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Semiconductor heterostructures are considered which consist of semiconductors with identical 
energy gaps and work functions, but different Kane matrix elements (effective masses). 
Energy quantization in such heterostructures arises only if the momenta associated with the free 
motion in the plane of the layers of the heterostructure are finite. The energy spectrum 
consists of a number of valleys, where the effective mass of the current carriers is different in 
each of them. Each valley, except for the main one, starts from a finite momentum. The 
correct conditions for joining wave functions for similar kinds of structures are obtained in the 
single-band approximation. O 1996 American Institute of Physics. [S 1063-7761 (96)01506-51 

In semiconductor heterostructures consisting of narrow- 
gap semiconductors with different Kane matrix elements, it 
is possible to achieve energy quantization even without en- 
ergy barriers and quantum wells, i.e., for identical energy 
gaps 2A and work functions of the components of the semi- 
conductor heterostructure. 

Wideband superlattices, similar to such heterostructures 
and formed by semiconductors with identical work functions 
but different effective masses, were considered in Refs. 1 
and 2 in the one-dimensional, single-band approximation, 
i.e., without taking account of the free motion of the plane of 
the layers. As will be seen from what follows, this free mo- 
tion of the current carriers leads to a number of interesting 
effects, in particular, the formation of bound states in such 
heterostructures. An attempt to allow for transverse motion 
was made in Ref. 3; however, the authors of that work lim- 
ited themselves to a single-band description, valid only for 
wideband superlattices. In the present paper we consistently 
take into account the influence of the free transverse motion 
of the current carriers on the structure of the energy spec- 
trum. Here we first solve the two-band problem for narrow- 
band semiconductor heterostructures. That done, the result 
for the wideband case is next obtained by taking the appro- 
priate limit. The answer turns out to be different from the 
results of Ref. 3. The reason for this discrepancy can be 
found in the conditions of continuity at the boundary, which 
differ substantially from those commonly used. 

To calculate the energy spectrum, we employ the two- 
band equation4-6 

Here h =  1, k =  ,/- is the momentum of free motion in 
the plane of the layers of the heterostructure, and (9 are the 
wave functions. For simplicity, let us consider a double 
hetero-transition, in which p i = p 0  for lz l< dl2 (a "quantum 

well") and p i = p  for l z l  >dl2 (a "barrier"). The energy is 
reckoned from the middle of the forbidden band, and 
P'Po. 

We will restrict the discussion to bound states, i.e., those 
states for which the wave function falls off exponentially at 
infinity. In this case, the solution of Eq. (1) has the following 
form: 

Here N is a normalization constant, the constant R is deter- 
mined from the matching conditions, 

In the new type of heterostructures which we consider 
here, the boundary conditions are far from ordinary. At the 
interfaces, the quantity 

must be continuous. One can easily convince oneself of this 
from the equation of continuity.') 

Matching the solutions of Eq. (1) at the boundaries 
l z l=  dl2 leads to the transcendental equation 

1145 JETP 82 (6), June 1996 1063-7761/96/061145-03$10.00 O 1996 American Institute of Physics 1145 



HG. 1. The solid lines represent the spectrum 
of the bulk states in each of the semiconduc- 
tors. The upper straight line overhangs the re- 
gion of localized states; above it lie the states 
corresponding to free motion of the carriers. 
Physically the picture is obvious from its 
analogy with the ScWinger problem for the 
potential Urn= (k2/2)( llm - llm,) (Ref. 7). 
where the latter depends on the momentum 
parallel to the layers. Therefore, for small k 
there is only one localized state, and with in- 
creasing k the depth of the well grows, as a 
result of which new levels of size quantization 
arise. 

to determine the energy levels Ei= + A  d m ? ,  find that (llm1'4)$i and ( ~ l m ? ' ~ ) ( k + d l d z ) $ ~ ,  and not the 
i=O, 1 ,2 ,3 ,  . . . . Here usual $i and ( l lmi) ( d l d z )  $i, must also be continuous at the 

boundary. 

(5) 
Introducing the notation y = J ( E ~ -  ~ ~ ) l p ; -  k2,  we can 

rewrite Eq. (4)  in the form 

The plus sign corresponds to electrons, and the minus 
sign, to holes. In what follows, for definiteness we will con- 
sider only electron states. Hole states are obtained by chang- 
ing the sign of the energy. Since we restrict ourselves to 
bound states, 

Note that Eq. (4) depends only on the momentum k,  the 
layer thickness, and the ratio of the Kane matrix elements, 
and does not depend on the width of the forbidden band. 
However, although for a wideband semiconductor the Dirac 
equation (1 )  reduces to the Schrodinger equation under the 
conditions 

E - A  A ( E - A )  
A 

- -e l ,  2 2 k 2 ,  
Po 

the solution (2)  does not reproduce the corresponding energy 
quantization conditions for the Schrodinger equation even 
for small values of k. The explanation for this is that the 
correct condition for matching the wave functions of the 
Schrodinger equation (and this correct condition is obtained 
from the Dirac equation) is continuity of the wave function 

and the combination8 p?I2(k+dldz) $ i ,  which follows 
directly from Eq. (3).  If we take into account that in the case 
under consideration A is continuous and mi= ~ l p : ,  then we 

The levels of size quantization of the energy Ei are con- 
nected with the values of yi determined by relation (6)  by the 
relation E ~ =  -C J ~ ~ + k ~ ~ ; + ~ ; ~ ~ ( k ) .  

We have analyzed Eq. (6)  for the case 5= 2. A study of 
Eq. (6) shows that for any value k#O of the momentum of 
free motion and 5> 1, there is always at least one bound 
level. And if the conditions 

are fulfilled, then there are 2n + 1 bound states. Analysis also 
shows that all the way to the momentum 2dkS2.38 there is 
only one bound state. It is interesting to note that the new 
bound states arise in pairs. Note also the presence of a state 
located in the forbidden bands of both semiconductors, 
where the exponent in the solution (2)  is a real quantity for 
all values of z .  This state is easily studied by a method 
analogous to that described above if we write down the ana- 
lytic continuation of Eq. (6): 
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The given state is analogous to the near-boundary state 
that arises in semiconductor structures with mutually in- 
verted bands. 

The structure of the energy spectrum in the heterostruc- 
ture considered here differs fundamentally from the energy 
spectrum of the usual quantum wells (see, e.g., Ref. 9), 
where there is a system of quantum levels with identical 
effective masses for the free motion of the current carriers in 
the plane of the layers. In our case, the energy spectrum 
consists of a system of energy valleys with different "effec- 
tive masses" 

Note that the current carriers with k=O, strictly speak- 
ing, are not bound; since their wave function does not fall off 
exponentially at infinity, they do not feel such a heterostruc- 
ture. All the valleys except the lowest ( i  = 0)  start from some 
boundary momentum of free motion. 

Thus, when the current carriers pass through such a het- 
erostructure, "hot" current carriers with large momenta of 
free motion in the plane of the layers of the heterostructure 
will be captured preferentially. This is because for "cold" 
current carriers bound states are absent. 

Note that even simpler systems possess such properties. 
Thus, if we consider a single hetero-transition with p i = p o  
for z<0 and p i = p  # po for z>0, then it is easy to see that 
the coefficient R of reflection from this hetero-transition will 
tend to zero as k tends to zero: 

i.e., such hetero-transitions transmit cold particles preferen- 
tially. The expression for R is symmetric under interchange 
of po and p, i.e., such a hetero-transition identically reflects 
particles approaching from the right and from the left. 
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