = -a , (p )  and a,= 0. (c) The initial 
state is fixed at a  , (p )  = az (p )  and a,= 0. (d) 
The initial state is fixed at a ,  =a,=O and 
a 3 = F ( p ) .  

ferent Rabi frequency. This leads in the general case to 
scattering not limited by the selected momentum, as was the 
case with in-phase standing waves. 

4. CONCLUSION 

Here are the main results of our investigation. We stud- 
ied the coherent scattering of the wave packer of a three-level 
atom in the field of two standing light waves for two values 
of the spatial shift. In the case of equal frequency detuning (a 
two-photon resonance) we found that for a zero spatial shift 
between the standing waves the problem of the scattering of 
a three-level atom can always be reduced to that of the scat- 
tering of an effectively two-level system. In the event of an 
exact resonance we explicitly obtained the solution of the 
time-dependent Schrodinger equation for the probability am- 
plitudes of the states of the three-level atom in the short- 
interaction-time approximation,8 which allows, at least in 
principle, the scattering modes to be studied with a arbitrary 
relationship between the recoil frequency R and the Rabi 
frequency G . 

At the same time, in the case of standing waves shifted 
by i.rr in relation to each other and zero detuning, the solu- 
tion of the Schrodinger equation for the probability ampli- 
tudes can be found without any additional conditions being 
imposed on the intensities of the light waves and the inter- 
action times. Note that in the given case a scheme for a 
highly effective atomic beam splitter can be realized. 

Finally, the case of mirror detuning for shifted standing 
waves was examined. We found that the scattering pattern 
strongly depends on the signs of the initial amplitudes of the 
lower levels, which makes it possible not only to effectively 
scatter the atomic beam but also to deflect the beam as a 
whole by a definite angle. 
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APPENDIX 

Below we give the expressions for the probability am- 
plitudes of the states of a three-level atom in the case where 
initially there is a delta-function distribution in the momenta, 
S(p), for zero frequency detuning and a zero spatial shift 
between the standing waves. 

(a) The initial distribution (10) for F(p)  = 6(p): 

(b) The initial distribution (1 1) for F(p)  = S(p): 

a3(p,t)= 2 ( -  1)" exp ~ 2 n ( 2 g t ) a ( ~  
n 

-2nfik). 

(c) The initial distribution (12) for F(p)  = 6(p): 

[ i(2n + l)'hk2t] 
Xexp - 

2M ~2n+1(2&)6 
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